vboooooooon,
O 5410 19840 18-39

I
co

THE CAUCHY PROBLEM FOR THE
COUPLED MAXWELL-SCHRUDINGER EQUATIONS

Kuniaki Nakamitsu and Masayoshi Tsutsumi
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Abstract: The Cauchy problem for the coupled Maxwell-Schrodinger
equations in R4 in the Lorentz gauge is considered. The viscosity method
is used to establish local existence. In one and two space dimensions,
global solutions are obtained.

1. Introduction

Due in part to the developments of lasers, there has been a revived
interest in the theory of the interaction of the radiation and non-
relativistic charged particles in recent years [3]. In this paper we
shall study the Cauchy problem for the closely related minimally coupled
Maxwell-Schrodinger equations, by specializing to the Lorentz gauge.
These equations are the classical approximation to the quantum field
equations for an electrodynamical non-relativistic many body system [7],

and may be written as

1.2 (iD + D.D, 'q) =V ’ D =23 - iA »

with the components Au(t,x)’s of the electromagnetic real vector poten-



tial and the complex scalar field Y(t,x) of non-relativistic charged
partilces. Here x simég 4,V rnage over 0,1,...,d, j ranges over 1,...,d
(repeated indices always imply summation), 30 = 30'= 3/3t, (—31,...,—Bd)

= (81,...,3d) =V, V=V(x) is a given real external potential, and the

Jv are the charge—current densities given by

Jo = - Wb Iy = - 40D - YD), § = 1he..nds

The Lorentz gauge condition is expressed as

(1.3) o'a, = 0.

In Sect.2, we shall show that the Cauchy problem for Egs.(1.1)-(1.3)
with d > 1 has a local solution, provided the initial data and the
external potential V are sufficiently regular. Our local existence
argument uses the viscosity method (see e.g. [4j[8][9]) to deal with the
difficulty arising from the presence of highly singular derivative
coupling terms in the Schrodinger equation, which is an unwelcome feature

of the equations.

Tn Sect.3, we prove the global existence of solutions in the cases
of one and two space dimensions., The needed a priori estimates for the
solutions will be obtained by using the energy method in the form

developed in [5], together with the covariant Sobolev inequalities.

Throughout this paper we shall use Greek indices },V,¢-+ to run

from O to d and Latin indices j,k,*°c to run from 1 to d, and the
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summation convention for both types of indices. We use the standard
notation H° for the Sobolev space of order s and exponent 2. If X is a
normed space, we write H;lk for its norm, and if X is also an inner
product space, (-, .)X for its inmer product. The Lp—norm‘will be

denoted simply by ”o‘%.

2. Local Existence

Introducing the momenta Pu = aoAu’ and the vector notation
+

= (fl,...,fd), we write Eq.(1.1)-(1.3), with initial data Ag, Pg, AO,

PO, wo, in the form

¥ +h

4 ,
(2.1) T+ Zu =K@, u-= (@4, Py X B, W
2,2 P.-23.A. =0
(2.2) 0 5
- ->
0 .0 20 20 0
u(0) = uO = (AO, PO’ AP, ¥ ),

where the components Au, Pu, and Y of the unknown u take wvalues in L2,
and the operator Z and the function K(u) are respectively defined by

Zu = (- By, - Mgy, - P, - AR, - inp),

0

+ 3 . : 3
K(uw) = (0, J,, 0, J, - ivyp + 1A0¢ + Pow + 2Aj3j¢ - 1AjAj¢),

03

the indicated differential operators being defined by Fourier trans-



formation. Use has been made of the side condition Eq.(l.3) to convert
Egs.(1.1)-(1.2) into Eq.(2.1). Egs.(2.1)-(2.2) impose the following

initial value constraints on the components of the data u,:

0
(2.3) Pg - 3,4, = 0, ajp‘j) - 04 + %0 =
Next we form for s > 1 the direct sum Hilbertlépaces
2 =11ed wm o e ® o *cd; 1Y e ¥ ey ’Y o °@®Y; 0,
=1 ed ») o B° @Y m o B BY o 57 vY e r° 7 wY; ).

We now state the main result of this section. We will denote by [p]

the integer part of p e R. Let d > 1.

