A naive example of a proper Π_4^0 set of reals

We show that a subset A of the product space 2^{ω} which is defined by

A = $\{ \propto \in 2^{\omega} :$ there are infinitely many integers m $\in \omega$ such that \propto contains infinitely many segments of the form $10^m 1 \}$ is proper Π_4^0 .

§1. This is concerned with Landweber's work on finite automaton theory. A finite automaton \mathfrak{M} consists of four elements $S, 2 = \{0, 1\}$, s_0 , and M. S is a finite set, whose elements are called states. s_0 is an element of S and is called the starting states. M is a function from $S \times 2$ into S, which is called a next state function. When a sequence $\mathcal{K} \in 2^{(\omega)}$ was given (which is identified with a data tape), the machine \mathcal{M} runs as illustrated below.

The sequence $\langle s_i \rangle_{i \in \omega}$ in the above is determined by α , we denote it by $\langle s_i(\alpha) \rangle_{i \in \omega}$.

§2. Let $D \subseteq S$. Then ΥM accepts \prec with respect to D if some member of D occurs in the sequence $\langle s_i(\alpha) \rangle_{i \in \omega}$, and rejects α otherwise. This condition of acceptance of a sequence is of the most standard type. Some other conditions have been studied by Hartmanis, Stearns, Büchi, McNaughton, etc. ([1], [2], [3], [4], [5], [6]) Let $D \subseteq S$.

 ${\mathfrak M}$ 1-accepts ${\boldsymbol \propto}$ w.r.t. D if $\exists i \ s_i({\boldsymbol \times}) \in {\mathbb D}$,

 \mathcal{M} 1'-accepts \propto w.r.t. D if \forall i s_i(\propto) \in D,

 \mathcal{M} 2-accepts α w.r.t. D if \exists^{∞} i $s_{i}(\alpha) \in D$,

where \exists^{∞} i means that there are infinitely many i's such that... Put $\operatorname{In}(\varnothing) = \{ s \in S : \exists^{\infty} i \ s = s_i(\varnothing) \}$. Let $\mathscr{A} \subseteq \mathscr{P}(S)$.

 \mathcal{M} 2'-accepts α w.r.t. \mathcal{S} if $\exists D \in \mathcal{S}$ $\operatorname{In}(\alpha) \subseteq D$,

 \mathcal{M} 3 -accepts α w.r.t. ϑ if $\exists D \in \vartheta$ $\operatorname{In}(\alpha) = D$.

Let i stand for 1, 1', 2, 2', or 3. $A \subseteq 2^{\omega}$ is i-definable if there is \mathcal{M} and D (or \mathcal{O}) such that $A = \{\alpha \in 2^{\omega} : \mathcal{M} \text{ i-accepts } \emptyset \text{ w.r.t. } D$ (or \mathcal{O}). The following are easily observed:

<u>Proposition</u> (Landweber [6]). (1) Every 1-definable set is \sum_{1}^{0} .

- (2) Every 1'-definable set is Π_1^0 .
- (3) Every 2 -definable set is Π_2^0 .
- (4) Every 2'-definable set is \sum_{2}^{0} .
- (5) Every 3- definable set is \triangle_3^0 .

These estimations are known to be proper by the following examples:

Examples (Landweber [6]). Put $A^+ = \{ \alpha \in 2^{\omega} : \text{ in the sequence } \alpha, \text{ only a finite number of 1's occur } \}$. Then:

- (1) A^+ is 2'-definable and in $\sum_{2}^{0} \prod_{2}^{0}$.
- (2) A^{+c} is 2-definable and in $\Pi_2^0 \sum_{i=2}^0$.
- (3) $A^{\#} = \{ \alpha : \alpha(0) = 0 \& \alpha \in A^{+} \} \cup \{ \alpha : \alpha(0) = 1 \& \alpha \in A^{+c} \}$ is 3-definable and in $\Delta_{3}^{0} (\sum_{2}^{0} \cup \prod_{2}^{0}).$

<u>Problem</u> (Landweber [6]). Find a N A T U R A L condition for acceptance which enables finite machines to define sets above Δ_3^0 .

To answer this question, it needs to find a set of reals in a higher hierarchy which is however easily handled by finite automaton. Unfortunately we could not find satisfactory examples of such sets in the literatures. So we give here such an example. Our answer to Landweber's problem is under improvement, which will appear elsewhere in a satisfactory form.

§ 3. When a finite sequence $x \in 2^{\omega}$ is an initial segment of a sequence $y \in 2^{\omega} \setminus 2^{\omega}$, then we write x < y. The concatenation of two sequences x and y is denoted by xy. Our results are as follows:

Put $A_0 = \{ \alpha \in 2^{\omega} : \text{ There is an } m \in \omega \text{ such that } 0\text{-blocks of } \}$ length $m (0^m\text{-blocks})$ occur infinitely often in the sequence $\alpha \}$, i.e.: $\alpha \in A_0 \text{ iff } (\exists m)(\exists^{\infty} x \in 2^{\omega}) x = 10^m 1 < \alpha .$

Theorem 1. A_0 is in $\sum_{3}^{0} - \overline{\sum_{3}^{0}}$.

