goooboooogn
O 5450 19850 101-111

101

Singular Solution of Nonlinear

Partial Differential Equations
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§0. Introduction

We are interested in the singularities of solutlions of nonlinear
partial differential equations defined in a complex domain.
Simple examples of ordinary differential equations show that

there are solutions which are singular along non—-characteristic

surfaces. For example, (z; - 21)—1, k=1,2,3,¢¢., are solu-
tions of au/az1 = u2, and are singular along non—-characteristic
surfaces zy -~ z; = 0. They are so-called "movable singu-

larities" in the theory of ordinary differential equations.

In this note we first construct solutions withksingu1rities
along non—characteristic surfaces for semilinear differential
equations, which we call movable singularities Fof simplicity.
For linear differential equations M, Zerner [5] showed a prolon-
gation theorem across non—-characteristic surfaces, so there exist
no solutions with movable singularities.

Y. Tsuno [4] proved a prolongation theorem for nonlinear
differential equations under some boundedness conditions. Since
there exist solutions with movable singularities, some
boundedness conditions of course are necessary. His results are,
however, not strict. So our second aim is to weaken the
boundedness conditions. In view of the first results they are

best possible in general.
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§1. Solutions with movable singularities

We consider the following semilinear differential equations

defined in a neighborhood § of the origin of C":
(1) P (z, D) u + b(z, pBuwy = 0.

Here we explain the notations used above:

Pm(z, B (z=(zl,..,zn), D=(8/821,...,8/6zn)) is a homoge-—
neous linear differential operator of order m whose

coefficients are holomorphic in Q.

B:={8eN"; [B1<m-1} (N={0,1,2,...,}) is the set of multi-

indices whose lengths are less than m—-1.

D-u:={(D"u; BeB) 1is a vector whose B-th component is DBu.

We denote by p:=(pB; BeB) +the variables in m#B where Pg

B

corresponds to DBu, and by #:=(ﬂ£; BEB)GN# multi—-indices

with #B components.

“ M “8
b(z, p) := i b,(z) p (|”|==ZBEB #gs P i=lgp Pg )

is a polynomial in p of degree d where the coefficients

I<d

bﬂ are holomorphic in Q.

We assume that Eq(1l) is nonlinear, i.e., for some &« with |xl>2
bu(z) does not vanish identically, and that the 0-th order term

bo(z) vanishes identically.
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Remark 1. By the Cauchy-Kovaleuskaja theorem we can reduce Eg(1)
to one with bo(z)=0: Take a holomorphic solution w(z) of
Eq(1l) and change the unkown function u to vi=u-w. Then the

equation for v has no O0-th order term.
Let us put
(2) Me= {uelN" "3 u# s.t bu(z)#O},

and for each #€M define a linear function of o0€R by

(3) yu(o):= lele — 7(w)

where

4) T(u) = EBeB uBIBl.

DEFINITION 1. For Eq(l) we define an exponent %y by
(5) 0g3= max Tp) - T .

ueM, luly2 4

Remark 2. 9 is the greatest ¢ of the intersections of lines

y = yﬂ(o) and y = 0 - m. We have -m< 9 <{m-1.

Remark 3. % is independent of a choice of independent vari-
ables. It may, however, vary if we change unknown functions as

in Remark 1.

For all ueM, we have yu(o)ZQ—m if 0200. So we arrange
the non—-negative rational numbers {yﬂ(ao)—00+m; #eM}  and write

them as
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<d, < ¢evee < d Q > 0.

Then we put

M(j):= {ﬂeM; yﬂ(ao) = 00_m+dj}, j=0,1,2,oo,Qy
(6) N:= max {lul; ueM(0)},
NCidye= {ueM(0); lzl=i}, i=2,3,...,N.

Note that N>2 because b(z, p) 1is nonlinear in p. UWe put

s

the positive least common denominator of dj s if Q>1

(?)

3
]

1, if Q = 0.

We put for o0€R and £¢i

0(0—1).....(0‘ﬂ+1), ﬂ 2 1,
Cos £]:={

il
o

1, 2

We denote by GgB» the vector (QB; BeB) whose B~th component

is gg

DEFINITION 2. Let Tgs s N and A(i) be as above. We define
a sequence of polynomials in X € C and C:=(C1,...,Cn) € Cn,

as follows:

N

-1 .
* . - li' 1
(8) S (z, L3 X)i= [og*+ 5 m1 P (2, &) + igl (2 OXE, K0,
(9) S ,(z,0):=
5 b (z) (Log; 1811 t8y%, k=0,

uen(i+1y #
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\\ E00+‘;<:: 1813 8
I b3 =) (Lo 1813 5, 1o,
peA(i+1) # geB 993 -

H
where (Logs 1813EPY:= 1y o (Cogs 18126577,

We assume that

(A.0) Sk(z, €; X> # 0, for k > 0.

Llet S be a germ of non-singular complex hypersurface at the
origin., We assume that S 1is non—-characteristic with respect to
Pm, that is, for an irreducible defining function ¢ of S we

have

(A.1) (non—-characteristic condition)

Pm(O, Do(0)) # 0.

We want to construct a solution of Eqg(l) which is singular along
S, that is, a solution with movable singularities. We assume

that

(A.2) There is a solution X=ug(z) of Sz, DB(z); X)=0
such that
(1) uo(z) is holomorphic in a neighborhood of the origin,

(ii) Sk(O, Dé(0); uO(O)) # 0 for k=1,2,3,0c0000es &

Remark 4. By (A.1), Sk(O, D¢(0) uO(Oj) is a polynomial in k
of degree m. Hence there are at most m solutions of the

equation for k3 ~Sk(0, D@0 uo(o)) = 0.
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THEOREM 1. Suppose (A.0), (A.1) and (A.2) are satisfied. Let
uo(z) and ¢(z) be as above. Then thete is a solution u{(z)
of Eq(l) represented by a convergent Puiseux series in some

neighborhood Q° of the brigin:

0 /r

a k
(10) ulz) = ¢z) (z) &(z)

t™Ms

(W}
k=0 X

where uk(z) are holomorphic in Q7.

