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LOCALLY COERCIVE NONLINEAR EQUATIONS

TOSIC KATO

In this lecture we consider abstract nonlinear equations of the

form

(1) Au = f,

(2a) (A+&)u = £ , (2b) {(1+kA)u = £,
(3) du/dt + Au = £, t > 0, u(0) = ¢,

where A 1is a certain nonlinear opertor. The two equations in (2)
are slightly different, in that the same expression £ appears on
the right-hend side, while_the left hand sides differ by a factor of
Kk = 1/&.

In what follows we shall give some general theorems that are
convenient to solve the equations (1) to (3). For this purpose we

introduce the usual triplet of real Banach spaces

*
(4) VZHCV
in which H is a Hilbert space with the inner product ( | )H and
the norm || l% , and V , reflexive and separable, is densely and

comtinuously embedded in H . < , > denotes the pairing between V
and V.. (4) implies that <v,h> = (vlh)H whenever v ¢ V and h ¢
H. (In problem (1), we may replace H by another pair of Banach
spaces Y C_Y*, but we shall not go into such a generalization
here.)

STANDING ASSUMPTION, 'A is a sequentially weakly continuous

' *
map of H into V . (In other words, hn e h in H implies Ahn



Ah in V*, where e denotes weak convergence.)

THEOREM I. Assume that
5) <v,Av> > 8 > 0 for v & V with {h[%‘: r >0 .
iven any f € H with IEI% < B/r , there is a solution u€ H of

1) with lﬁlh <r.

THEOREM II. Assume that

6) «w,av> 3 - ([]E) for v eV,
there is a continuous function on Ii to R. Given any £
1, there is a solution u € H of (2b) if || is sufficiently

small (depending on f ).

THEOREM TII. Assume (6). Given any ¢ € H , there is T > O
and a solution u € Cw({O,T];H) of (3). (Here C_ indicates weak
continuity.) T may be any number such that the ordinary
differential equation
(7) do/dt = 2%(p) , $0) = [blf .
has a solution p on t € [0,T] ; then the solution u satisfies
the inequality
(8) ace) || < o(t) o t € [0,T] .

(If the solution to (7) is not unique, let p Dbe its maximal
solution.)

REMARKS. (a) In these theorems, H is the basic space; V and
V* are auxiliary and may be chosen more or less arbitrarily. By
choosing V small (which makes V* large), the STANDING ASSUMPTION
and the conditions (5), (6) are more likely to be satisfied. But V
must be dense in H.

(b) It is not assumed that A maps V dinto H . If this
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happens, however, the left member of (5) and (6) can be replaced by
(V[AV)H and we can forget V*.

(c) There is in general no uniqueness in these theorems. But
unigneness may be proved under some additional assumptions. For
Theorm I, such a condition is
(9) | (vwaAv—Aw)H, > Glh—wlﬁ for v, w € K,
where H' is a Hilbert space such that V*Ci H' and 6 is a
positive constant. For Theorems II and III, a corresponding
condition is
(10) (v—wIAv—Aw)H. > - w(|hlh+]h!%)|h—w|ﬁ. for v, we V ,
where ¢ is a function on iﬁ to R.

(d) For the proof of these theorems, see [1].

APPLICATIONS. 1. Periodic solutions. Consider a nonlinear
equation
(11) a(x,u,81u,...,8mu) = f(x) , x € T ,
where T" is the m-dimensional torus, the unknown u 1is a
real-valued function on T& , and aj ='8/8xj . a 1is a
sufficiently smooth, real-valued function of its arguments, which we
denote by x, u, PirecerPy - To describe the assumptions on a , we
introduce the notations
(12) a, = Bu/axj , a, = da/du , aijk = Bza/axjapk , etc.,
(13) a%(x) = a(x,0,...,0),  al(x) = a_(x,0,...,0) , etc.

We now assume

It
o

(14) a%(x) identically,
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m
(15) 2% = agx) - 31 Ay (%) 22y,
J=1 3173
m
(16) %% lel? v s T &) _ (g, > 2v|el?
. P 7k =
J k= 17k
for £ = (£) ¢ ® ,
where vy 1is a positive constant and s is an integer such that
(17) s 2 [m/2] + 3 .
* -
If we choose H = B = HS(Tm) , V = Hs+‘l , V. = g° ! , with
s s 2
(18) (ulv)y = (A u[ASv), + A (ulv)y
where ( | )y is the Lz—inner'product. If the constant X\ 1is

chosen sufficiently large, it can be shown that condition (5) is
satisfied with certain constants B8 and r > 0 . Thus it follows

from Theorem I that (11) has a solution u G.Hs

if fe H° with
sufficiently small IE[E .

Moreover, the solution u 1s unique, since (9) is seen to hold
with H' = Hsf1 or HO. Thus we have obtained a partial refinement
of a result of Moser [2]. (It is expected that these results can be
extended to symmetric systems of the form (11).)

2. Another type of nonlinear eguations (see Rabinowitz [31])
(19) (1-A)u + kb(x,u,3u,3%u,3°u) = £ , xe ™,
can be handled in the same way, in which « is a small parameter,

b is a smooth function of its arguments, and 3¥u denotes the
aggregate of all the derivatives of'_u- of order r , etc. (19) can
be written

(20) W+ KAu = g = (1-8)7"f , Au = (1-8)°

. . *
Theorem II is aplicable to {20) with H = H° , V = Hs+1, vV =

1b(x,u,...).

Hs-1, provided
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(21) S ; [m/2} + 5 .
indeed, it is not difficult to show that (6) is satisfied. It
follows that (19) is solvable for any f¢ u® , with u e g , if

]KI is sufficiently small. There is no restriction on b except

smoothness. The solution u 1is unique; this can be proved by

verifying (10) with H' = HS~1 (or H' = HO ).
3. An equation of evolution
(22) atu + a(x,u,ou) = 0 , t b4 0, X € I@,

where a 1is a smooth real-valued function of its arguments. If we.
set Au = a(x,u,9u) , Theorem II is abplicable with H = S =
S8y, v = 85, v¥ = 857 with s satisfying (17). Thus (22)
has a short-time solution with wu(t) € H°> for any initial value
u(0) = ¢ € H°.

4. The Euler equation in Q C K' . Theorem II can be applied
to the Euler equation. For details see [4].
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