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Quasilinear Positive Symmetric Systems and Mixed PDEs
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Institute of Mathematics, Fudan University

Shanghai, China

81. Introduction
The theory on linear positive symmetric system is a well-

{1,2,31

developed topic and is very powerful in the study of

boundary value problems for varies kinds of linear PDEs, especially,
for the linear mixed PDEgQ?%t is interesting to extend the theory
to the quasilinear case. In this talk we consider quasilinear
positive symmetric systems as the perturbation of linear systems.
Using the energy estimates for linear systems we establish an
existence theorem which is an improvement with some modification
of a prévious result in [6] .

The application to quasilinear mixed equations is also con-
sidered. For the quasilinear case the hyperbolic region and
the elliptic region cannot be identified before the solution
is obtained. This is the reason why a theory beyond the classical
classification of PDEs is desirable.

131§2 we give a brief sketch for the linear theory which is
the basis of the qguasilinear theory.ih1§3'we state the main
theorem together with the ideas of its proof. §4 is devoted to the
application to guasi-linear equations of 2nd order.

The author would like to express his hearty thanks to Prof.’

H. Fyjita, the organizer of this Symposium, for the hospitalities.
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8§2. A sketch of linear theory

Let
U= AQJL)%%;'!"B&)M = ]CO() (1)

be a linear system of PDEs, defined on () ¢ |A". Here Y and f
are valued in a vector space [Rm ’ A"(x) and [3[1) are mx m

matrices, being sufficiently smooth on‘fi .

If /VTI) are symmetric, system (1) is called symmetric.

Moreover if the matrin

C= = B(x) + 3¥ex) -

(1) is called positive symmetric.

Suppose that the boundary of f]_, denoted by Bfl‘,

sufficiently smooth. Let M; be the outer normal to Jf) and

(3 =N A° (3)
Assume that of) is noncharacterlstlc, i.e. dgj ﬁ#o . A

homogeneous boundary condition can be expressed as

u(:x)l ) ¢ ™ (4)
an [

where /ACX) is a sufficiently smooth field of subspace defined on

1. (4) is called stably admissible if

(i) The restriction of the gquadratic form b4-ﬂ¢4 onp/h is

positive definite;
(ii) dhan = the number of positive eigenvalues of /?

A sufficiently smooth vector field
, by S
X=d'o e (5)
on f)-_ is called silted if n;(x ol%x):o holds on Qf)

set of silted vector field
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°

v 3
X, = (X)) —. -
o= dha Yo XK= L2 ) (6)

is called complete if any silted vector field ZE can be expressed
as s linear combination of X, .
Let I:: 20 be the unit metrix and consider XD& as the

product of XD( in (6) and | . We can write the commutator[XD(,L.]

in

(%, L] = 5% + 50T +tule

(7)
Let
P R
U,
u
U=
I ¢ (8)
4
L Uw
H —u d = tisfyi
ere Up an Uy qu} satisfying
Lu, =7,
@ ) — (9)
L+ U + B u, = (Eu-td f
(9) is called the first derived system of (1) and denoted by
Lu="*f
[ ¢ (10)
In a similar way the kth derived systems (k=2,3,...) can be de-
fined successively.
If we write the boundary condition in
Mooy Uu=0 (11)
. i

the 1lst derived boundary condition is

Mu =0 (12
U
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with
‘vl O..vo
M=1gm (1 -0

L

’ (13)

- -

M0 -0 M

We can define the kth derived boundary condition in similar way.

We have

Theorem 2.1. If (i) there exists a complete system of silted

vector fields such that the kth derived system is positive and
symmetric, (ii)_the boundary condition is stably admissible, then
the boundary wvalue problem (1), (4) admits an Hk strong
solution in the Sobolev space ffk[Jl)tnﬁquely.

The -existence and uniqueness of the strong solution in Lq’}1'
was proved firstly by K. O. Friedrichs in his famous paper [l] .
For the HF differentiability see['3] .

Theorem 2.1 holds true if the boundary gL admits "exceptional
W C1]

corners such that at least on one side of each corner the matrix
(3 is non-positive or non-negative. Besides, on the part of 3JL
where @ is non-positive or non-negative Zu do not need to be

silted.

$3. Existence of solutions to quasilinear systems

Let

‘ M = : (14
A(X,M)a'g + B, u)u ....é-fcx,u) (14)

be a quasilinear symmetric system defined on fl . Here & is a
small parameter. We consider solutions of (14) near some reference
function Y%. Without loss of generalities we suppose that Y%=0 .

The boundary condition is still linear and homogeneous, being
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denoted by (4).
Let (= [2‘]-“ r S§= 16'1—/»’ (/J;‘ ). The linearized

approximation of (14) is

Lw U= A“(z,u)—---i—B(x w U= efa,u) (15)
In particular
L(OJU:A;(X,O) %lc +03 00V = éf(j'lo)o (16)

We have

Theorem 3.1. If (i) the (s+1l)th derived system of linear

system (16) is positive and symmetric, (ii) the boundary condition
(4) is stably admissible with respect to [Aq), then there exists

a constant €,>¢@ such that for each € with [6/<€° , the
boundary value problem (14), (4) admits a solution f¢ F{ﬁjl).

The ideas of the proof is as follows.

Let
Ky, = Sty | 17
n fueH (1) ; !ful!sﬂ':ﬂz (17)
It is seen that if 7 {>0) 1is sufficiently small)for each
g(ef(n the linearized boundary value problem (15), (4)
adimits a strong solution J=T(u) ¢ HSH uniquely.

