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A naive example of a proper -!Tg set of reals
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()
We show that a subset A of the product space 2 which is
defined by

A

i

: w
{o( €2 : there are infinitely many integers m &€ W

such that & contains infinitely many segments of the form 10™ }

is proper ng .

§1. This is concerned with Landweber's work on finite
automaton theory. A finite automaton ‘W consists of four elements
S, 2 =-{O, 1}- » 89 and M, S is a finite set, whose elements
are called states. 80 is an element of S and is called the
starting states. M is a function from S x 2 into S , {which is
called a next state function. When a sequence K & 200 was given
(which is identified with a data tape), the machine M runs as

illustrated below. -
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few in the above is determined by &, we denote

iew *



§2. Let D CS. Then M accepts o with respect to D if

some member of . D occurs in the sequence <'si(o()> and rejects

iew?
X otherwise. This condition of acceptance of a sequence is of the
most standard type. Some other conditions have been studied by
Hartmanis, Stearns, Blichi, McWaughton, etc. ([11, [23, [3) [41, [51, [¢l)
Let D CS.

M 1-accepts & w.r.t. D if 3i si(o<)éD,

f}n’l'—accepts A w.r.t, D if Vi si((x) € D,

M 2-accepts o w.r.t., D if 3% si(o()eD,
where 'Eooi means that there are infinitely many i's such that... .
Put In(X) = {s es: 37 5= si(a)}. et A9 cP(s).

M 2v-accepts & w.r.t. o if D ed In(x) €D,

M 3 ~accepts X wor.t. 3 if I ed In(ox) = D.
Let i stand for 1, 1', 2, 2', or 3. Achv is i-definable if
there is M and D (or 3 ) such that A = {ke2™: M i-accepts
K w.r.t. D (or ,‘9) o The following are easily observed:

Proposition (Iandweber [6]). (1) Every 1-definable set is Z?.

(2) Every 1'-definable set is ‘IT?.

(3) Bvery 2 -definable set is Tl_g.

(4) Bvery 2'~definable set is Zg.
0]
3.

These estimations are known to be proper by the following examples:

(5) Every 3- definable set is A

Examples (landweber [6]). Put At = {O(G 2 in the sequence O(,
only a finite number of 1's occur }. Thens |

(1) A" is 2'~definable and in Zg -Hg .

(2) A% is 2-definable and in TTg -2, .

(3) A ={o: %(0) =0 & et} YV {x: x(0) =1 & x €A™ }

is B—defi’nable and in Ag - (Zg U‘Hg).



Problem (Iandweber [6]). Find a NA T U R A L condition for
acceptance which enables finite machines to define sets above Zkg.

To answer this question, it needs to find a set of reals in a
higher hierarchy which is however easily handled by finite automaton.
Unfortunately we could not find satisfactory examples of such sets in
the literatures. So we give here such an example. Our answer to

Landweber's problem is under improvemant, which will appear else-

where in a satisfactory form.

w

§:5. When a finite sequence x € 2™~ is an initial segment of a

w

sequence y € 2™~ “’Zou , then we write x<Ly . The concatenation
of two sequences x and y 1is denoted by xy. Our results are as
follows:

Put A, = {0(62(”: There is an m € @ such that O-blocks of
length m (Om—blocks) occur infinitely often in the sequence }, i.e.:

. o « m
X € A iff (Gm)(3 xe€e27) x101 <,

0
Put A1 = {0(622u,: There are infinitely many integers m such that

Theorem 1. A, is in 5:2 - IIg .

0®~blocks occur infinitely often in the sequence }, i.ce. 3

oo w
of€ A, iff (3%m) s. t. (T x €27) x10™M< &,
The?rem 2e A1 is in 7T2 - 2;2 .-

Theorem 1 is essentially a part of Theorem 2, The rest of the paper

is entirely devoted to the proof of Theorem 2.

§ 4. Proof of Theorem 2. Identifying the finite sequence o™

w
with m for each integer m, we can translate the subset A1 of 2

into the subset A of the space ouu, as follows:

(2¢]
A= {o(ew“’: 3 m s.t. 3% (i) =m }.



Thus we show that A is in Tf2 - Zg . Since A is clearly TI'Z
by the definition, it needs only to show A é Zi . For the purpose
we use the following lemma:

Lemma,_1 (Landweber [6] , in modified form). For every subset X
A
B

w N
of wwi’ X is lrg iff ng_ (W~ set. X =B, where B is the

set of all ™ e w™ guch that infinitely many segments of o belongs

N\ w oo
to B, ieee 3 B = {o((-w:(;] vy € B) y-<o(}.