Theorem 2.1. Let m be an integer satisfying m > [% + 2], and let

Ve HmGRd;iB). Let u, be any initial data lying in Xm, not necessarily
satisfying (2.3). Then Eq.(2.1) has a unique solution u on [0,T) for
some T, 0 < T < ®, such that u € C([0,T); Xm)fq C ([0,T); ) and
u(0) = ug» where we may assume that either T = © or limt+T ”u(t)l&[%+2]
= @; the solution u depends continuously on the initial data g in the

sense that if “u” < Con [0,T'] for some fixed C, T' > 0 when u

[—+2] 0
converges to some u0 e X® in Xm, then the solution u' of Eq.(2.1) corre-
sponding to the data u'! also exists on [0,T'], and u converges to u'

0
weakly in x uniformly on [0,T']. Furthermore, if in addition the data

u, satisfies the initial value constraints (2.3), the solution u satis-

0
fies Eq.(2.2).



)
oo

The proof of Theorem 2.1 depends on
Lemma 2.2, Let m and V be as in Theorem 2.1, and let 0 < & < 1. Then

a)“u_u'” s usu' € Xm—a’

(2.4) ||K(u) —K(u')“Ym—ot < oyl | n-a

o o'l
2 2 ' 1
(2.5) Re(K(u), u)Xm <efl + Hu[&[%+2] + Hu[&[%+2]}“ulgp, ue X .

2
I‘m—l’ u,u' €Xm,

(2.6) Re(K(u) -K(u"), u-u") < wlull _, ila" || Dllu-u]
X b X

where w(a, b) = c{l +a +b + a2 + bz}.

Proof. The inequality (2.4) immediately follows from the multiplication

lemma:
. - d
2.7) ”fgILS <c “flLSlﬂgILsz if Sy» 8, 2520, and s; ts, - 5>s,

a4
which implies that “fgl%s—l < c.”flgs”glgs—l for s > 5o
In proving (2.5) and (2.6), we may assume that u and ﬁ' are
o0

Co—vectors in view of (2.4). Let m be an integer satisfying m > [% + 27.

To show (2.5), we make use of the following inequality:

@.8) [[2%ee) - £2%gll, s clll<ll Jlell (d, 1+ M2l dpillell )3, £o6 e cp,
2= HJ H[-2-+1] H[§+2] 'Hm—l 0

where la[ < m. For Ial < % + 1, (2.8) (the right side becomes simplar in

this case) results from (2.7) after an application of Leibnitz rule. For



the case % + 1< Ial < m, see e.g. [6]. Now let k be any integer

k < m, Then (2.8) in particular implies that

satisfying O

[N

A

(2,9) HfgIIHk < c{Hflgglglg[g+1] + HfIL[g+2]Hgle,l + Hflg[g+1]ﬂglgk},

since for |a| = k, “faaglb § “flL“g[Lk < ol £]| [%+1]Hg||k. A repeated
H H

application of (2.9) &ields.
@0 leysytsly < e Ty gy Lol o 50608 G

where the sum is taken over all cyclic permutations (jl,jz,jB)‘s of
(1,2,3). Except for the term Re(Aijw, W)Hm, the inequality (2.5) can be
proved by using (2.9) and (2.10) in the left hand side, after _an applica~

tion of Schwartz inequalities. To estimate the term Re(Aijw, Py , we

shall use (2.8) directly. We write

(2.11) Re(A.B-W,#D =Re) (3% (A 0 W) A 3% w,B w) 51T Re (A, 3% .y, 0 w)
JJ - ‘ % L la§<mg 3 L

Applying (2.8) to the first term on the right side in the obvious mannar,

and noting in the second term that, by an integration by parts,
o
Re(a.3%3, 0, 3%) , = - 5(3.A.3%, 3%) ,,
kR L2 33 12

and that “8 A, |L cua A i [—+l]’ we find that the right side of (2.11)

is bounded by a constant tlmes lull [_+2]HuH Thus (2.5) follows.

The proof of the inequality (2.6) is, except for the term
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Re(A.9.y - A'3. Y’ - Y straightforward, and in fact reduces to
(Aj250 = MO0, ¥ = ¥ . strais :

that of (2.4). We now write

Re(Aijw - A33j¢ s b -9 )Hm_l = Re((Aj - Ag)ajw > ¥ - w')Hm_l

B, .o-B a
+ R (37A, 07 "o (Y - Y"), (W ~ Y"))
® o8 ® A% 2
0<|B]<]al

+Re ] (a.3%. -9, %W -9 .
!além—l 3 L2
Using (2.7) in the first and the second term on the right side after the
application of Schwartz inequalities, and estimating the last term in the
same way as in the last part of the proof of (2.5), one finds that the
right side of the above equality is bounded by a constant times