Put $A_1 = \{ \alpha \in 2^{\omega} : \text{ There are infinitely many integers } m \text{ such that } 0^m$ -blocks occur infinitely often in the sequence $\alpha \}$, i.e.:

$$\alpha \in A_1$$
 iff $(\exists^{\infty} m)$ s. t. $(\exists^{\infty} x \in 2^{\underline{\omega}})$ $x = 10^m 1 < \alpha$.

Theorem 2. A_1 is in $\Pi_4^0 - \sum_{4}^{0}$.

Theorem 1 is essentially a part of Theorem 2. The rest of the paper is entirely devoted to the proof of Theorem 2.

§ 4. Proof of Theorem 2. Identifying the finite sequence 0^m1 with m for each integer m, we can translate the subset A_1 of 2^{ω} into the subset A of the space ω^{ω} as follows:

$$A = \{ \alpha \in \omega^{\omega} : \exists^{\infty} \text{ m s.t. } \exists^{\infty} \text{ i } \alpha(\text{i}) = \text{m} \}.$$

Thus we show that A is in $\Pi_4^0 - \sum_{4}^0$. Since A is clearly Π_4^0 by the definition, it needs only to show A $\notin \sum_{4}^0$. For the purpose we use the following lemma:

Lemma 1 (Landweber [6], in modified form). For every subset X of ω^{ω} , X is \mathbb{T}_{2}^{0} iff $\exists B \subseteq \omega^{\omega}$ s.t. $X = \widehat{B}$, where \widehat{B} is the set of all $\alpha \in \omega^{\omega}$ such that infinitely many segments of α belongs to B, i.e.: $\widehat{B} = \{\alpha \in \omega^{\omega} : (\exists^{\infty} y \in B) \ y \neq \alpha\}$.

To the end of contradiction we suppose $A \in \sum_4^0$, equivalently $A^c \in \prod_4^0$. Then by the lemma there is an indexed family of sets of finite sequences $\left\{B_{1,i}\right\}_{1,i \in \omega}$ such that $A^c = \bigcap_{1 \in \omega} \bigcup_{i \in \omega} B_{1,i}$.

<u>Definition</u>. Let $x \prec y$ and $J \subseteq \omega$, and z be the sequence satisfying xz = y. If in the sequence z, only the elements of J occur, we say that y is a J-restricted extension of x, or shortly y J-extends x, and write $x \xrightarrow{-} y$.

Notice that by the definition of A, A^c is the set of all α such that the set $\{m: m \text{ occurs infinitely often in } \alpha\}$ is finite.

Lemma 2. If a family of sets of finite sequences $\{c_i\}_{i \in \omega}$ satisfies that $A^c \subseteq \bigcup_{i \in \omega} \widehat{c_i}, \qquad \text{then}$

(*) for every x in ω^{ω} , each <u>infinite</u> set $I \subseteq \omega$, and each <u>finite</u> set $F \subseteq \omega$, we can take $x_0 \in \omega^{\omega}$ which $F \cup I$ -extends x, a set C_i in $\{C_i\}_{i \in \omega}$, and an infinite set $I_1 \subseteq I$ such that for every x_1 which $F \cup I_1$ -extends x_0 , for every infinite set $J \subseteq I_1$, there is x^* which $F \cup J$ -extends x_1 such that $x^* \in C_i$; in symbols,

<u>Proof of Lemma 2</u>. If not, we can obtain x, F, and I such that:

We extends this x to $\alpha \in \omega^{\omega}$ as follows:

 $x \xrightarrow{-FI} x_0 \xrightarrow{FJ_0} x_1 \xrightarrow{-FJ_1} \cdots x_i \xrightarrow{-FJ} \cdots$ where infinite sets J_i , $i \in \omega$, are chosen so that:

(\$) I $\supseteq J_0 \supseteq J_1 \supseteq J_2 \supseteq \cdots \supseteq J_i \supseteq \cdots$, and $J_n \cap \{0,1,\ldots,n\}$ = \emptyset for each n.

Moreover in addition x_i and J_i , $i \in \omega$, are chosen so as to satisfy that: $(\%)_0$ Every F $^{\vee}J_0$ -extension of x_0 is not in $^{\circ}C_0$,

- $(\%)_1$ Every F U_1 -extension of x_1 is not in C_1 ,
- (%)_i Every $F \cup J_i$ -extension of x_i is not in C_i ,

This is clearly possible by the condition (#). Now put $\alpha = \bigcup_{i \in \omega} x_i$. Then by the condition (%), any initial segment of α which belongs to C_i must be shorter than x_i for each i, so $\alpha \notin \bigcup_{i \in \omega} \widehat{C_i}$. But by the condition (\$), for every m in the co-finite set ω - F, all occurrences of m in the sequence α are in the initial segment x_m . This means that α is in A^c ; a contradiction. Lemma 2 is thus proved.

