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A proof-theoretic approach to Paris-Harrington's results

Noriya Kadota and Hiroakira Ono
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§ 1. Introduction

In this paper, we make a proof-theoretic study of Paris-
Harrington's independence results for Peano arithmetic [6].
First, we give a characterization of provably recursive functions
in natural fragments of Peano arithmetic. Then, we give an
alternative proof of Paris' result in [5] on.the provability of
statements related to Paris-Harrington's principle, in fragments
of Peano arithmetic. While Paris used a model-theoretic method,
our method is of a purely proof-theoretic chéracter. We owe our
proof much to the close examination of rapidly growing functions,
due to Xetonen and Solovay [l]. We also mention explicitly how
the provability or the dnprovability of these statements depends
on their representation in formal systems.

In §2, we give some basic facts on ordinal recursive functions
and Wainer's hierarchy [9]. In §3, we state our theorem on the
characterization of provably recursive functions. In §4, we give

a proof of Paris' result in [5].

§ 2. Preliminaries
Define the ordinal mn(m) for each m,n < w by

W (m)

wo(m) =m, (m) = w .

“n+l

We abbreviate wn(l) to wo e As usual, €0 denotes the first

ordinal a such that o = 2.
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For 0 < k < w, % denotes the elementary recursive well-

ordering of natural numbers of order-type w,, which is defined

k
in §3 of Wainer [9]. Let a < €g be any ordinal and n be the
smallest natural number such that>m < W Following [9], we
define U(a) to be the smallest class of functions containing all

primitive recursive functions, which is closed under substitution

and the following (unnested) o-recursion;

£(0,z) = gl(z),
f(x+l,z) = gz(x+l,z,f(h(x+l,z),z)),
where h(x,z) <_ x for each 0 <_ x <_ num_(a) (= the number
n n n n
represented by o in the well-ordering “n ), and h(x,2) =0

otherwise. A function f is said to be a-ordinal recursive if
f belongs to U(a).

Suppose that a < €0 and o is of the form wB-(Y+l). Then,

B {B}(n)

{a}(n) = ws-y + ws‘n if 8 § + 1, and = w vy + w if B is

il

a limit ordinal. When o = €07 {so}(n) is w for each n.
Now, the functions Fq (o < eo) are defined inductively as
follows;

Fo(x) =x+ 1,

Fl(x) = (X + 1)21

Fopp(X) = Fatl(x) (= F(e-- (F(x))+-+) x+1 F's)
if 8 > 0,

Fc(x) = F{o}(x)(x) if ¢ is a limit ordinal.

LetZ}L (a < eo) be the smallest class of functions containing
Fa, the zero function, addition and projection functions, which

is closed under substitution and limited primitive recursion.
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Proposition 2.1 For each o < €o7

1) Fu is strictly increasing,

2) if 8 < o then F, is dominated by Fa (i.e. there exists a k

B
such that FB(X) < Fu(x) whenever k < x),

3) if 8 < o then F, is elementary recursive in Fa (in the

B
Csillag~Kalmar sense).

Proposition 2.2 For each o < Y
1) if 8 < a then every function in 3% is dominated by Fa,

2) if B < a then.?% & 3&,

3) 5@ is equal to the class of functions elementary recursive

in F .
o

The following result by Wainer [9] shows a relation between

ordinal recursive functions and Wainer's hierarchy {5@}a<€ .
=0

Proposition 2.3 For each ordinal a such that 0 < o < N

U(w®) = U

B<asw B°

In particular, if n > 1 then
I}!U(w my =~ F.
w n B<w, B

Let PA be Peano's first order arithmetic. The language of our
PA contains function symbols for primitive recursive functions.
Our system PA is obtained from LK by adding 1) the axioms for
defining equations for each primitive recursive function and 2)
a rule of inference which represents the mathematical induction.
PA* is obtained from PA by adding all sequents of the fofm
—> C, where C‘is any true Hl—formula, as its new initial

sequents. For each k > 0, PA (ox PAﬁ) is obtained from PA (or



111

PA*) by restricting the induction formulas of the mathematical
induction to formulas containing at most k quantifiers.
A n-ary recursive function f is said to be provably recursive

in PAE {(or PA*) if there exists a Gbdel number e of f such that

N vxlt-cvxnayTn(é,xl,'ln’xn’y)

is provable in PAﬁ (or PA*), where Tn is the HO

senting Kleene's T-predicate [2]. We omit the subscript n of Tn'

-formula repre-

§ 3. Provably recursive functions in PAﬁ

We characterize the class of provably recursive functions in
PAE. A formula A is called a Al-formula in PAm, if there exist a

Zl—formula B and a Hl~formula C, each of which is equivalent to

A in PA_. .
m

Theorem 3.1 Let n > 1. Then, the following three conditions
are equivalent;
1) £ is provably recursive in PA;,

2) there exists a A,-formula S(x,y) in PAn such that f(x)

1
= pyS(x,y) and PAnf-an!yS(x,y),

3) £ is wn(m)-ordinal recursive for some m < w.

