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Satellite Links with Brunnian Properties

Taizo Kanenobu (A5 A

We shall work throughout in the PL category. An n-link with

m components is a locally flat oriented submanifold of the

oriented (n+2)-sphere Sn+2 homeomorphic to m disjoint copies

of S". An n-knot is an n-link with one component. A trivial

n-link is one whose components bound disjoint locally flat

n+1 n+2

(n+1)-disks B in S . An n-link L is splittable if
there exists an (n+2)-disk Bn+2 in Sn+2 satisfying L r\Bn+2
¢v¢, L n 3Bn+2 = @, and L r\(Sn+2 - Bn+2) £ @, where 8Bn+2
is the boundary of Bn+2.

Let 6l be the family of those subsets S of I = {1, 2,
.-+, m} for which the sublink Lg = UL, of an n-link L = 1,V

L2u IV Lm does not split. Then welZ§ll L has the Brunnian
property of type Ol. For the convenience we assume that @, {i}
¢ OL for all i € I. 1In this family of subsets Gt, the
following condition must be satisfied:

(*) If S, T €6l and S AT # @, then s uUTE€E O

Conversely we prove:
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Theorem. Suppose n 2 1 and mz 2. Let Ol be a family
of subsets of I satisfying the condition (*). Then there
exists an n-link with m components with the Brunnian property

of type €.

This theorem is previously obtained by H. Debrunner [3] for

v

n 2, using a ribbon n-link. Our example is a satellite 1link,
which is defined in a similar way that a satellite knot is
defined in [11, pp.110-113]1 and [7]. As partial results, the
following are known: Let ﬁk' 2 £k £m, be the family of all
the subsets of I consisting of k or more elements. An n-1link
with the Brunnian property of type ‘%k is one such that no
sublink with k or more components is splittable but every
sublink with less than k components is completely splittable.
For n =1 and k = m, such links were given by H. Brunn [1],
see also (11, pp.67-69]; for n =1 and k = m, by H. Debrunner

[2]. R. H. Fox [3, problem 38] asked whether examples existed

for n =2 and k z m, and T. Yanagawa [13] answered by

[\
-

constructing such examples using ribbon 2-link. For n and
k =m, see also [11, pp.197-1991].
A group G 1is indecomposable (relative to free product) if

G =A*B implies A =1 or B = 1. To prove that a link is

unsplittable, we use the following fact, cf. [10, Theorem 27.1]:

Proposition. An n-link L is nonsplittable if its group

T Sn+2 ~ L) is indecomposable. If n = 1, then the converse is

1 (

valid.
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Hence any 1-knot group is indecomposable. Moreover an
n-knot group with a nontrivial center ([5]) is indecomposable

([9, p.195]).

Proof of Theorem. Let O = 0O, U O u... VY Om be a trivial

1 2
n-link with m components. Let X € ﬂ1(Sn+2 - 0) Dbe a
meridian of Oi’ Let S = {11, iyr eens lk} I, 1 s i1 < i, <
... < i s m. We write Fg for the free group with basis {xi ,
1
: n+2
X, 4 eeey X, }3; thus w.(S - 0.) = F.. Let a, = [x, , x. ,
i, i 1 S S S i, i,
-1 -1
eee, X, 1, where [x, , x. ] =x, X, X, X, and [X. , «e..,
i i, i, i, Ti, Ti7i, i,
Xi. ’ Xi.] = [[Xi r e ey Xi. ]I Xi.].
J-1 ] 1 Jj-1 J
Let Ol= {S1, Syr eees Sr} and let a; = asi. If n=1,
then @, can be represented by mutually disjoint simple closed
curves Ri in 83 - N(O), where N(O) 1is a tubular
neighborhood of O in S3, such that the (#Si + 1)-component
link OS Y] Qi has the Brunnian property of type ﬁ#S 1 and
i ‘ i

that the r-component link 21 v 22 voL.. L’Qr is trivial. We
can always find such Ki as illustrated in the figure, which
consists of four circles O1 v O2 v O3 v O4 and three curves 2%

2 and 23 represent [x1,x

1

v 22 b’23, where 2 L

1! 2,X3],
[x3,x4] and [xz,x4], respectively, see [7, p.67]. If n

[1\%

2,

we can also find mutually disjoint simple closed curves ﬁi in

Sn+2 - N(O); each o, is represented by a unique isotopy class

of %. ([6, Corollary 8.1.2 and Theorem 10.11]).



Hence in any case, if let Vi be disjoint tubular

n+2 n+2

neighborhoods of the %i in S - N(O), then S - int Vi
is homeomorphic to s™ x D2, where int Vi is the interior of
V.. Let K be an n-knot such that m (s"*? - K) is not
infinite cyclic and indecomposable. Let h1 : Sn+2 - int Vi -
N(K) be a homeomorphism. Then Sn+2 - int h1(Vi) is
homeomorphic to s™ x D2, 2 £1i 2 r. In the same way, we
inductively define homeomorphisms hj : Sn+2 - int Vg_1 + N(K),

1 £ 3 £ r, where Vg = V., and Vi = h(Vi‘1), j+1 £ i £ r. Let

- j o_ j-1 _ o -1
Ri = li and Ri = hj(,Q,i ). Let LO =0 and L = hj(L ),
where Lg = 0, and Lg = hj(L1~1). We show that the iterated

satellite link L = LT (Li = Li) has the Brunnian property of

type OL. If S ¢ T < I, then Qi and O split and if S

Sj = @, then li and OS split. Thus, if T ¢ &, then Lo
J

is splittable. Moreover, to show the contrary, we have only to
prove that L is nonsplittable assuming I ¢ O,
‘Let S1 =TI and m > #52 Z s.. 2 #Sr' Applying the van

