28

INEQUALITIES of ORDERS on LOCAL ANALYTIC ALGEBRAS

by Shuzo Izumi (Dept. Math., Kinki University)

泉 備藏 近畿大学理工学部数学物理学教室

1. Orders and generic rank

Let X be an analytic space over k=R or \mathbb{C} and (0,m) = $(0_{X,\xi},m_{\xi})$ the local ring at $\xi\in X$. O can be expressed as $0=k\{x\}/I$ for an algebra $k\{x\}$ of convergent power series in $x=(x_1,\ldots,x_n)$ and an ideal $I\subset k\{x\}$. We define three kinds of orders for $f\in O$ as follows.

algebraic order: $\nu(f):=\sup\{p\colon f\in m^p\}$ reduced order ([L-T]): $\bar{\nu}(f):=\lim\nu(f^k)/k$ analytic order along $A\subset |X|: \mu_{A,\xi}(f):=\sup\{p\colon \Xi\,\alpha>0\,,\, \exists\, nbd.$ U of ξ , $\exists\, representative <math>\tilde{f}$ of f over U such that $|f(x)|\leq \alpha|x-\xi|^p$ for $x\in A\cap U\}$

We know the following inequalities.

if $A \supset B$, $\mu_{A,\xi}(f) \leq \mu_{B,\xi}(f)$ (f \in 0)

Example 1. If $O=\mathbb{R}\{x,y\}$ and if $A=\{(x,y): |y| \leq |x|^p\}$ $(p \geq 1)$, then v(y)=1 and $\mu_{A,0}(y)=p$.

Example 2. If $O=R\{x,y\}/(y^2-x^3)$, then v(y)=1 and $\overline{v}(y)=3/2$. Let $\Phi: Y \longrightarrow X$ be an analytic map such that $\Phi(\eta)=\xi$. We define the generic rank $grnk_{\eta}\Phi$ of Φ at η as follows. $grnk_{\eta}\Phi:=\epsilon\cdot\inf\{\text{the topological dimension of }\Phi(U):U$ is a nbd. of $\eta\}$ ($\epsilon=1$ if k=R and $\epsilon=1/2$ if k=C).

2. The theorem of Lejeune and Teissier

The following is the most basic result on orders on

complex analytic algebras.

- A. Lemma ([L-T], the original form is more general). Let X be a complex space reduced at ξ . Then, for $f \in O$, the following conditions are equivalent.
 - (r) $\bar{\nu}(f) \geq p$.
 - (1) $\mu_{|X|,\epsilon}(f) \geq p$.
 - (i) $\exists s \in \mathbb{N}, \exists \sigma_i \in \mathbb{M}^{pi}: f^s \sigma_1 f^{s-1} + \sigma_2 f^{s-2} \dots + \sigma_s = 0.$
 - (e) For \forall (or \exists) proper surjective analytic map $\Pi\colon Y\longrightarrow X$ such that Y is normal and mO_Y is invertible, there exists a representative \tilde{f} of f over U such that $\tilde{f}\in m^pO_Y(\Pi^{-1}(U))$.
 - (c) For any analytic map $\Phi \colon D \longrightarrow X$ with $\Phi(0) = \xi$, we have $\nu_0(f \circ \Phi) \geq p \cdot \inf\{\nu_0(g \circ \Phi) : g \in m\}$ (D is the unit open disc in \mathbf{C}).

3. The main theorem

The following inequalities are well-known.

- (1) $v(fg) \ge v(f) + v(g)$ (f, $g \in O$).
- (2) $\nu_{\eta}(f \circ \Phi) \geq \nu_{\xi}(f)$ ($f \in O$) for any analytic map $\Phi: (Y, \eta) \longrightarrow (X, \xi)$.
- (3) $\mu_{A,\xi}(f) \geq \nu(f)$ (f \in O) for any $A \subset |X|$.
- B. Theorem. Let X be a complex space reduced and irreducible at ξ (i.e. O is an integral domain) or a real analytic space whose complexification is reduced and irreducible at ξ (i.e.
- O $\otimes_{\mathbb{R}}^{\mathbf{c}}$ is an integral domain). Then we have the following.
- (1) $\exists a_1 \ge 1, \exists b_1 \ge 0: \nu(fg) \le a_1(\nu(f) + \nu(g)) + b_1$ (f, g \in 0).
- $(2) \quad \text{If} \quad \operatorname{grnk}_{\eta} \Phi = \operatorname{dim} \ X_{\xi}, \ \mathcal{F}a_{2} \geq 1, \ \mathcal{F}b_{2} \geq 0: \ \nu(f \circ \Phi) \leq a_{2} \nu(f) + b_{2} \qquad (f \in O).$
- (3) If A is an open subanalytic set adherent to ξ , $\Im a_3 \ge 1$,

 $\exists b_3 \ge 0$: $\mu_{A,\xi}(f) \le a_3 \nu(f) + b_3$ (f \in 0).

