Yang-Mills equations and holomorphic structures of vector bundles

Mitsuhiro Itoh (伊藤光弘), University of Tsukuba, Institute of Mathematics

- <u>l</u>. Main subject of Yang-Mills theory is to study variational problem associated to connections on a principal fibre bundle. Yang-Mills functional is defined over a set of connections on a given bundle in terms of square norm of curvature. Euler-Lagrange equation of this functional is called Yang-Mills equation. With respect to this equation we have two problems;
 - 1. when are there solutions ?
- what sort of geometric structure does the moduli space (parameter space) of solutions admit ?

In this lecture we discuss these over a four-dimensional manifold, especially over a complex 2-dim complex manifold with positive definite metric.

 $\underline{\underline{2}}$. Let P be a principal fibre bundle with gauge group SU(n) over a compact oriented 4-dim manifold M with metric h.

<u>Definition</u>. A connection on P is a system $A = \{A_{\alpha}, A_{\beta}, A_{\beta}, A_{\beta}, A_{\beta}, A_{\alpha}\}$ where each A_{α} is an $\mathcal{SU}(n)$ -valued 1-form defined over a trivializing neighborhood U_{α} of P such that

these A_{α} 's satisfy over $U_{\alpha} \wedge U_{\beta} \neq \phi$

$$(*) A_{\beta} = g^{-1} \cdot dg + g^{-1} \cdot A_{\alpha} \cdot g.$$

Here $g=g_{\alpha\beta}$ denotes the transition function of P: $U_{\alpha} \cap U_{\beta} \xrightarrow{C^{\infty}} SU(n)$ and dot means multiplication of matrices.

We have another global definition of connection, equivalent to the above. But we adopt the above for a convenience.

For each Lie algebra valued function on M the covariant derivative ∇_A is defined: $\nabla_A \phi = d \phi + [A, \phi] = d \phi + A \cdot \phi - \phi \cdot A$ and we have also the covariant exterior derivative $d_A \psi = d \psi + [A \wedge \psi] = d \psi + A \wedge \psi + (-1)^{p+1} \cdot \psi \wedge A$ (ψ is a p-form).

A 2-form $F(A)=dA+A\Lambda A$ is said curvature form of A. The curvature form takes values in $\mathcal{M}(n)$. In local expression F(A) is represented by $F(A)=\frac{1}{2}\sum_{\mu,\nu}F_{\mu\nu}\,dx^{\mu}\Delta dx^{\nu}$ ($F_{\mu\nu}=-F_{\nu\mu}$), $F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}+[A_{\mu},A_{\nu}]$.

We have an identity $d_A^{\ } \nabla_A^{\ } \phi \ = \ [F(A), \phi] \,, \quad called$ Ricci formula which will be used later to define an elliptic complex.

Definition. Over the set of connections $\mathcal{C}_{\mathtt{P}}$ Yang-Mills functional $\mathcal{Y}^{\mathfrak{M}}$ is defined by

$$\mathcal{Y}\mathcal{M}(A) = \frac{1}{2} \int_{M} |F(A)|^{2} dv,$$

where $|F(A)|^2 = \frac{1}{2} \sum_{i} h^{\mu \sigma} h^{\nu \tau} (-\text{Tr } F_{\mu \nu} \cdot F_{\sigma \tau})$ ($(h^{\sigma \tau})$ is the inverse matrix of the metric $(h_{\mu \nu})$).

Its Euler-Lagrange equation is written locally by

$$\sum_{\sigma,\tau} h^{\sigma\tau} \nabla_{\sigma} F_{\tau\mu} = \sum_{\sigma,\tau} h^{\sigma\tau} (D_{\sigma} F_{\tau\mu} + [A_{\sigma}, F_{\tau\mu}]) = 0$$

where D_{σ} denotes the covariant derivative with respect to Levi-Civita connection of M.

<u>Definition</u>. A connection is called Yang-Mills if it is a critical point of ym, that is, it is a solution to the Yang-Mills equation.

We have assumed that M is oriented and 4-dimensional. Then we have the operator * which is an involutive endomorphism of the bundle of 2-forms Λ^2 . Hence $\Lambda^2 \quad \text{splits into} \quad \Lambda_+^2 + \Lambda_-^2 \quad \text{corresponding to eigenvalues.}$ A 2-form α is said (anti-)self-dual if $\alpha \in \Lambda_+^2 \text{ (or } \Lambda_-^2 \text{).}$ Curvature form splits also into $F(A) = F_+ + F_-.$

<u>Definition</u>. A connection is said self-dual (or anti-self-dual) if it is a solution of self-dual equation $F_{-}=0$ (or anti-self-dual equation $F_{+}=0$).