Kampen theorem, we have the diagrams of inclusion homomorphisms:

m, (AN(K))

v

- int N(K))

g7

n+2

my(s T (N(K) - 17)
k///// w

g3

/



n+2

for 1 s 3 s r. Note that m,(s"*? - int N(K)) 2 m, (s7*2 - k).
since Oy and %, split for 1 si s 3, L) =0 , and
. i S. S.

j j+1 J+1
n+2 J . .
sO ﬂ1(S - LS }y = FS . By deleting the components which
J+1 J+1
are not contained in Sj+1’ we have an epimorphism R 1T1(Sn+2
-1y - F .
S.
J+1 . . .
If both n and 67 are injective, then both £l and o]
are also injective ([9, Sec. 4.2]1), that is 'n1(Sn+2 - 1)) is
the free product of W1(Sn+2 - K) and n1(N(K) - Lj) with an

amalgamated subgroup ﬂ1(8N(K)) [9, P.207]. Further suppose that

n+2

both 7. (S -K) and ﬂ1(N(K) - 1)) are indecomposable, then

1(
n1(Sn+2 - 13) is indecomposable [9, p.246].
Case 1. n = 1. Let m (3N(K)) = < u, A | fu, X1 =1 >,

where u is a meridian and X is a longitude. Since KX 1is

knotted, n is injective ([11, Theorem 4B2]). Let £9 : ﬂ1(N(K)

- L) » 7r1(s3 - 3] 23_1) be an isomorphism and gj_1 :

ﬂ1(S3 - LJ_‘I l§_1) - ﬂ1(S3 - L]_1) be an inclusion

homomorphism. Then w3’1;3“1fje?(u) = aj, which has infinite

order in Fg  ([9, Sec. 1.4]). Furthermore £33 (1) is a

meridian of

J

3o . :
Zg+1, and so 6? ~is injective. Thus Ej and

are injective.
Since any proper sublink of O VU 11 is trivial and 21
U .
I* 0 11 is
nonsplittable, and so W1(N(K) - L]) Y ﬂ1(S3 -0 b’£1) is
j =1

represents a nontrivial element a1 in F

indecomposable. 1In the same way, LJ

v 237 o, U, s
s 3 j

S.
J ]



nonsplittable. Suppose that Ljf1 is nonsplittable. Then Lj"1

v zg“1 - (Lg~1 U z§“1) U 1371 is also nonsplittable, and so
J

ﬂ1(N(K) - 1) Y ﬂ1(83 -~ Lj_1 ) 23"1) is indecomposable. Hence

by induction on 7j, ﬂ1(S3 -~ L) 1is indecomposable.
Case 2. n z 2. Let m (3N(K)) = < u | >. Then n(u) is a

meridian of N(K), and so n 1is injective. Since the inclusion

homomorphism n1((Sn+2 - int Vg—1) - Lj) > ﬂ1(5n+2 - Lj) is
isomorphic, we have an isomorphism gj : W1(N(K) - Lj) >
W1(Sn+2 - Lj) and wjgjej(u) = aj+1’ which has infinite order
in FS. 1, and so Bj is injective. Thus Ej and wj are
injectige.

1f 7, (N(K) - L') v m,(s""? - L") is indecomposable, then
by induction on Jj, ﬂ1(Sn+2 - L) is indecomposable. Hence the
proof is reduced to the lemma below.

Sublemma. Let Hm = < Xy rXgreee s Xy | [x1,x2,...,xm] =1 >.

If mz 2, then Hm is indecomposable.

Proof. We prove by induction on m. H2 is free abelian of
rank 2, and is indecomposable. Assume that H 1 is
indecomposable. Let H = A * B. Since B = [x1,x2,...,xm_1]
and X0 commute, either both B and X, are in a conjugate of
A or B, or B and x ~are both powers of the same element
[9, Corollary 4.1.6]. Considering the exponent sums on

generators, the latter case cannot occur. Thus by an inner



automorphism of Hm’ we may suppose that B & A and X, €
A. Let N be the normal subgroup generated by B8 and X in
A. Then we have Ho 1% A/N * B, cf. [8, Problem 4.1.5]. By

inductive hypothesis, we obtain A/N =1 or B = 1. If A/N =

1, then Hm v A Y H and so the rank (i.e., minimum number of

= m-1"

generators) of A 1is one [8, p.192], a contradiction. This

completes the proof.

Lemma. If n 2 2, then G = 1T1(Sn+2 - L1) is

indecomposable.

Proof., Let G = C * D, Then by the condition, 1T1(Sn+2 -

K) 1is contained in a conjugate of C or D [8, p.245]. We may

suppose that Tr1(Sn+2 - K) is contained in C. Then the HNN

extension of G with an associated subgroup < u | > Z [8,
p.1791

-1

I Xm+1uxm+1

*
G:(G'X =u>

m+1

* *
is a nontrivial free product C * D, where C is an HNN

extension of C

¢ =<q, x | %]

m+1 Em+e1H¥mer = M Z.
On the other hand, since u = [x1,x2,...,xm], G* is the
free product of Hm+1 and 171(8n+2 - K) with an amalgamated
subgroup < u | >. Now both H ., and ﬂ1(Sn+2 - K) are

. * )
indecomposable, so is G , and this contradiction completes the

proof.
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Remark 1) A satellite n-link built from the trivial link O

and the simple closed curve { representing T oy where [Zk

SGEk

is the family of all the subsets of I consisting of k
elements, has the Brunnian property of type :%k‘
2) If n =1, then the Alexander polynomial of our link L

is zero by [12, Theorem 57.
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