In the present case, $A^c \subseteq \bigcup_{i \in \omega} B_{i,i}$ for every 1. Hence by this lemma, the following holds for every 1:

$$\lambda \ (= \ y_{-1}) \ -\overline{\omega} \ (= \ \overline{F}_{-1} \ \overline{U} \ \overline{I}_{-1}) \rightarrow x_0 \ \overline{F}_0 \overline{I}_0 \rightarrow y_0 \ \overline{F}_0 \overline{I}_0 \rightarrow x_1 \ \overline{F}_1 \overline{I}_1 \rightarrow y_1 \ \overline{F}_1 \overline{I}_1 \rightarrow x_2 \ \cdots ,$$
 where (1) $F_0 \ U_0 \supseteq F_1 \ U_1 \supseteq F_2 \ U_2 \supseteq \cdots$ and

(2)
$$\mathbb{F}_0 \neq \mathbb{F}_1 \neq \mathbb{F}_2 \neq \cdots$$

I. Stage to define $x_1 \leftarrow \overline{F_{1-1} \cup I_{1-1}} \quad y_{1-1}$. The extension x_1 is taken together with a set $I_1 \subseteq I_{1-1}$ and a set $B_{1,i_1} \in \{B_{1,i}\}_{i \in \omega}$ so that :

 $(\mbox{$\frac{1}{2}$})_1 \quad (\mbox{$\forall x$} \leftarrow \mbox{$\frac{1}{2}$} - \mbox{$\frac{1}{2}$}) (\mbox{$\forall J$} \subseteq \mbox{$I_1$}) \mbox{$\exists y$} \in \mbox{$B_1$}, \mbox{$i_1$} \quad \text{s.t.} \quad \mbox{y} \leftarrow \mbox{$\frac{1}{2}$} - \mbox{$\frac{1}{2}$} - \mbox{x}.$ This is possible by the condition (@), . We put:

 $F_1 = F_{1-1} \cup \{\min(I_1 - F_{1-1})\}.$ Hence:

(3) $F_{1-1} \cup I_1 = F_1 \cup I_1 \supseteq \cdots \supseteq F_m \cup I_m \supseteq \cdots$ Notice by the above conditions $(X)_1$, (1), and (3) that:

 $(\Xi)_1^m$ Every x_m with m>1 or its any $F_m \cup I_m$ -extension can be $F_m \cup I_m$ -extended to a member of B_{1,i_1} .

II. Stage to define $y_1 \leftarrow \overline{F_\ell I_\ell} x_1$.

By the help of the conditions $(\Xi)_0^1$, $(\Xi)_1^1$, ..., $(\Xi)_1^1$, we repeat extensions 1 times starting from x_1 as follows:

The construction is completed. Put $\alpha = \bigcup_{\mathbf{j} \in \omega} \mathbf{x}_{\mathbf{j}}$. Let $\mathbf{j} \in \omega$. Then for every 1 larger than \mathbf{j} , the sequence $\mathbf{y}_{\mathbf{j},\mathbf{j}}$ belongs to $\mathbf{g}_{\mathbf{j},\mathbf{i}_{\mathbf{j}}}$; this shows $\mathbf{x} \in \widehat{\mathbf{g}}_{\mathbf{j},\mathbf{i}_{\mathbf{j}}}$. Thus $\mathbf{x} \in \widehat{\mathbf{g}}_{\mathbf{j},\mathbf{i}_{\mathbf{j}}}$.

On the other hand, for each $1 \in \omega$, the segment z_1 that satisfies $x_1z_1 = y_1$ has an occurrence of each element of F_1 . Since $\{F_1\}_{1 \in \omega}$ is strictly increasing, every element of infinite set $\bigcup_{1 \in \omega} F_1$ occurs infinitely often in the sequence α , that means $\alpha \notin A^c$; a contradiction. Theorem is thus proved.

References

- [1] J. R. Büchi, On a decision method in restricted order arithmetic,

 Logic, Methodology and Philosophy of Science (Proc. 1960

 Internat. Congr.); Stanford Univ. Press, Stanford, Cal., 1962.
- [2] J. R. Büchi and L. H. Landweber, Solving sequential conditions by finite state strategies, Trans. Amer. Math. Soc. 138 (1969), 295-311.
- [3] J. R. Büchi and L. H. Landweber, Definability in the monadic second order theory of successor, J. Symbolic Logic 34 (1969), 166-170.
- [4] J. Hartmanis and R. E. Stearns, Sets of numbers defined by finite automata, Amer. Math. Monthly 74 (1967), 539-542.
- [5] R. McNaughton, Testing and generating infinite sequences by a finite automaton, Information and Control 9 (1966), 521-530.
- [6] L. H. Landweber, Decision Problem for ω -Automata, Math. Systems
 Theory 3 (1969) 376-384