From Chern-Weil homomorphism theorem $\ensuremath{\mathcal{Y}}\ensuremath{\mathcal{M}}$ has the lowest bounds;

$$\mathcal{Y}\mathcal{M}(A) = \frac{1}{2} \int_{M} \{|F_{+}|^{2} + |F_{-}|^{2}\} dv \ge \frac{1}{2} |\int_{M} \{|F_{+}|^{2} - |F_{-}|^{2}\} dv |$$

for all A ε C_p and the integral of the right hand side represents $(-c) c_2(P)[M]$ for a universal constant c>0 and the second Chern number $c_2(P)[M]$. Then the equality "=" holds if and only if A is self-dual or anti-self-dual according to $c_2(P)[M] \leq 0$ or ≥ 0 . Thus we have

<u>Proposition 2.1</u>. Every self-dual connection (or antiself-dual connection) minimizes ym. Hence it is a Yang-Mills connection.

Note. The Yang-Mills equation is anon-linear second order equation with respect to unknown connection. But the (anti-) self-duality equation is of first order.

For Problem 1 $c_2(P)[M] \ge 0$ is a necessary condition for P to admit an anti-self-dual connection. Conversely we have

Theorem (Taubes [11]). If $H_+^2(M) = \{\text{ harmonic 2-form which is anti-self-dual }\}$ vanishes, then P with $c_2(P)[M] \ge 0$ admits an irreducible anti-self-dual connection provided that a principal fibre bundle over S^4 with identical Chern number carries an irreducible anti-self-dual connection.

The irreducibility of connection will be defined at § 4. It is seen that a connection is irreducible if and only if the gauge group can not be compressed into $S(U(n_1)\times U(n_2))$, $(n_1 + n_2 = n)$.

With respect to Problem 2 we have by fundamental ideas of Atiyah-Hitchin-Singer [2] and also of Donaldson [3] the moduli space of anti-self-dual connections carries a structure of real analytic set. Donaldson applied the structure to 4-dimensional topology.

3. Assume that the base space M is a complex surface with complex coordinates z^1 , z^2 and of a Kähler metric $h = \sum_{\mu,\nu} h_{\mu\nu}(z^1,z^2) dz^{\mu} dz^{\nu}$. Then the space M carries an orientation induced naturally from the complex structure.

Fact(Atiyah[1],Itoh[6]) A connection over a complex surface is anti-self-dual if and only if F(A) is of type (1,1) and primitive, that is, F(A) is written by $F(A) = \sum_{\mu,\nu} F_{\mu\nu} dz^{\mu} \Lambda dz^{\bar{\nu}} \quad \text{and satisfies}$ $\sum_{\sigma,\tau} h^{\sigma\bar{\tau}} F_{\sigma\bar{\tau}} = 0.$

Koiso generalizes this anti-self-duality to higher dimensional complex manifolds [9].

Theorem (Kobayashi[8]). If the bundle P admits an antiself-dual connection, then the associated vector bundle $E = P \times_{\rho} \mathbb{C}^n \quad \text{must be a (semi-)stable holomorphic vector}$ bundle in the sense of Mumford and Takemoto.

Recently Donaldson proved in his preprint [4] that over an algebraic surface the stability is indeed a sufficient condition.

Over a Kähler surface the following is an answer to Problem 2.

Theorem [7]. The moduli space of irreducible anti-self-dual connections admits over a compact Kähler surface a structure of complex analytic set, that is, it is a zero point set of local several holomorphic functions.

- Remarks. 1. An anti-self-dual connection is just an Einstein Hermitian structure of the associated vector bundle in the sense of Kobayashi.
- 2. Over an algebraic surface the moduli of stable holomorphic structure of a smooth vector bundle is a quasi-projective variety (Maruyama[10]).

Example. In the case of $M = P_2(\mathbb{C})$, SU(2) and $c_2(P)$ = k (> 1) the moduli space is a complex manifold without singularity of $\dim_{\mathbb{C}}$ 4 k - 3.

The theorem is first conjectured by Atiyah.

A sketch of proof of Theorem will be given in \ \ \ 5.

