goooboooogn
O 5450 19850 112-126

112

On Riemann-Hilbert transformations
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The method of Riemann-Hilbert (RH) transformations has become

a powerful tool in the theory of completely integrable systems.
The purpose of this note 1is to reveal some new aspects that
lie in this method. Although our discussion is limited to the
case of the self-dual Yang-Mills (SDYM) equations to make the
presentation not too abstract, the ideas developed here are
basically of wuniversal nature and can be applied to various

completely integrable systems.

1. Review of RH transformations

We here consider the GL(r,C) SDYM equations ( r 2 2) in the
complexified Euclidean space E4

(v, v, =0, Vg, V31 =0, Vv , V5]« IV, V] =0, (1)
where VU = Va/au (u=1vy, z, y, z, the coordinates of Ea) denote

covariant derivations of the trivial vector bundle of rank Tt over
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@4, whose connection coefficents (gauge potentials) are the

unknown functions of this nonlinear system. In this expression

gauge transformations can be expressed as V —> h"l

Y
u ° u°h’

h = h(y,z,y,z). 1In what follows let us limit the consideration to
holomorphic solutions defined in some domains of Ea.

The theory of RH transformations of the SDYM equations is,
just as in the cases of other completely integrable systems (cf. [2,

7, 8, 9 1), based upon the existence of the associated linear system
(-xvy + VE)V =0, (AVZ + Vy)v = 0, (2)

where X 1s a parameter valued in the Riemann sphere ]Pl, and V
is an r x r matrix-valued unknown function depending on both

(y,z,y,z) and A. Egs. (1), which can be rewritten as

[-AV, + V5, A9, + V5] = 0,

are the integrability conditions of linear system (2) in the sense
of Frobenius. - Therefore one can always find a holomorphic and
invertible matrix-valued solution V at least locally with respect
to A (although not uniquely), and such a solution conversely
reconstructs the gauge potentials in a unique manner. Following
the terminology of inverse scattering method, let us call such a

solution V a wave function.

A RH tranéformation changes a wave function V into another
one V' that is associated with another solution of the SDBYM equations.
For the moment let us suppose that V is holomorphic and invertible‘
in a neighborhood of A = 0. The transformation form‘ vV to V!
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consists of the following steps.

i) Choose in the X -sphere Pl a small circle C with
center at A = 0 such that Vo is holomorphic and invertible in
a neighborhood of C\JC+, where C+ and C_ denote the inside
and the outside of C respectively.
ii) Give an r x r matrix-valued function P = P(y,z,V,Z, M)

that is holomorphic and invertible in a neighborhood of C and

satisfies

(->\8y + az)P = O, ()\82 + ay)P = O, (3)

where au denote the derivations 3/9u, u =1y, z, vy, Z.

1

i) Form the matrix-valued function H = VPV~ and find a

pair of matrix-valued functions Xi = Xi(y,z,y,z,k) that arer
holomorphic and invertible in some neighborhoods of C\JCi respec-

tively and satisfy the following condition
X_ = X.H on C. (4)
iv) Form the matrix-valued function V' = X+V.

Note that if one starts from the trivial wave function V = lr

that corresponds to the case VU = 9 (u=vy, z, V¥, z), where 1

u r

denotes the r x r wunit matrix, the above procedure coincides with

Ward's construction [6]‘of SDYM fields.

Also note that step (iii) in the above procedure includes

the uncertainty of the pair X = as Xi > pt

which changes V' into h_lV'. This however turns out to cause

xi’ h = h(y,z,)—/,'z'),

only a gauge transformation, because a gauge transformation VU

1

—> h~ OVUOh of the covariant derivations precisely corresponds to.
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the change V —> h—lV of the wave function. Ueno and Nakamura [3]

formulated their transformation theory within the following gauge

V. =3, V- = 3- + B=, V= = 8

y =%y Y27 % 05 7 %y By Yr = 8w By ()

imposing to step (iil) the normalization condition

(6)

>
N
>

il

8

g

il
'_-4

This condition uniquely determines the pair Xi, and the resulting

transformation preserves the gauge-fixing conditions Vy = ay and
v, = %

2. Two different classes of RH transformations

The formulation of RH transformation reviewed in Sect. 1 involves
a problem. Fix for simplicity the gauge as (5) and (6), and now
consider the case where P is holomorphic and invertible not only

in a neighborhood of C but also in C+. Then so is H, therefore

This transformation V %>VP'1, however, is in a sense a trivial one
that does not change the gauge potentials. Because of this, as
pointed out by Wu [7], the (infinitesimal) transformations given
by Ueno and Nakamura [5] include many trivial ones that merely

trivially act on the gauge potentials.