We only give an outline of the proof. We assume that u(z)

is a priori of the form (10) and substitute it in Eq(1). Then

Uo—m+ k/r
equating the coefficients of ¢ to zero, we obtain

transport equations:!

SO(Z, Do (=) uo(z))uo(z) = 0,
(11)
Sk(z, Do(=z); uo(z))uk(z) + Rk = 0, k>0,
where R‘< are calculated depending only on Ugs Ugseeosty g By

(A.2) we can determine U inductively and obtain a formal
solution. Convergence of the formal solution is proved by the

method of majorant functions. See [1] for the detail.

Remark 5. By changes of unknown functions as in Remark 1 we get

solutions of Eq(l) of the form

@

ag
0 5
k=0

oT - (),

(12) ¢ Uy
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where w 1is a holomorphic solution of Eq{(l). Ue remark that %q

and r may vary for each w.

§2. Prolongation across non—characteristic surfaces

Let S and ¢ be as in Section 1. Since S 1is non-characteri-—
stic at the origin, by a change of coordinates with 21=¢ we can

reduce Eq(l) to the form

(13) | D," u = alz, DPw.
Hefe Ai={aeN"; [al<m, algm—l} and a(z, p) (p:=(p ; ach)) is
a polynomial in p with holomorphic coefficients. Solutions of
the form (12) are holomorphic in Q_:={ZEQ; Re zl<0} (Q is a
neighborhood of the origin and may shrink from time to time), but
not in a neighborhood of the origin in general.

Our problem in this section is: If u 1is holomorphic in Q_
and satisfies Eq(13), then under what conditions is it holomor-

phic in a neighborhood of the origin?

We put
(14) Mi= (ueN™; DX alz, pI#0)  (mi=(a; ach)yent?y
and

€A

DEFINITION 3. We define an exponent o, for Eq(13) by

Tl(ﬂ) - m

(16> g, t= ma X Tal =1 °

ueM, |ul>2
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Remark 6. We have —mg~oa <m-1, If (A.1) and (A.2) are sa-

tisfied, then i1t holds that

(17) Ua:= max{ao; changes of unknown functions}.

DEFINITION 4. Let o<{m-1 and u(z) be holomorphic in Q_. Ue
say that u 1is bounded of order o in Q_  if for g>0 we

have

sup Ile u{z)| < Const. for k=0,1,..,Lc],

(18)
U(Z) l g_ Consto ‘FOV“ k'—'—'EG]""l, Y ,m-i ’

and for 0<0 we have

(19) sup IZIU u(z)| ¢ Const.
Q

For example the functions of the form (12) are bounded of order

G'O.

THEOREM 2. Let Oa be the exponent of Eq(13) and u(z) be
holomorphic in Q_ and satisfy Eq(13). If u 1is bounded of
order ¢ in Q_ with some a>aa, then u 1is holomorphic in a

neighborhood of the origin.

Remark 7. We can give a prolongation theorem without assuming
that Eq(13) is semilinear and that a(z, p) i1s a polynomial 1in

p. See [11, [33.
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The idea of the proof of Theorem 2 is essentially the same
as that of Zerner [3]. UWe solve the Cauchy problem with initial
data on z,=-¢ and estimate radii of convergence precisely.
Then letting & tend to 0, we can show the domain of converg-
ence contains the origin.

By Theorem 2 there exist no solutions of the form (12) with
exponent UO>Ua. By Theorem 1 and Remark 6 there exists a
solution of the form (12) whose exponent is just o_- So
Theorem 2 is best possible in general.

We finally give an example. Consider the equation

3

(20) DZ u + u,w? = o,
with
(21) S: ¢:= zi+ cz, = 0, (c a constant).
Then M={x=(1,0,3)}, 00=(3—2)/(d—1)= %, r=1, N=4, and
1 .2 3.3
_ 1 2,42 1 3.3
Sk = (k+3)(k 3)C1 + 2?(9k+4)C2 X,

If c#0 then all (A.0)~(A.2) are satisfied. Hence there is a
solution with movable singularities on z,+ c22=0. However, if
c#0, then (A.3) does not hold. We next change the unknown fun-
ctions u to vi=u-w where w 1is a holomorphic solution of

Eq(20). Then v satisfies

3 W)(Dav) 24 3uDawlDav)2s

3
vIT+ wi(DAV) 2 > 2 >

v + (u(D2 5

(22) D2

1 + 3(D

+ 3(D2u)2v02v + 3u<02u>202u + (Dzu)3 v} = 0.
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For this equation we have 00=1/2. r=1/2, N=3, M(0)={ux=(0,0,3))

and
_ 1 .2 w3 ,2"
S0 =z t1tgt X
_1,.2 2.3 3 2
S, = (k"1 Cl + 5(1+k)w C2 X<,

It is easy to see that if c#0, then (A.05~(A.2) are satisfied
but not if ¢=0. Therefore we obtain a solution u = ®1/2 X e
+ w of Eq(20) if c#0. The exponent 7, of Eq(20) and Eq(22)
is 1/2 if ¢#0 and is -2/3 if c¢=0. Therefore there
exist no solutions with movable singularities along zy+ 022=0

which are bounded of order 02>1/2 and 0>-2/3 for <c#0 and

c=0, respectively.
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