There exists an energy estimate

T fig,, < tef G, (18)
where C'(’}l) is a positive function defined in [ 9, 70 ) ( 70>0) and
is indepent of 'b() provided that MeK'l

' Further we have

| To =Tl < (e Cz(7[) tu,—~uadl, (19)
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for all l‘u,MzG'Kq . Here C;(?) is independent of W, , “z} pro-
vided that M‘/ Uz € [{n °

Let 2:7 be the closure of l(z in the space f{ﬂﬂQJ . From (19)
and (18) it is seen that if [&]| is sufficiently small, 'T(m) can
be extended as a continuous map from Z:Q to itself. Besides if [¢]
is small enough the extended map is contractive. Hence there is
a fixed point which is nothing else than a solution to the boundary
value problem (14), (4). It is also seen that the solution in
is unique.

Remark. From the simplest example
U= €fin) (20)

where -f-(v\) is nonlinear, e.g. -f(m): H‘((A'-l)'z it is seen
that the condition (6]<:€° in Theorem 3.1 cannot be removed. Be-
sides, the global uniqueness does not hold in general.

From this theorem we see that the problem of existence of
solutions to the quasilinear case is reduced to considering the
lineérized problem.

The theorem can be used to prove

(i) The existence of periodic solutions to the system

au ) U
5t TA % u) %’i—i + B, uyu = €fd.x,u) (21)

with stably admissible boundary condition. Here /%“ v {3 and;f
are periodic functions, having a common period ¢o -
(ii) The existence and asymptotic stability of the static

solution to the equation

A ' Y -
 tAT LW —c tBxwn=cfa,u) (22)

with stably admissible boundary condition.
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However, we shall consider the application to mixed PDEs only.

It is also noticed that under some conditions the theoreﬁ
holds for the case that the boundary AN is characteristic.

If f2 is unbounded, the similar result holds. In particular,

when fl::”Qn the problem has been discussed in [7],

§4°Quasi1inear mixed PDEs

Let
h (x, 4, a&)g'{:i;,ﬁ 1)‘(1,4,2)45)% ]t omg=efudop) o)

be a 2nd order quasilinear PDE defined on a bounded and closed
region

Suppose that the linearized equation

tha f’w + 'f"ca) f + anoqﬁ =<—igcm (24)
e/

is a mixed equation in the sense that (n-1) eigenvalues of the
matrix ( hﬂ) are élways positive on fi , whereas the other one
[

changes itsbsign in fi . Here

R =47(x,0,0) ote. (25)
o

We can write
hlwt)—~ OL c:x)~6cx>0‘cx) (26)

such that /\ [ &_ } is positive definite on .

Set

Ejt (27)

Here ,)\’-\: 0 is a constant.

We obtain a symmetric system
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¢ oY I
A = +B8u =€ 26)
Here .
“ K
us [, F= o],
_ L04
Pq‘: a": .- . » an‘
) 1w
/\L:: = a v 7
: SA
~a”(. ) ) (29)
1 Co ko iag”
Bb“ A 1"‘(}\")’:)0'-‘-3 a%~
-7 o g )
: SYRFPRUETS
(5 xR '
A=Ta]=[hY+sq']
For the linearized system
A'(2,0) %;'3.; tBIx,0) u=¢ F(x,0) (30)
the matrix
[ it ne |
Mo % ne - -- % n.
. (e
=M A=~ g He (31)
(3 "o n, A
. 0
ne
o ]
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¢ 2 5y
with no =0 N, .Let N = ol L G:) and suppose that the QQ
o
is noncharacteristic. The stably admissible boundary condition can

be listed as

2, 2
Clng|1-N"/ng boundary conditions
+ u; = u, = 0 or ¢ = 3¢/9n = 0 (a)
u.+(n.,/n.-m.)u,.=0 with aijﬂ.ﬂ.<N2/n2—l ' (B)
+ - i i”70 1770 ij 0
| + -/ (v)
' _ | . 13 2, 2
B _ uO—Zvi(ui+(ni/n0)uO)w1th [a ]>[(N /no—l)ﬂiﬂj] (8)
N (Y) |
* - (8)
- * (@)
" ~ (B)
(32)
Here
\ <
C=0B+p%-24 (33)
o ° o 1o A

Using Theorem 3.1 we see that if the s+1 th derived system

for the linearized system
» ) -~
A‘(x,0) ﬁ; +Bx,0) =€ Fx.0) (34)

is positive (or negative) symmetric and [6‘ is sufficiently small
ﬁhen the boundary value problem (28), (32) admits a solution LQG{{J .

We need another additional condition: the boundary condition
and the part of (28) which is obtained by differentiating the

~first equation of (27) imply the second set equations of (27).
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. . 7 . st!
Then, we obtain the existence of the solution @ &H to
the boundary value problem (23), (32).

- As a special case we suppose that

hx) (x,0,0)= 8LJ__ DL“.DLJ, f, ..zal 1= ~alatt)

)
The linearized equation is

i d

(& T od) +2ax‘;xic ~aat0d =&fex)

Let jl be a region with smooth boundary and tagential planes to @/

do not meet the unit sphere. For ( > _Zl.* S+1 the equation (23)
2 v

and the boundary condition

laﬂ- - ’an, ©
admit an }iSt' solution. For (R<_—Z. the equation (23) admits

a solution in f1$“ and the solution is unique if its H¥' norm

is sufficiently small.
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