Ul - + el Hu - u'|F » and obtains (2.6).
X" X" 1

Proof of Theorem 2.1, Let m and V be as in the statements of Theorem

2.1, and assume first that the initial data u, is an arbitrary element

0

of X®. 1In order to comstruct the solution of Eq.(2.1) corresponding to

the data ug, we shall introduce the following approximate Cauchy problem:

(2.12) %% + Beu = F(u),
u(O).= Uy
where € > 0, and B€ = €T+ S, F(u) = - Mu + K(u), with T =1~ A and
My = (- P., - M., - P, - AR, 0), Su= (0,0, 0,0, - iA}),
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(so that M + § = Z). Note that the norms ||.||
X

equivalent for each a > O, Bz's being the fractional powers of B€o The
[§+11

1420, and ”Bz(.)lkl are

operator Bz generates a holomorphic semigroup on X . On the other

hand, from (2.4) we have

O O LIt S T e P

2 + 5%}, Thus, by

for any s 2 [% + 1], where w(a, b) =c{l+a+b +a
the well established theory of semilinear parabolic equations (see e.g.
1D, Eq.(2.12)'has a unique solution u_ on [O,TE), for some 0 < T€ < >,

such that u_ € C([O,Te); ™ N Cl([O,TE); xm—l) and us(O) = uo,_and here

we may assume that either Te = © or 11mt+TJ[u€(t)[&[%+2] = oo,

We shall now consider the convergence of u, € > 0, in the limit
€ — 0, Taking the X"-inner product of Eq.(2.12) for u. with ue and

adding the complex conjugate of the result, we have

(2.13) % gzuuelip + s(TuE, ue)Xm = Re(J(ue), uE)Xm°

Using (2.5) and noting that the second term on the 1eft side is non-

negative, we obtain

| Lo < Plucll d iyl e

where P(a) = c{1 + a + az}° It follows that

t
(2.14) “ue(t)llxm < ||u€(0) [IXmexp[JoP(”uE(s) ||X[%+2])ds] on [0,T.).



With the solution b of the scalar Cauchy problem

b p), b0 =1>|[u

at o”x[‘zlm’

which exists and is bounded on a time-interval [O,TO], T = TO(L) >0,

0
it also follows that “ue(t)lg[%+2] < b(t) on [O,TE) N [O,TO], from which

we may assume that T€ > TO. Then by (2.14),

(2.15) “ue(t) me < ”“o”XmeCt on [0,T,1,

where C is a positive constant independent of €.

Next let 0 < e, < g,, and put w=u_ - u_ . From (2.12) we have
1 2 €1 €y
dw , . _
(2.16) T Belw = (g, El)TEZ Mw + J(uel) J(uEZ).

Taking the X??l—inner product of this equation with w and adding the

complex conjugate of the result, we get

= (e, - €,)Re(Tu_ , W) +Re(J(u_ ) - J(u_), w) _ ..
1 2 82 xm—l El 82 xm—l

Noting that the second term on the left side is non-negative and using

(2.6) and (2.15), we obtain

(2.17) j—-jlwllim < & = epllu ol + odlug 1, nugznxmmwlim_l



< c€2 + C”W|§m—l‘

on

Application of Gronwall's inequality then gives ”w(t) ”;m—l hY cE,

[0,T.] since w(0) = 0. Thus by letting €, —> 0, we find a function

2

u € C([O,TO]; Xy—l) such that ué —u in Xm—l uniformly on [O,TO] as

€ —> 0., By (2.15), it also follows that u € Lm([O,T 1; Xm) with

Ha(e) ]l - < llunll eCt, that u_ —>u weakly in X" uniformly on [0,T.] as
o = 0 . €

€ — 0, and that u is weakly continuous from [O,TO] to X°.