Proof. We give here the outline of the proof of our Theorem. For

the detail of the proof, see Ono and Kadota [3]. We can show the

following Lemma, by using Corollary 12.16 of Takeuti [8] p.ll4.

Lemma 3.2 Let n > 1. Suppose that R(x,y) is a Ho—formula and

A ,+++,A, Dbe true I,~-formulas such that

t 1
PAn}—Al, see AL — YXIYR(X,Y).

l'

Then, the function defined by £(x) = pyR(x,y) is wn(m)-ordinal

recursive for some m < w.
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Proof of 1)=$3). suppose that PA* |vxayT(8,x,y) for some Godel

number e of f. Then there exist true Hl—formulas Al,--',At such

that
PAnl—Al, *tr,AL — vx3IYT(E,X,Y).
By Lemma 3.2, a function uyT(e,x,y) is wn(m)—ordinal recursive
for some m < w, Moreover
f(x) = U(uyT(e;x,y)):
where U is the primitive recursive function in Kleene [2]. Hence,

f is also mn(m)—ordinal recursive.

We take the canonical, primitive recursive well-ordering { on
nutural numbers‘which is of order-type €g° For each x < w, define
ord(x) to be the ordinal represented by x in the ordering < and
for each o < €7 define num(e) to be the nutural number x such
that ord(x) = a. Let h(u,v,x) = Fg;é(v)(x) and let e be a Godel
number of h. Then, we can give the following lemma, by using the

definition of Fa and Shirai's results in [7].

Lemma 3.3 Let a < 0 for n > 2. Then,

PAX|-v { num(a) —s vx3yT(5,u,v,x,y) .

Using Lemma 3.3, we can show the following.

Lemma 3.4 For n > 1, if o < W then F is provably recursive
in PA*,

n
Proof of 3) 1). From Lemma 3.4, it follows that every function

in the class 5@ is provably recursive in PA;, if o < w By

Proposition 2.3, $jLU(wn(m)) = ;ji 5@: so we can derive that
n

every w_(m)-ordinal recursive function is provably recursive in

PAX*,
n
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Proof of 2)=>3). We can derive 2)=y3) from Lemma 3.2.

Proof of 3)=>2). See 54 in [3].
Using Theorem 3.1, we can show the following.

Theorem 3.5 Suppose that R(x,y) is a Ho—formula such that
vx3yR(X,y) is true and f is a function satisfying f(x) =
WyR(x,y). For n > 1, f is wn(m)—ordinal recursive for some

m < w if and only if PA;}-VxHyR(x,y).

§ 4. Paris-Harrington's principle in fragments of Peano arithmetic

For a set A € w and n < w, define A[n]

{B& A; card(B)=n 1},
and for k,m < w, define [k,m] = {x; k<x<m }. For c,k,m,n < w, the
expression

[k,m] —— (n+l)2

means that for every function f:[k,m][n] —c, there exists a
subset H S [k,m] such that 1) H is homogeneous for £ (i.e. £ is

constant on H

[n])’ 2) H is relatively large (i.e. card(H)

v

min(H)) and 3) card(H) > n+l. We remark that [k,m] —5— (n+l)2
is a primitive recursive relation with respect to c,k,m,n.

We can define a recursive function dn,c by

O,e(K) = uy(lk,y] —5— (@+1) ).

In [1], Ketonen and Solovay obtained a sharp estimation of
functions On,c and using it, they gave an alternative proof of
Paris-Harrington's theorem which says that

(1) vwyxvzay ([x,y] —5— (w+1)"z’)

is not provable in Peano arithmetic. On the other hand, it is

pointed out that
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(2) vxvziy ([x,y] —5— (n+l)2)
is provable in Peano arithmetic for each n < w (cf. [4] and [5]).
We investigate the provability of the formula (2) in fragments of
Peano arithmetic, by utilizing results in [i].