In order to fill up such a gap, one has to introduce another
class of RH transformations presented by Chau [1] and Wul7 ]}, which
are defined to be transformations acting on another type of wave
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functions W, namely the wave functions chosen so as to be
holomorphic and invertible in some neighborhoods of XA = «». The
procedure defining the transformations is almost the same as that
in Sect. 1: First choose a circle € with center at X = = such
that W is holomorphic and invertible in a neighborhood of cCuc .
Then for a given matrix-valued function Q = Q(y,z,y,z,A) that

1

satisfies the same conditions as P does, form K = WQW - and find

a pair of matrix-valued functions Y, = Y+(y,z,y,z,k) that are

holomorphic and invertible in some neighborhoods of C\)C+ respec-

tively and satisfy the following condition

Finally defining W' as W' = Y _W, one obtains a desired trans-

formation W —> W'. (As a matter of fact, instead of working with
wave functions around A = «, Chau and Wu converted the problem
-1

to the preveous one through the map X —> X ~.) The action of the
RH transformations thus introduced is, as discussed in detail by
Wu [7], essentially different from those as mentioned in Sect. 1,
and in this respect if one wishes to make the whole theory more
complete and symmetric, the former transformations (RH transforma-

tions T'"around the infinity") should be complemented to the latter

ones (RH transformations "around the origin").

As one sees from the above discussion, a unified description
of these two types‘of transformations inevitably requires to use
a pair of wave functions V- and W, not a single one, like those
appeared in Ward's work [7]. Let us consider below how such a
unified description can be realized wusing the péir (V,w).
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For this purpose we first fix the gauge as (5). This does
not loose any generality, because the first equation of egs. (1)

allows one to solve the linear systems
Vyh = 0, Vzh =0 for h = h(y,z,y,z),

whose invertible matrix-valued solution then induces a gauge
transformation that changes the covariant derivations into forms
as (5). One can then choose a pair of wave functions V and W
which are holomorphic and invertible in some neighborhoods of

A =o and A = 0 respectively such that

(-)\By + 82 + BE)V = O, (ABZ + 89 + B>—/)V = O, (7)
(-A3, + a3 + B)W = 0, (A3, + 3y + BoIW = 0, (8)
W()\ :°°) = lI" (9)

Note here that By and BE can be reconstructed from V and W,

using the coefficients of the Laurent expansion

Vo= Zovnxn around A = 0, W = [ wA™" around A=, (10)
n= =

n=0
as
B = —0-V_eV o -3 u B = <82V, -V T= 3w . (11)
y y 00 PN z z’ 0 0 y 1
We then noticelthat the RH transformations reviewed in Sec. 1
induce transformations (V,W) —> (v',Ww') of the pair of wave

functions. In fact, defining W' as

W' = X W, (12)
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one obtains such transformations. Besides we here have the

following relation

viey Tt ooyt (13)

which characterizes such transformations, namely RH transformations

"around the origin".

In view of the above characterization of RH transformations
"around the origin", we see at once how to reformulate RH trans-
formations "around the infinpity", toco. 1In fact such a transforma-
tion (V,W) —> (V',W') can be similarly characterized by the

following relation

vivTh oo owqutt, (14)

Summing up the above discussion, one sees further that these
two types of RH transformations can be composed, without depending
on the order of composition, toyield finally a more general class

of transformations (V,W) —> (V',W') characterized by the relation
vieyTh o wrqutt, (15)

This provides a unified framework for describing the various RH
transformations discussed thus far. Perhaps a variety of generators
of infinitesimal transformations as presented by Chau [1] and Wu [7]
would be more rigorously justified in this framework, although we
shall notvgo further into this problem here. Instead, in the next
section we shall once again reformulate the above framework from a

diffent point of view.
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3. Infinite matrix representation of transformations

In a previous paper [4] I proposed an approach to the SDYM
equations based upon an infinite matrix representation of egs.