To define precisely the moduli space over a general 4-manifold we need notion of gauge transformations. f of P (that is, f; $P \longrightarrow P$ A bundle automorphism is a diffeomorphism and satisfies f(ua) = f(u)awhich induces on M the identity transformation is called a guage transformation. A gauge transformation can be identified with a global section of the automorphism bundle $G_{p} = P \times_{conj} SU(n)$. A gauge transformation operates on a connection A to induce a new connection f*A = $f^{-1}.df + f^{-1}.A.f$ with curvature form $F(f*A) = f^{-1}.F(A).f.$ Therefore ym is gauge-invariant, because $|F(f*A)|^2 =$ $|F(A)|^2$ and an anti-self-dual connection is transformed into new one which is also anti-self-dual. But in physical and geometrical meaning they represent the same thing. So we have a quotient space of the set of anti-self-dual connections modulo gauge transformations and call it moduli of anti-self-dual connections: space \mathcal{M}_{a}

{ anti-self-dual connections }
$$\xrightarrow{\pi} \mathcal{M}_{a}$$
.

The adjoint representation of the gauge group induces a vector bundle associated to P which we call the adjoint bundle and denote it by $\mathcal{G}_{\text{D}}.$

Almost everything of Yang-Mills theory must be discussed over this bundle because curvature forms are \mathcal{G}_p -valued 2-forms and an infinitesimal gauge transformation is just a global section of \mathcal{G}_p etc.

Now we assume that a connection A is anti-self-dual over a general compact oriented Riemannian 4-manifold M. By the aid of the Ricci formula we have the sequence:

$$(*) \quad 0 \longrightarrow \Omega^{0}(\mathcal{O}_{P}) \xrightarrow{\nabla_{A}} \Omega^{1}(\mathcal{O}_{P}) \xrightarrow{d_{A}^{+} = P_{+} \circ d_{A}} \Omega_{+}^{2}(\mathcal{O}_{P}) \longrightarrow 0$$

is an elliptic complex, that is, $d_A^+ \circ V_A^- = 0$ and the symbol sequence of this is exact at any covector $\xi \neq 0$. Here $\Omega^k(\mathcal{O}_P)$ denotes the space of smooth \mathcal{O}_P^- -valued k-forms (k = 1, 2) and $\Omega_+^2(\mathcal{O}_P)$ the space of \mathcal{O}_P^- -valued self-dual 2-forms. Further P_+ is the orthogonal projection of Λ^2 onto Λ_+^2 . Cohomologies H^0 , H^1 and H_+^2 associated to (*) are all finite dimensional. The Atiyah-Singer index theorem shows that the index of (*), that is, $\dim H^0 - \dim H^1$ + $\dim H_+^2$ is given by \int_M { characteristic classes of M and P }

According to either $H^0=0$ or $H^0\neq 0$ and either $H^2_+=0$ or $H^2_+\neq 0$ we have four cases:

(i) $H^0 = 0$ and $H_+^2 = 0$; the moduli space \mathcal{M}_a is smooth at $[A] = \pi(A)$ and has dimension equal to - index (*)

- (ii) $H^0 = 0$ and $H^2_+ \neq 0$; \mathcal{M}_a is at [A] a zero point set of $a \ C^\omega map \ \Phi \quad from \ a \ neighborhood \ of \ H^1$ to H^2_+
- (iii) $H^0 \neq 0$ and $H^2_+ = 0$; \mathcal{M}_a is written as a Γ_A -quotient of a 0-neighborhood of H^1
- (iv) $H^0 \neq 0$ and $H_+^2 \neq 0$; \mathcal{M}_a has at [A] a structure of Γ_A -quotient of zero point set of a C^ω -map Φ from a 0-neighborhood of H^1 to H_+^2

Here Γ_A is the isotropy group of A, that is, Γ_A = { gauge transformations f; f*A = A }.

Those properties of $\, \mathcal{M}_{\rm a} \,$ stated above are based on the following facts:

Fact 1. Since $F(A + \alpha) = F(A) + d_A^{\alpha} + \alpha \Lambda \alpha$ ($\alpha \in \Omega^1(\mathcal{O}_P)$), for a fixed anti-self-dual connection A a connection $A + \alpha$ is anti-self-dual if and only if $d_A^+ \alpha + P_+(\alpha \Lambda \alpha) = 0$.