Ketonen and Solovay have introduced a sequence {Ga}d;EO of

functions similarly as Wainer's {Fa}a<e . {(In [11, Ga is written
=0

as Fa.) The functions Ga are defined inductively as follows;
Go(x) =x + 1,
X+
GB+1(X) = Gg " (x),
Gc(x) = G{o}(x)(x) if 0 is a limit ordinal.

Then, we can show that for each a < €0 and each x < w,

Ga(X) < Fu(X) < Ga+1(X)-

The next two propositions proved in [l1] are essential in the

following discussion.

Proposition 4.1 Let n > 2, ¢ > 2 and k > 4. Then,
o (k) <G (k).
n,c mn_z(c+5) |
Proposition 4.2 Let n > 2. For any weakly monotone increasing
function £, f is dominated by S for some c if and only if
14

f is dominated by G, for some a < O

We call the relation [x,y] —— (w+l):, the Ramsey relation,
and the relation O z(x) = y, the strong Ramsey relation. We can
14
give an alternative proof of the following result by Paris [5].

Theorem 4.3 For n > 2, if P(x,z,y) is a formula containing
only‘bounded quantifiers which represents the Ramsey relation

[x,y] * (n‘l‘l)Izl, then
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1) PA;%—VXVzﬂyP(x,z,y),

2) PA;_l}LVszayP(x,z,y).

Proof. 1) Let Gn(x) = cn,L(x)(K(x)). (We take J:wuxw —w,
primitive recursive bijection such that J(K(x),L(x)) = x,
K(x) < %, L(x) < x.) By Proposition 4.1,
5n(x) < cn,x(x) < On,x+2(x+4) < Gw (X+7)(x+4) < Gw {x+7)
. n-2 n-1
< F (x+7) .
“n-1 ) ‘
So, 5n(w) = uy < Fw (w+7) [P(K(w) ,L(w),y)]. This means that
Lo n-1
§ € 5‘ , because F € EF . By Theorem 3.5, PA*}-VwﬂyP(
n w w w n
n-1 n-1 n-1

K(w) ,L(w),y). So, PA;}—VszﬂyP(x,z,y).

2) Suppose PA;_lf-VszﬂyP(x,z,y). Then, PA;_lF-VtuP(u,u,y). Let
yn(u) = uyP(u,u,y), i.e. Yn(u) = on’u(u). Then, v, is mn_l(m)—
ordinal recursive for some m < w by Theorem 3.5. So,-nléa% for

some B < woq by Proposition 2.3. By Proposition 2.2 1), Y, is

dominated by F and therefore Yn is dominated by G . Thus,

B+1’

Yy is dominated by S for some ¢ by Proposition 4.2. Hence,
14

B+2

there exists a k such that for every u > k,

oﬁ,u(u) =y () < cn'c(u)-

Let d = max{c+l,k}. Then,

cn’d(d) < cn,c(d);

This contradicts that o c(u) is monotone increasing with respect
14

to c¢. Therefore, PA;_l,%CVXVzayP(x,z,y).

Corollary 4.4 1) For any I.,-representation of the Ramsey

0
relation, PAf*LVwVXVZBy([x,y]-——;——?(w+l)¥).
2) For any Zl—representation of the strong Ramsey relation,

PA*K Vwyxvziy (o, _(x) = y).
W,2
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Theorem 4.5 There exists a Zl-formula P(x,z,y,W) such that

for each n

v

2,

1) (x) = wyP(x,z,y,n),

g
n,z
2) PAnf—VXVZalyP(x,z,y,n),
3) PAn_I*LVXVzalyP(x,z,y;n).
Proof. Similarly as Theorem 4.3, we can obtain that

0, z(X) =uy < F  (J(x,2)+7) [£*(x,2z,y,w) = 0],

! “n-1

where f£* denotes the characteristic function of the Ramsey
relation. Define
j(x,z,w,v) = wy < v[f*(x,2,y,w) = 0].

Then, j is primitive recursive. Next, by the proof of Theorem 3.1

(cf. 84 in [3]), we can take a Zl-formula R(v,x,Y),

(1) Ford(v) (¥) = wR(v,x,¥),

(2)' PAnf-an!yR(g(n),x,y),
where g(n) is the number such that ord(g(n)) = W Now we
define

P(x,z,y,w) = uv(R(g(w),J(x,2)+7,v) A J(x,z,w,v) = y).
Then, we can affirm 1) and 2) by using (1)' and (2)'. We can
show that for n > 2, and for any Zl—representation of the strong
Ramsey relation,
* =
PAn_lJZVXvZaly(cn'z(x) Y) s

similarly as Theorem 4.3. Thus, PAn_L+£VxVZB!yP(x,z,y,n).
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