LOCALLY COERCIVE NONLINEAR EQUATIONS

TOSIO KATO

In this lecture we consider abstract nonlinear equations of the form

$$(1) Au = f,$$

(2a)
$$(A+\xi)u = f$$
, (2b) $(1+\kappa A)u = f$,

(3)
$$\partial u/\partial t + Au = f$$
, $t \ge 0$, $u(0) = \phi$,

where A is a certain nonlinear opertor. The two equations in (2) are slightly different, in that the same expression f appears on the right-hend side, while the left hand sides differ by a factor of $\kappa = 1/\xi$.

In what follows we shall give some general theorems that are convenient to solve the equations (1) to (3). For this purpose we introduce the usual triplet of real Banach spaces

$$(4) V \subset H \subset V^*$$

in which H is a Hilbert space with the inner product $(\ |\)_H$ and the norm $\|\ \|_H$, and V, reflexive and separable, is densely and comtinuously embedded in H. <, > denotes the pairing between V and V*. (4) implies that <v,h> = (v|h $)_H$ whenever v \in V and h \in H. (In problem (1), we may replace H by another pair of Banach spaces Y \subset Y*, but we shall not go into such a generalization here.)

STANDING ASSUMPTION. A is a sequentially weakly continuous map of H into V*. (In other words, h_n $_{\rm N}$ h in H implies Ah_n

Ah in V^* , where $\frac{\rightarrow}{W}$ denotes weak convergence.) THEOREM I. Assume that

5) $\langle v, Av \rangle \geq \beta \geq 0$ for $v \in V$ with $||v||_H = r > 0$. iven any $f \in H$ with $||f||_H \leq \beta/r$, there is a solution $u \in H$ of 1) with $||f||_H \leq r$.

THEOREM II. Assume that

6) $\langle v, Av \rangle \ge - (|v|_H^2)$ for $v \in V$,

where is a continuous function on \mathbb{R}_+ to \mathbb{R}_+ . Given any f I, there is a solution $u\in H$ of (2b) if $|\kappa|$ is sufficiently small (depending on f).

THEOREM III. Assume (6). Given any $\phi \in H$, there is T>0 and a solution $u \in C_w([0,T];H)$ of (3). (Here C_w indicates weak continuity.) T may be any number such that the ordinary differential equation

- (7) $d\rho/dt = 2\mathfrak{P}(\rho)$, $\mathfrak{P}(0) = |\phi|_H^2$, has a solution ρ on $t \in [0,T]$; then the solution u satisfies the inequality
- (8) $||u(t)|| \le \rho(t)$, $t \in [0,T]$. (If the solution to (7) is not unique, let ρ be its maximal solution.)

REMARKS. (a) In these theorems, H is the basic space; V and V^* are auxiliary and may be chosen more or less arbitrarily. By choosing V small (which makes V^* large), the STANDING ASSUMPTION and the conditions (5), (6) are more likely to be satisfied. But V must be dense in H.

(b) It is not assumed that A maps V into H . If this

happens, however, the left member of (5) and (6) can be replaced by $\left(v\left|AV\right.\right)_{H}$ and we can forget V^{*} .

- (c) There is in general no uniqueness in these theorems. But uniqueness may be proved under some additional assumptions. For Theorm I, such a condition is
- (9) $(v-w|Av-Aw)_{H'} \ge \delta ||v-w||^2$ for $v, w \in K$, where H' is a Hilbert space such that $V^* \subset H'$ and δ is a positive constant. For Theorems II and III, a corresponding condition is
- $(10) \qquad (v-w|Av-Aw)_{H^{'}} \geq -\psi(||v||_{H^{+}} + ||w||_{H^{+}})||v-w||_{H^{+}}^{2}, \quad \text{for } v, w \in V ,$ where ψ is a function on \mathbb{R}_{+} to \mathbb{R}_{+} .
 - (d) For the proof of these theorems, see [1].