(8), and tried to form the theories of solution and transforma-
tion. The framework developed there therefore only involved the
information of W, none of V, and because of this the transforma-
tions to be described in that framework are limited to only those
corresponding to RH tfansformations "around the infinity". If one
wishes to establish a more satisfactory theory that can describe
more general transformations as discussed in the previous section,
the infinite matrix should be enlarged so as to include the infor-

mation of both V and W. Let us below turn to this problem.

In order to define such an enlarged infinite matrix, we here

introduce the following wave functions

~ _l ® A n A _l @ A
V=V, "V= ) V_a W=V, W= ) WA, (16)
0 n=0 " ’ 0 n=0
which are gauge-equivalent to V and W and subject to the

following normalization

V(>\: O):lr.

The corresponding covariant derivations take the following forms

v = 8—, (18)

V. = 93 + B V, =9 +BZ,V-=8 7 Z

y y y’ 'z z y y’
and V and W satisfy the following equations

N

(-Aay + 93 - ABy)V = 0, (xaz + 39 + xBZ)v = 0, (19)
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A ~ ~ A
(—xay + 83 - xBy>w = 0, (Aaz + ay + ABZ)W = 0. (20)
gy and @Z can be explicitly reconstructed from V and W as
~N /\. ’~ A A AN N ~
By = - ayWO-WO = azvl, Bz = - SZ 0 WO = - ayvl. (21)
We then form an infinite matrix & consisting of four blocks
(m) (m) _ (m)
£ (gij >iez,j<0 , m =1, 2, 3, 4, where gij are T X T
matrices, as follows:
* A ¥
. | Wil)iez, <o J(_wi+j+l)iez,j<0
( \/* ) ~ K
Vivje1liez, <o) Vi-jliez, j<0
Wi 373, 5<0 1 0
. , (22)
N\
° ‘ Viiili,5¢0
* * A% A K
where Vn’ wn, Vn’ wn denote, when n > 0, the coefficients of
the Laurent expansion of V'l, w‘l, V_l, Wl oas
-1 ¢ *.Nn -1 o *_ -n
v - Zn:O an W - zn:O an ’
c-1 _pe  S%*on Aol coe a%oon
v - Zn:O Vnk W - 2n:O an ’

but when n < 0, they are set together with Vn and Wn to be O.

The general notationused here for infinite matrices are the same as

(1)

that of [4]. The upper left block g coincides with the infinite
matrix that appeared in [4], therefore this matrix & is actually
an enlargement of the former, doubled in size. The coefficients
of the Laurent expansion of the quartet (V,W,V,w) appear as

a part of components of & as indicated below.

9
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The infini

among which the most important one is that egs.

(20) can be rew

te matrix

ritten as
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w
0
b
WV, =V -V
T,\\!*
1
ll/\\l*
~W,
0
0
lr
Vs Vp oV
A*
V3
fV\')e
3

has various interesting properties,

A D A o} ‘
- ) - = &A 3 d-
R T L T e
where -.( 0
— - O 1
b= 00y 51004 jez ® 0|1,
0, 1,
L (D) (3
A= 1808500 5 5¢0 | (9y83551, 571, 50
o 0
~ (1) (3)
B =1 (9,801 571, 5<0 | C 29,8500, 571, <0
0 0

10

(7), (8),
= gB,
(0r = O-lr),

(19) and

(23)
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Extracting and comparing the upper left blocks that appear in egs.

(23), one obtains

(1) (1),(1) (1) g (1)
= & 77A A - (—ay i+l 3)1 j<o’

(1)
(1)5(1) (1)
B, B = (88 )4, 50

(-Aay + 32)5

"

(1)
(13, +35)E

which precisely gives the infinite matrix representation of egs.

(8) used in [41].