- Fact 2. Because $\operatorname{Ker} \operatorname{d}_A^* = \{ \alpha \in \Omega^1(\mathcal{O}_P); \operatorname{d}_A^*\alpha = 0 \}$ is transversal in \mathcal{C}_P to the orbit through A of gauge transformations, where d_A^* is the formal adjoint of d_A , \mathcal{M}_A has a neighborhood homeomorphic to a slice $\mathcal{C}_A = \{ \alpha \in \Omega^1(\mathcal{O}_P); \operatorname{d}_A^*\alpha = 0, \operatorname{d}_A^+\alpha + \operatorname{P}_+(\alpha \Lambda \alpha) = 0 \}$ or a Γ_A quotient $\mathcal{L}_A^{\prime}\Gamma_A$ according to the irreducibility of A. Fact 3. We combine these facts to derive so-called Kuranishi's map from the slice to H^1 . Define a map Φ ; $\Omega^1(\mathcal{O}_P) \longrightarrow \Omega^1(\mathcal{O}_P)$, $\Phi(\alpha) = \alpha + (\operatorname{d}_A^+)^*\circ \operatorname{G}_A(\operatorname{P}_+\alpha \Lambda \alpha)$ where G_A is the Green operator of the Laplacian $\operatorname{d}_A^{\dagger}\circ (\operatorname{d}_A^{\dagger})^*$. Since $\operatorname{d}_A^{\dagger}\circ (\operatorname{d}_A^{\dagger}) = \operatorname{d}_A^{\dagger}\circ (\operatorname{d}_A^{\dagger})^*$. Since $\operatorname{d}_A^{\dagger}\circ (\operatorname{d}_A^{\dagger}) = \operatorname{d}_A^{\dagger}\circ (\operatorname{d}_A^{\dagger})^*$ has an inverse over a neighborhood of 0. We give a map ψ ; $\{\beta \in \operatorname{Ker} \operatorname{d}_A^*; \|\beta\|_{L^2} < \varepsilon \} \longrightarrow \operatorname{H}^2$ by $\psi(\beta) = -$ harmonic part of $\operatorname{L}_A^{\dagger}\circ (\operatorname{d}_A^{\dagger})^*$ for $\alpha = \Phi^{-1}(\beta)$ to assert that Φ ; $\mathcal{L}_A^{\dagger} = \operatorname{L}_A^{\dagger}\circ (\operatorname{d}_A^{\dagger})^*$.
- Now we assume again in this section that the base space is Kähler. In order to give the moduli space \mathcal{M}_a a complex manifold structure we need finer considerations than the discussion of §4. For this purpose we complexify every real structures, SU(n) to SL(n; \mathbb{C}), the principal fibre bundle, the adjoint bundle, gauge transformations etc, except but the transition functions of the bundle. A connection A then splits into the (1,0)-part A' and the (0,1)-part A" so that A'' satisfies

$$A''_{\beta} = g^{-1}.\overline{\partial}g + g^{-1}.A''_{\alpha}.$$

<u>Definition</u>. A system $\{\widetilde{A}_{\alpha}, \widetilde{A}_{\beta}, \ldots\}$ of locally defined $\mathfrak{sl}(n;\mathfrak{C})$ -valued (0,1)-forms compatible with the transition functions of P,

$$\widetilde{A}_{\beta} = g^{-1} \cdot \overline{\partial} g + g^{-1} \cdot \widetilde{A}_{\alpha} \cdot g$$
 on $U_{\alpha} \cap U_{\beta}$,

is called a (0,1)-connection.

A (0,1)-connection \widetilde{A} induces the partial covariant derivative $\overline{\partial}_{\widetilde{A}} \colon \Omega^0(\mathfrak{G}_P^{\mathbb{C}}) \longrightarrow \Omega^{0,1}(\mathfrak{G}_P^{\mathbb{C}}), \qquad \phi \longmapsto \partial \phi + [A, \phi]$ and also the covariant exterior derivative $\overline{\partial}_A \colon \Omega^{p,q}(\mathfrak{G}_P^{\mathbb{C}}) \longrightarrow \Omega^{p,q+1}(\mathfrak{G}_P^{\mathbb{C}})$ where $\mathfrak{G}_P^{\mathbb{C}}$ denotes the complexification of \mathfrak{G}_P .

<u>Definition</u>. A (0,1)-connection \widetilde{A} is said holomorphic if its curvature $F(\widetilde{A}) = \overline{\partial} \widetilde{A} + \widetilde{A} \wedge \widetilde{A}$ vanishes.

Remark. Each holomorphic (0,1)-connection induces by integrability condition a holomorphic structure on $\mathcal{G}_{\mathbb{P}}^{\mathbb{C}}$ such that $\bar{\partial}_{A}$ is just $\bar{\partial}$ -operator(Atiyah-Hitchin-Singer [2] and Griffiths [5]).

Note. Holomorphic (0,1)-connection can be also defined over a higher dimensional complex manifold.