APPLICATIONS. 1. Periodic solutions. Consider a nonlinear equation

(11) $a(x,u,\partial_1 u,\dots,\partial_m u)=f(x)\ , \quad x\in T^m\ ,$ where T^m is the m-dimensional torus, the unknown u is a real-valued function on T^m , and $\partial_j=\partial/\partial x_j$. a is a sufficiently smooth, real-valued function of its arguments, which we denote by x, u, p_1,\dots,p_m . To describe the assumptions on a, we introduce the notations

(12)
$$a_{x_{j}} = \partial u/\partial x_{j}$$
, $a_{u} = \partial a/\partial u$, $a_{x_{j}}p_{k} = \partial^{2}a/\partial x_{j}\partial p_{k}$, etc.,

(13)
$$a^{0}(x) = a(x,0,...,0), a_{u}^{0}(x) = a_{u}(x,0,...,0),$$
 etc. We now assume

(14)
$$a^0(x) = 0$$
 identically,

(15)
$$a^{00}(x) \equiv a_u^0(x) - \frac{1}{2} \sum_{j=1}^m a_{x_j p_j}^0(x) \ge 2\gamma$$
,

(16)
$$a^{00}(x)|\xi|^2 + s \sum_{j,k=1}^{m} a_{x_j p_k}^0(x)\xi_j \xi_k \ge 2\gamma |\xi|^2$$
 for $\xi = (\xi_j) \in \mathbb{R}^m$,

where γ is a positive constant and s is an integer such that (17) s \geq [m/2] + 3.

If we choose $H = H^S = H^S(T^M)$, $V = H^{S+1}$, $V^* = H^{S-1}$, with (18) $(u|v)_H = (\Lambda^S u|\Lambda^S v)_0 + \lambda^2 (u|v)_0$,

where (|) $_0$ is the L²-inner product. If the constant λ is chosen sufficiently large, it can be shown that condition (5) is satisfied with certain constants β and r>0. Thus it follows from Theorem I that (11) has a solution $u\in H^S$ if $f\in H^S$ with sufficiently small $||f||_S$.

Moreover, the solution u is unique, since (9) is seen to hold with $H' = H^{S-1}$ or H^0 . Thus we have obtained a partial refinement of a result of Moser [2]. (It is expected that these results can be extended to symmetric systems of the form (11).)

- 2. Another type of nonlinear equations (see Rabinowitz [3]) $(19) \qquad (1-\Delta)u + \kappa b(x,u,\partial u,\partial^2 u,\partial^3 u) = f \;, \qquad x \in T^m \;,$ can be handled in the same way, in which κ is a small parameter, b is a smooth function of its arguments, and $\partial^r u$ denotes the aggregate of all the derivatives of u of order r, etc. (19) can be written
- (20) $u + \kappa Au = g = (1-\Delta)^{-1}f$, $Au = (1-\Delta)^{-1}b(x,u,...)$. Theorem II is aplicable to (20) with $H = H^S$, $V = H^{S+1}$, $V^* = H^{S-1}$, provided

- (21) $s \ge [m/2] + 5$.
- Indeed, it is not difficult to show that (6) is satisfied. It follows that (19) is solvable for any $f \in H^S$, with $u \in H^S$, if $|\kappa|$ is sufficiently small. There is no restriction on b except smoothness. The solution u is unique; this can be proved by verifying (10) with $H' = H^{S-1}$ (or $H' = H^0$).
 - 3. An equation of evolution
- (22) $\partial_t u + a(x,u,\partial u) = 0$, $t \geq 0$, $x \in \mathbb{R}^m$, where a is a smooth real-valued function of its arguments. If we set $Au = a(x,u,\partial u)$, Theorem II is applicable with $H = H^S = H^S(\mathbb{R}^m)$, $V = H^{S+1}$, $V^* = H^{S-1}$ with a satisfying (17). Thus (22) has a short-time solution with $u(t) \in H^S$ for any initial value $u(0) = \phi \in H^S$.
- 4. The Euler equation in $\Omega\subset\mathbb{R}^m$. Theorem II can be applied to the Euler equation. For details see [4].

REFERENCES. 1. T. Kato, Locally coercive nonlinear equations, with applications to some periodic solutions, Preprint, 1984.

- 2. J. Moser, A rapidly convergent iteration method and non-linear partial differential equations I., Ann. Scuola Normale Sup. Pisa, III. 20 (1966), 265-314.
- 3. P. Rabinowitz, A rapid convergence method for a singular perturbation problem, Ann. Inst. Henri Poincare 1 (1984), 1-17.
- 4. T. Kato and C. Y. Lai, Nonlinear evolution equations and the Euler flow, J. Functional Anal. 56 (1984), 15-28.