To the end of contradiction we suppose A € Zg y cquivalently

0
A% e W o Then by the lerma there is an indexed family of sets of

A
such that A% =0 U B . .

finite seguenc B .
at es{ lew " jew 71,1
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Definition. ILet x<y and J €W, and 2z be the sevence
satisfying xz = y. If in the sequence 3z, only the elements of J
occur, we say that y is a J-restricted extension of x , or shortly
y J-extends x , and write x "j') Y .
Notice that by the definition of A) A® is the set of all ¢
such that the set {m : m occurs infinitely often in 0(} ig finite.
Lemma, 2. If a family of sets of finite sequences {C }

i€ew

: A~
satisfies that A° ¢ Uiew Ci , then
&

(*) for every x in W, each infinite set I & W, and each
finite set F & W, we can take Xq € w&which F YI-extends x,
a set Ci 1n{Ci}i cw? and an infinite set I1 € I such that for
every X, which FVI,l—extends Xq s for every infinite set J & I'I’

*
there is x which F YJ-extends X,

(¥, P, I) I, €pp-x I, ST I, € {c.}, o, such that

S ® e
éFI X VJ<=.‘-I1 x <FJ x

x¥ € C. .
1 i

1

*
such that x € Ci ; in symbols,

Proof of Lemma 2. If not, we can obtain =x, ¥, and I such that:

(#) (¥xy €gp-x VI, 1 ¥, in{ch o) 3 <—-ﬁ; x, W g
o % 3 .
such that x¥* & 7T x1 b'd is not in Ci .
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We extends this x to of € W as follows:

where infinite sets Ji y 1€W, are chosen so that:

($) 12J529,23,2 0023, 2005 and J ~{0,1, «vy 0}
=¢ for each n .
Moreover in addition x5 and Ji , 1€ W, are chosen so as to

satisfy that: %)O Every FVJO—extension of X is not in CO s

(%)1 Every FYJ -extension of x, ismnot in C, ,
(%)1 Every FVJi—extenSion of x, ismotin C, ,

This is clearly possible by the condition (#). Now put o = Uie w*i

Then by the condition (%). , any initial segment of & which belongs

i
AN
to C, must be shorter than x. for each i, so of ¢ U. C. .
i ) i 1ew i
But by the condition ($), for every m in the co-finite set (J~- F,
all occurrences of m in the sequence o are in the initial segment

X This means that o is in A° s a contradiction. Lemma 2 is thus

proved.

c- ‘
In the present case, A & Uie w0 Bl,i for every 1 . Hence

by this lemma, the following holds for every 1I:
Iy €mmm x 3 R Irr ¢
@), (v 7, I) Igépr-x By e{By ;Fcp ST

- e e o @ e s e e *
such that (Vx1 €57 xo)(VJ cI') kX & 77~ Xq S.t. x¥€B

1,10

Using this, we construct o which is in N ) but not

lew Yiew O3,i

in 4°. Starting with null sequence A , we repeat extensions of

finite sequences in the following manner:

—_ h
A=vy) WET,UTT %o TFI Yo TR 1 E I

v : VT 51 U
where (1) FoVIN2F, VI, 2F, VI, 2... and

(2) Fog ¥y GF G oee
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I. Stage to define X, € F1-1u11-1 Yyq »
The extension X, ig taken together with a set I1 c 11_1 and a set
Bl,ile {Bl,i}iew so that
(), (¥x €-z———=—- VI EI.)Iy€B, . sete y&m——m X
1 F1—1Il 3 k] 1,11 P1-1J
This is possible by the condition (@)1 . We put
= B v : - Ty N
Fl = El-’l {mln(Il F1_1)}. Hences

v - v v
(3) FLVL FVYI, 2 o0 2 FYI 2 ..

Notice by the above conditions (¥)1, (1), and (3) that:

(i)ril Bvery X with m >1 or its any FmUIm-extension can

P VUT =
be 0 Im extended to a member of Bl,il .
II. Stage to define ¥y (—-}-_;c—-fz--. Xy .

© By the help of the conditions (i)é, (i)f, ceey (i):lk, we repeat.extensions

1 times starting from X, as follows:

X ------ > y —————— > y —————— > LN 3 ------> y ’
r TEID 3,0 TFI, 1,1 TR I3 1,1

. . u —
where yl,j is a member of B',i. for each J £ 1. Now we FJ: I]:
extend Y11 to ¥y S0 that all members of Fl occur in the newly

b4
added part; for example, put y, =y, -k K....k, , the concatenation

1 },370M 1
of y, , enda list of all members of F, = {ko, Kiy eeey kl}.
> » . = . . &).
The construction is completed. Put Ulew xy Let je
Then for every 1} larger than Jj, the seguence Yy j belongs to
?

. 7~ -~

Bj,ij s thisshows o € Bj,i. o Thus o € (\leinEUJB}_,i .

On the other hand, for each @t € W, the segment 2z, that satisfies

:
X2y =¥y has an occurrence of each element of F}_ . Since {Fl}l € w
is strictly increasing, every element of infinite set Ulé wFl

occurs infinitely often in the sequence X, that means X & A® 3 a

contradiction. Thedrem is thus proved.
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