Now let ¢ be a smooth element of Ym—l. Then we have

(—B€u€+F(u€), ) =- E(ue, +(u€, Z +(J(u€), $)

Ym--l
This together with (2.4) implis that (- BEu8 + F(ue), $) _, converges

to (- Zu + J(u), ) o1 uniformly on [O,IO]. Thus, integrating the
equality (- %%5 - Beue + F(ue), ¢)§m—l = 0 on a time interval in [0,T.],
and changing the order of the inner product and the time integral after
taking the limit € — 0, we find that u is a solution of Eq.(2.1) 1ying
in the class C([0,T.]; Xm—l) N Lw([O,TO]; Xm)° By taking the Xm_l—inner‘
product of Eq.(2.1) with u and using (2.6) and Gronwall's inequality, we
also find that the solufion u is unique in this class., Note that u is
strongly continuous in X" at t = 0 since u is weakly continuous in X" at

t = 0 and lim sup The fact that Eq.(2.1) is time

o 18O g £ gl -

translational then implies that the solution corresponding to the initial

data u(t,), given at t = t_ > 0, is also right continuous in = at
0 g s g

0

t = to° By the above uniqueness result, it follows that u is right

continuous in X© at any t in [0,T.]. Since Eq.(2.1) is also time revers-
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sible (ih a suitable sense), we deduce that u € C([O,TO]; Xm). Note that

the choice of T0 was uniform for all initial data ug satisfying

Nuall (d < L, for each fixed L > 0. Thus the above solution u extends
0xl7+2] =

to some larger interval [0,T) in such a way that u € C([0,T); Xm) with

either T = « or limt+T_”u(t)|&[%+2] ='o, From the equation, it also
follows that u € Cl([O,T); mel),

To prove the continuous dependence of the solution u of Eq.(2.1) on

o ) .
the initial data u,, let {unO}n=1 be a sequence in X" that converges to

0’
ug in Xm, and let u be the solution of Eq.(2.1) corresponding to the

3 . 3 ° i i <
initial data u for each n Suppose that {un} satisfies ““nlk[%+2] <cC

n0’
on [0,T'] for some constants C, T' > O independently of n. Now an
argument similar to that which led from (2.13) to (2.15) (but now setting

c

€ = 0 and replacing u t on [0,T']

0 by uno) shows that ”un{&m < “unolgpe

for some constant C > 0 independent of n. An analysis similar to that
which led from (2.17) to (2.18) then shows that ”un(t) - u_y(t) llxm_1 <

- ' i > i
C ”unO un'Olgm—l on [0,T'] again for some constant C > 0 independent of
n and n'. Then by the same argument as above, we deduce that u —u in

) uniformly on [0,T'].

It remains to show the last part of the theorem. To see this,
assume further that Uy satisfies (2.3), and let u = (AO, PO, K, ;, P) be
the corresponding solution of Eq.(2.1). Put

f=P. - 3.A,, =93.P, - M + U,
g = 9.P, ot W

From Eq.(2.1) we have

!/



df _ _ dg _ _ —
rr it -1 . Af + 2yyf,

Using these equation, we obtain

L2l + usl} + st} - | @ - Drgen

R

+ [wBzlE + el

A
—~
NI

on the interval of existence [0,T) of u. Since Hw]L < “W” [§+l] < c(Th)
: = w5 =

on each [0,T'], T' < T, and £(0) = g(0) = 0 by assumption, if follows
that ”f[g + ”Vf”é +I|g”§ = 0 on [0,T). Thus f = 0, which is the desired

result,

3. Global Existence in One and Two Space Dimensions

In this section we shall prove

Theorem 3.1. Let d € {1,2}, m an integer satisfying m > [% + 4], and

Ve HmGRd;]R)o Let u, be any initial data lying in X" and satisfying

0

the constraints (2.3). Then Eqs.(2.1)-(2.2) has a unique solution u on
m 1 m~1

[0,2) such that u € C([0,2,; X ) N C ([0,®); Y 7) and u(0) = uge

The proof of Theorem 3.1 depends on the energy and the charge

conservation laws, which we shall state here as a lemma. Note that we

have the identities

/2
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9 (fg) = D fg + fD D (fg) = 9 _fg + £D
| u( g) Lf8 |8 u( g) ufe "-#
DD = DD Ff +iF, f,

aquk + Bvau + akFuv = 0,

whenever f, g and the AU are smooth in (t,x) and the AU are real valued.