In a way similar to the case of anti-self-dual connections we can define moduli space \mathcal{M}_h of holomorphic (0,1)-connections with respect to complex gauge transformations.

Since each anti-self-dual connection A has curvature form of type (1,1), its (0,1)-component A" gives automatically a holomorphic (0,1)-connection because $F(A") \quad \text{is just the } (0,2)\text{-component of full curvature form } F(A).$ Then we have a canonical map ϕ from \mathcal{M}_a to \mathcal{M}_h by assigning [A"] to [A].

When \widetilde{A} is holomorphic, the sequence (**) is an elliptic complex

$$(**) \quad 0 \longrightarrow \Omega^{0}(\mathcal{I}_{P}^{\mathbb{C}}) \xrightarrow{\overline{\partial}_{\widehat{A}}} \Omega^{0,1}(\mathcal{I}_{P}^{\mathbb{C}}) \xrightarrow{\overline{\partial}_{A}} \Omega^{0,2}(\mathcal{I}_{P}^{\mathbb{C}})$$

$$\longrightarrow 0.$$

Proposition 5.1. The moduli space of irreducible holomorphic
(0,1)-connections is a complex analytic set.

Here a (0,1)-connection is called irreducible when $\operatorname{Ker} \{ \ \overline{\partial}_{\widetilde{A}} \colon \ \Omega^0(\ {\mathfrak G}_{\operatorname{P}}^{\ \mathbb{C}}) \longrightarrow \Omega^{0,1}(\ {\mathfrak G}_{\operatorname{P}}^{\ \mathbb{C}}) \} = 0$. This proposition is shown by a way similar to the anti-self-dual case, while the complex analyticity is assured by the fact that the Kuranishi's map is in this case holomorphic.

Proposition 5.2. i) The spaces \mathcal{M}_a and \mathcal{M}_h of generic connections (that is, connections with $H^0 = 0$ and $H^2 = 0$, respectively) are smooth manifolds with same real dimension $2 \{ c_2(\mathcal{O}_P^{\mathbb{C}}) - \dim SU(n) \cdot p(M) \}$ where p(M) is the arithmetic genus of M and ii) the canonical map ϕ is smooth and of maximal rank over $\mathcal{M}_{a,gen} = \{ [A] \in \mathcal{M}_a; A \text{ is generic } \}$

Note. We use the moment map due to Donaldson [4] to conclude that ϕ is one-to-one over $\mathcal{M}_{a,ir} = \{ [A] \in \mathcal{M}_a; A \text{ is irreducible } \}$

As a consequence of these results the moduli space $\mathcal{M}_{a,ir}$ has a structure of complex analytic set which around a generic one is smooth and is sigular at one with $H_+^2 = 0$. This is just the statement of Theorem.

We remark that around a reducible anti-self-dual connection the moduli space $\, \mathcal{M}_{\rm a} \,$ is a $\, \Gamma_{\rm A} \!$ -quotient of a real analytic set.

References

- [1] Atiyah, M.F., Geometry of Yang-Mills fields, Accademia Nationale dei lincei scuola superiore, Pisa 1979.
- [2] Atiyah, M.F., Hitchin, N.J. & Singer, I.M., Self-duality in four-dimensional Riemannian geometry Proc.R.Soc. Lond., A.362(1978), 425-461.
- [3] Donaldson, S.K., An application of gauge theory to four dimensional topology, J. Dif. Geometry, 18(1983), 279-315.
- [4] Donaldson, S.K., Anti self dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles (preprint).
- [5] Griffiths, P.A., The extension problem in complex analysis.

 II. Embeddings with positive normal bundle, Am.J.Math.,

 88(1966), 366-446.

- [6] Itoh, M., On the moduli space of anti-self-dual Yang-Mills connections on Kähler surfaces, Pub. R I M S (Kyoto), 19 (1983), 15-32.
- [7] Itoh, M., Geometry of Yang-Mills connections over a Kähler surface, Proc. Japan Acad., 59 A(1983), 431-433.
- [8] Kobayashi, S., Curvature and stability of vector bundles, Proc. Japan Acad., 58 A(1982), 158-162.
- [9] Koiso, N., Deformations for Yang-Mills equations, appeared in this report.
- [10] Maruyama, M., Stable vector bundles on an algebraic surfaces, Nagoya Math.J., 58(1975), 25-68.
- [11] Taubes, C.H., Self-dual Yang-Mills connections on non-self-dual 4-manifolds, J.Dif. Geometry, 17(1982),139-170.