If 0 is not an integral domain, a_1 does not exist (inf $a_1 = \infty$). So we may consider $1/\inf a_1$ as the distance of 0 from non-integral domains. If X=k, inf a_2 coincides with the reduced order of function Φ . Hence inf a_2 may be seen as a kind of order of analytic map Φ . $1/\inf a_3$ expresses something about the size of A_{ξ} .

If $n:=\dim X=1$, B,(1) follows from A,(e) \rightarrow (r) immediately. The rest is proved in the following way ((1)_C,n means the assertion (1) for n-dimensional complex space, etc.).

1) Let (0,m) be an analytically irreducible local k-algebra and let $\mathcal{P}_1,\ldots,\mathcal{P}_p$ ϵ m. Flenner has given a sufficient

condition under which a general linear combination of $\boldsymbol{\gamma}_{i}$ generate a prime ideal of 0 (even of $\hat{0}$).

- 2) In the real case Nullstellensatz does not hold for radicals but for real ideals (real radicals). Risler has proved that, if $I \subset \mathbb{R}\{x\}$ is a prime ideal, I is a real ideal iff dim $\mathbb{R}\{x\}/I=(\text{topological dimension of }V(I)$ (the real analytic germ defined by I)).
- 3) A germ X_{ξ} of a complex analytic set can be canonically considered as a germ X_{ξ}^{r} of a real analytic set. Malgrange has proved that, if X_{ξ} is irreducible, X_{ξ}^{r} is also so together with its complexification \tilde{X}_{ξ} . We use the ringed space version of this theorem.

4. p-th power in $C\{x\}$.

Let p be a prime number and suppose that u is not a p-th power in $\mathbb{C}\{x\}$ $(x=(x_1,\ldots,x_n))$. If we apply B,(1) to $0=\mathbb{C}\{x,y\}/(u-(-y)^p)$, we have the following.

C. Theorem. There exist $a \ge p$, $b \ge v(u)$, $b' \ge 0$ depending only on n, p, u such that $av(f)+b \ge v(f^pu-g^p)$, $av(g)+b' \ge v(f^pu-g^p)$ (f, $g \in \hat{O}$).

We can consider $\theta(p,u):=p/\inf a$ as a distance of u from p-th powers in $\mathbb{C}\{x\}$.

5. Some problems and remarks.

- 1) Let X be a complex space reduced and irreducible everywhere. Is a_1 in B locally bounded? cf. $[R_2]$, p. 259.
- 2) Let $\Phi: Y \longrightarrow X$ be an analytic map such that X is reduced

- and irreducible at $\xi=\Phi(\eta)$. Does existence of a imply Gabrielov's regularity: $grnk_{\eta}\Phi=dim\ X_{\xi}$? cf. [B].
- 3) Do B, (1) and C hold for more general rings and ideals? Example 3. Let A be a finitely generated ring over \mathbf{C} and m one of its maximal ideal. Suppose that the completion $\mathbf{A}_{\mathbf{m}}$ of the localization $\mathbf{A}_{\mathbf{m}}$ is an integral domain. Then B, (1) implies a similar inequality for A.
- 4) Are inf a₁ and inf b₁ attained? Are they rational numbers?
- 5) If g is fixed, B, (1) holds with $a_1=1$ by the theorem of Artin-Rees. If we do not care the linearlity in the inequalities, B, (1) and C follows from Artin's strong approximation theorem ([A]).

(The detailed proofs of the results will be given in $[I_2]$).

References

- [A] Artin, M.: Algebraic approximations of structures over complete local rings. Publ. Math. IHES 36, 23-58 (1969)
- [B] Becker, J.: On the composition of power series. In: Commutative algebra (analytic methods) (LN in pure & applied math. 68), pp.159-172. Marcel Dekker. New York 1982
- [F] Flenner, H.: Die Sätze von Bertini für lokale Ringe. Math. Ann. 229, 97-111 (1977)
- [I] Izumi, S.: Linear complementary inequalities for orders of germs of analytic functions. Invent. Math. 65, 459-471 (1982)

- [I₂] Izumi, S.: A measure of integrity for local analytic algebras. to appear
- [L-T] Lejeune-Jalabert, M, Teissier, B.: Clôture intégrale des idéaux et équisingularite. École Polytechnique 1974.
- [Ma] Malgrange, B.: Sur les fonctions différentiables et les ensembles analytiques. Bull. Soc. Math. France 91, 113-127 (1963)
- [Mu] Mumford, D.: The topology of normal singularities of an algebraic surface and a criterion for simplicity. Publ. Math. IHES 11, 229-246 (1961)
- [R₁] Risler, J-J.: Le théorème des zéros en géométries algébraique et analytique réelles. Bull. Soc. Math. France 104, 113-127 (1976)
- [R₂] Risler, J-J.: Sur le théorème des fonctions composées différentiables.Ann. Inst. Fourier, Grenoble 32,229-260 (1982) [T] Tougeron, J-Cl.: Courbes anlytiques sur un germ d'espace analytique et applications. Ann. Inst. Fourier, Grenoble 26, 117-131 (1976)