Let us now consider how the transformations characterized by
eq. (15) can be represented in terms of &. The answer is as

follows: First form the infinite matrix

(1)
P \ 0 (QJ i)y  5ez
9 ‘ p(4)

P = ’ (24)

| 0 1 (Pi i1 jez

where Pn and Qn denote the coefficlents of the Laurent expan-

sion of P and Q as

Q=1 axr", P= ] P

N=-® N=-o

~

Second, expressing the components of the matrix & :=Pg§ as

(l) (3)
g _ (g )1EZ,J<O l(g )1EZ,j<O

’

Z(2) (4)
(855 )iez, 5<0 |(€ )iez, j<0

and forming

) (1) £ (3)
ty = | 430,50 ED |

E{3)1, 5 . E),

i, j<o

11



define an infinite matrix &' as

v o B F -1
gr = Ty (25)

Then this matrix &' turns out to coincide with the one constructed
fron the quartet (V',W',V',W') as & was constructed from (V,W,V,W),
therefore the transformation frbm £ to &' gives an infinite

matrix representation of the transformation from (V,W) to (V',W').

P) is the unit matrix of infinite

Besides if, in particular,
size (in other words the induced transformation is a RH transforma-
tion "around the infinity"), the transformation g(l) —> E'(l) of
the upper left block certainly coincides with that discussed in

[4]. This means that the framework developed thus far provides a

generalization of my previous work.

Of course one should be careful about the fact that the above
steps involve two non-trivial operations of infinite matrices,

1 and the product 3 E(_) ’

namely forming the inverse 2(_)‘
which obviously require some justification. In various interesting

cases, however, these steps can be actually performed.

It should be emphasized here that the so called J-potential
has already been built into our framework. In fact the leading
~ -1

term Vg ( =Wy ) of V satisfies Yang's equation

La-1 La-1y .
ay(ayJ J 7)o+ 82(323 J ) =0, (26)

therefore gives a J-potential. 1In this respect an interesting
problem arises, which questions how a variety of Backlund transfor-

mations of Yang's equation (known or unknown) can be specified in

12
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our framework. This topic will be discussed elsewhere.
4. Concluding remarks

i) Although our discussion has been only concerned with
the SDYM equations, the ideas presented here can be applied to
other various completely integrable systems (if necessary, with
slight modification that includes some generalization of the
concept of RH transformations as remarked below (ii)). Of course,
as I stressed in [4], the idea of using infinite matrices in the
study of completely integrable systems has its origin in Sato's
work [3], and this note still follows the lines of Sato. Never-
theless most results obtained in this note, especially the contents
of Sect. 3 that make clear the meaning of RH transformations in the

context of infinite matrix representation, are essentially new.

ii) The concept of RH can be further generalized by consider-
ing, instead of only considering « and 0, any finite number of

points ay s of the Riemann sphere and assoclated

’ am+l

matrix-valued functions U 8] locally defined near

17 777 2 "m+l

these points respectively. Such a transformation acts on these

functions (Ul""’Um+l) and changes them into some other ones
(Ul',...,Um+l') which are characterized by the condition that
-1 _ -1 _ ) -1 57
Uy'PyUy 7= 0Pl = e = U PV (27)
where Pl’ e Pm+l are holomorphic and invertible matrix-valued

functions given in some neighborhoods of sufficiently small circles

with centers at a » 80,1 respectively, and besides the

1’ m+

13
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1

existence of analytic continuations of U,'P.UT", etc. to the

1 171
outside of these circles is assumed here in (27). One can also

give an infinite matrix representation similar to that of Sect.3.

iii) RH transformations constructed with some algebraic
procedures are of particular interest, because they often have
explicit expressions and may be used as generators in construct-
ing more complicated transformations. Here "generators" mean
those of finite transformations, not of infinitesimal ones as
thus far discussed in various papers. Some examples of such
transformations are given by Ueno and Nakamura [5]. As a matter
of fact their calculation can be reinterpreted from our point of
view, and it seems likely in view of this that far more transforma-
tions of algebraic type in the above sense will be found similarly.
If this is the case, one may further expect that general transfor-
mations canbe obtained by composing these spectial ones suffici-
ently many (if necessary, infinitely many) times [10], just as in

the case of static axially symmetric gravitational fields.
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