Lemma 3.2. Let (AO, Al,..;, Ad, P) be a smooth solution of Egs.(1l.1l)-

A

-(1.2) with V smooth, and assume that A 10000

0° Ad’ Y, V and their

derivatives (of suitable order) are square integrable.onﬁRQ. Then the

energy E1 and the charge Q of the solution, that is,
E, = {Dxpnyp+vw$+11«* F. 4+ 3p. 7, }dx
1 a iT3 2730730 4 jk jk ?
R
Q=I IIJEdX,
]fd

are finite constant functions of time,

Proof, In fact, we have from the equations that gEEl = %EQ = 0, The
proof is facilitated by using the above identities for the Dp and the Fuv.
Proof of Theorem 3.1. We shall prove the theorem under slight weaker
assumptions. We replace the condition m > [% + 4] by m > [g + 2], and
assume the existence of a sequence {uno} of initial data in Xk, with

k > max{m, [% + 41}, such that u

—ru, in Xm, and that each u
n0 0

n0

/3



satisfies the constraints (2.3). Let {Vn} be a sequence of external

. . ke d _d . ' in B
potentials in H (R ; R"), k being as above, that converges to V in H ,
and for each n, u € C([O,Tn); Xk) the solution of Eqs.(2.1)-(2.2)
corresponding to the initial data U9

given by Thorem 2.1. We shall show that for such {un}, there is a

and the external potential Vn’

locally bounded function C(-) on [0,%) which can be chosen independently
<

of n, such that Uungt)l&[%+2] < C(t) on [O,Tn). One can then show, by

an obvious change of the proof of the previous result on continuous

dependence of solutions on initial data (to include the dependence on

the external potential) that, for every T > 0, the solution u of Eqs°

(2.1)-(2.2) corresponding to the initial data u, and the external

0
potential V exists in C([0,T]; X™ as the uniform limit of {un} on [0,T]
in the weak topology of Xm, and thus conclude the desired global

existence result,

To derive the above estimate, we will use the covariant Sobolev

inequality (see e.g. [2] Appendix):

T
-
A

R

o]
3

It
o]
~

1

]

!
~

where % - (1 - a)%, withd >1,1<p

A

©, 1<gqg

A

l<r<wand 0<ag<l {fp=w only a<1is allowed), K = K(d,p,q,r),
and the A.j are real and f is a complex valued, with f ¢ Lr, ajf € L4 and
Ajf € qu We will need the following particular estimates:

d/4”f”1—d/4

(3"1) ”f”4 é K “Dfuz 2 ’ d ='1’2’

/&



.2 el < x el elR? a =1,
@ el < D%l e M52, 0<e <1, a=o,

and also use the usual estimates obtained by setting A.j = 0 for all j

in (3.1)-(3.3). Here as in the following, we write ”Dsf”2 for

{ z ”Dj ---Dj f”g}l/z. We will also use the notation “Bsf”2 to
Jiseees] 1 s
deéignaées{ Z ”Bj ...aj f”g 1/2.

Jpseeradg 1 s

We shall denote u simply as u, and any positive locally bounded
function of t € [0,%) (including any positive constant) which can be
chosen independenty of n by the same letter C. Note that

2
e ¢°([0,T )
Hk—Zl

Z, f, P) € C([O,Tn); Xk) implies that A Hk+l_2)

k-2

u = (AO, P

b

0]
) (3 =1,0..,d) and P € CQ‘(IO’Tn);

0’

2
A.j e C ([O,Tn), H ), for

L= 0,1,..0,[%]. The idintities for the DH and the Fuv will be freely

used in the following arguments,

Lemma 3.2 and the fact that the sequence of initial data with which

we are concerned is bounded in X© first give
(3.4) E, < ¢ vl <c.

Consider now the second order pseudo-energy E2 defined by

B — 1 1
E, = J d{Dij“’Dka“’ + zaij Oaij ot zakrj jlakle*j z} dx ,
R

We note that (3.1) and (3.4) imply

/5
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212 —_
IIp ¢[|2 = J]RdDjDkajDkw dx

=J {DDwDDw+21F Dwa+1aka_'?dx
d
R

A

Hnjnjwﬂg 17 Bl o vll, + a,F LIl In ol

A

2 /2 /2.2 /4
B, + dio®lp? + ey A0,
so that
(3.5) 0%l < cE, + c.

We compute the time derivative of E2 using Eqs.(1.1)-(1.2), and then

estimate the result by means of (3.1)-(3.5). It results that

N
Q-Im
(a4
N

E. = ReJ d{ZlF D wD D xp 13j3ijDkalb
R
- ZiBjVDj\pDkatp d F oF s kw} dx

< Ale oo in2yvly + 13,2,7 v ILino, vl

+ ol o bl ool + o,z e vl

WA

CE, + C.

(”BjV]h should be estimated by the standard Sobolev inequality). Recall-

/6



34
ing that the sequence of initial data is bounded in Xm, we obtain
(3.6) E, < C.

In a completely analogous way, we further estimate for d = 2 the third

order pseudo—energy

_ —_ 1
Ey = J Z{DJLDijtzDka“’_ + ’azakF 0% 50 + 7202 5n02 P F 50t 4%
R

by using the covariant Sobolev inequalities and the above estimates.

One first finds that

”D3w”§ = J 2D Dy Dg¥D. Dy Do dx
R

= J 2{D D.D "’Dz 3 kw + 1iF, D IPD Dknzw - 1ijDjD2¢DkD£w
R

+ iBjFZ WD, D, Do + 24F, D xpD DDy ~ 49, Fy DyDD ww

~ 2iF, D,D.D.YD ¥} dx

k7R

< CE, + cIID3tPH2 +C

3

and thus obtains

32
(3.7) ol < cEy + c.

/7



Using Eqs.(1.1)-(1.2) and noting this estimate, one has

1d . .
5 35k3 = f d{(21‘15‘3.()1)£13],11J + 1F20Djnjw + 2132'17 OD P+ 13 F. ODJZ,w
R
+ 13£8ij0w - iazajajvw - iaijVDzw - ZiazajVDjw
- 2id VDDlp—lBVDDw)lekw+ (1D¢le\p
+ 1D, D wD WV + D, D wnzw + 1D,D; D ww)azakF O}dx
< CE; +C,
which gives
(3.8) E. < C.

The results (3.4)-(3.8) show that

S d
(3.9 ”“DHZ <G, “D ‘p”2 <G, s = l,...,[i + 2],
(3.10) e || ;d,..7 <€ w,v=0,1,...,d,
wo, [5+1]
for d = 1,2. To derive the needed bound on (AO, BOAO’ K, adz’ Y), we

shall consider the following quantities:

N

B, =lIZIE +Ilaglfa,; + 1o,
AO "2 0 H[§+3] [ +2]

2



o, a
=| AA dx + , 370, A 373 A d
Jduux Zd Jdauo uoo°F
b2} lal§[7+2]m

E, = ||0R|P%d, 4 + I3 Alf
g5+l T 100R 5]

¥ J 3% A,0%3 A, dx .
o] £ 1] d >
al<|=+1] R

=12

. o o
Here we use the notation o in the usual sense; thus 0 = 9. -"3j

3
_ 1
la] = s. Eq.(1.1), Eq.(1.3) and (3.10) give

- _ - o4 o3
E, = J dFjOAj dx Zd J da BoAg® 34Fqdx
R vlalg[—2-+2] R

N =
ﬂa'ﬂa
t
>

2
“FjOHZHAj ”2 + “ BOAO”H[%'FZ]” |1pl “H[%'i'zl
< tc+ 1ol e, 82,
- ulat2]l” 4,
But from (3.1)-(3.3) and (3.9) one obtains

Hwl? 1, < Il < c,

2
3lwlll, < 2vlillovll, < c,

A

19%1w121l, < Alvlio?wll, + 2iovlf < c,

A

192[w1%1l, < AlwiLio®ll, + elfowllin]], < c,

with

the last estimate being needed only for d = 2. Thus it follows that
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E, <C. Eq.(1.3), (3,10) and this result yield

7
]

Ql [0} [0 o (6 [0}
O°F 000 A, + 370.A.0 0.A. + 9°3.A A td
L) R 3%0% 2044 o%0? gt} dx
]Of.lé[-z-i'l]]R

A

17,51 a2, iy + Doyl s laghol 0
+ |34

I a
0 H[§+l]

CE%K/Z + C,

A

giving EX < C. Therefore,

lagll ca,.y <c, I3,a0ll rd,ny <c AN d,.<c, 3Rl d4,.;<c
0 H[§+3] 00 H[§+2] [ H[§+2] “ 0 IL[§+1]

Finally, from the definition of the DH’ one has
3jw = Djw + iAjw,
3j3k¢ = DjDkw + iBjAkw + iAkij + iAjDkw,
ajakazxp = DjDkDQIw + iBjBkAgllb + iakAgl’c)jw + iBjAzakw + iAgajakw
+ 10, A Db + 183000 + AD A - AAD D - iAjDka’q).

Using these expressions, one finds, with the help of (3.1)-(3.3) and the

>
. usual Sobolev inequalities, that (3.9) and the above estimate on A imply

20



that ”wH [%+2] < C, which completes the proof of the desired global
H

result,
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