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Equivariant Contact figuivalence

Let !{ denote either R or € and "smooth" mean ¢ or analytic
according to context. Let V and W be finite dimensional R -
representations of a group G which is a compact Lie group if
i = R and a reductive complex Lie group if kR = ¢. The space
of (resp. equivariant) smooth map germs from (V,0) to (w,0) is
denoted by £ (V,W) (resp. EG(V,W). De

Definitions

(1) Let }(G denote the group of germs, H, of ?quivariant
diffeomorphisms of (VxWw,0) for which there exist germs of
equivariant diffeomorphisms, h, of (V,0) such that the
following diagram commutes:-

(V,0) ———— (V2W,0) ——s (V,0)
(! L H e

(V,0) ———» (VxW,0) — (V,0) |
(2) Two germs f,g in £ (V,W) are KG - equivalent if there
exists (H,h) in RG such that H ( h(x), £(h(x))) = ( x, g(x)),
where x i1s a co-ordinate system for V.
(3) A germ,°f, in EG(V,.W.) is KG - finitely determined if
there exists a positive integer, s, such that any g in EEG(V,w)

with §%g(0) = §°£(0) is K, - equivalent to f.

If the actions of G on V and W are trivial then we have the

usual definitions of }( - equivalence and finite determinacy



due to Mather. The above definition of &QG seems to be the
most natural generalisation to equivariant map germs; there
are analogous definitions of R’G’ JKG’ J4G and Cig, but, for
simplicity, only'J(G_finite determinacy will be considered in

the present paper.

Criteria for Finite Determinacy

For f in & (V,4) denote by tf the map E(V,V) —> E(V,u);
K g DE LR

if f belongs to & G(V,W) then tf restricts to a map
E,(V,0) —» £.(V,k). Mather defined the (extended) K -
tangent space of f to be the subspace of bd G(V,w) i

TK(£) = t£&(V,V) + f£*m(W). E(V,W)
where m(W) is the maximal ideal of Ef(w), the ring of germs of
smooth functions on (W,0). If f belongs to éiG(V,W) the }<G -
tangent space is defined analogously by:-—

TKLE) = 2 EL(T,T) + (£*m(w). € (V,w))E
where the notation ( . )G is used to denote the fixed point

set of the natural action of G. Clearly we have

TK(£) = (rR(ENE.

Theorem 1 1a], [7]

A germ £ in E (V,W) is K, — finitely determined if and

only if dim.k EG(V,W) / TKG(f), < %, q

An immediate corollary of this is that if £ in EfG(V,W) is
)(-finitely determined then it is also }(G -~ finitely deter—
mined. In fact wall [H] proved that if j®£(0) is K -
vsufficient} then it is also }(G - sufficient.

-2 -



174

A second characterisation of finitely determined germs states
that a germ is finitely determined if and only if it has a
representative which is "stable" in a punctured neighbourhood
of 0 (see @all [1A] for the non-equivarient case).

Definition

A germ f in SG(VQW) is (infinitesimally) *(G - stable at

0 if ITKg(£) = EG(V,W).,. Stability of germs of equivariant
maps f : V—>W at points x # 0 can be defined similarly
after restricting f +to a slice transversal to the orbit G.x

at x, provided the orbit is closed in V.

By a closed orbit of the action of G on V we mean an orbit
which is closed as é subset of V with its usual ﬂopology.'lf
IG| is finite or & = R and G is compact then every orbit of
G on V is closed. However this is not true in the general
complex case (consider, for example, the action of G = €* on
¢° given by t.(x,y) =-(tqu,ty) where t is an element of C*
and (x,y) of Cz). In fact if R = € and G is a reductive
complex Lie group with dim.G > 1 +then there always exist
non-cloéed orbits. The necessity of the restriction to closed
orbits in the definition is due to the fact that non-closed
orbits do not, in general, possess suitable slices. Foftunately
we only need a definition of stability at points on closed
orbitse.

Theorem 2  [7]

Let R = €. Then a germ f in EG(V,S;{) is KG - finitely
determined if and only if there exists a G - invariant neigh-

bourhood U of O in V and a G - equivariant repreéentative
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of £ on U which is }(G - stable at every point in U“\%O}

for which the orbit G.x 1is closed. O

If the actions of G on V and W are trivial then the theorem
reduces to the usuél statement that f is ¥ - finitely deter-
mined if and only if a representative of f is K- stable on
U\\}O} or, eguivalently, if and only if it is transversal to

O on UN{O} .

Since a real analytic germ f in E<3(V,w) is 9<G ~ finitely
determined if and only if its complexification fg 1is %(GC -
finitely determined (where G@ is the reductive complex Lie
group obtained by complexifying the compact group G), this
theorem also characterises ¥<G - finitely determined analytic
germs when ‘1 = [R . Results analogous to Theorems 1 and 2

also hold for i{G’“(G’JQG and CTG finite determinacye.

Invariant Maps

Suppose the action of G on W is trivial; then the following
lemma is not difficult to prove.

Lemma 3. An invariant map f : V—>1V 1is *(G- stable at a
point x such that G.x is closed if and only if it is BL-

stable, and hence transversal to 0, at X O

Gorollary 4. If G is finite, then fe& €,(V,u) is K -

finitely determined if and only if it is y(—-finitely

determined..

The proof of the corollary is by the lemma, Theorem 2 and the

fact that all the orbits of G in V are closed. 1
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If dim.G = 1, and if dim.V > dim.Ww > 1 , then Wall has
shown [if] that no invariant map germ f : V—>W with

DF(0) = 0O can be K - finitely determined (Slodowy [io]
proved a similar result for the case dim.W = 1, but the
situation when dim.V £ dim.W is unclear). However, although
most invarisnt map germs are not ¥ ~finitely determiqed if
dim.G 2 1, they are )(G —~finitely determined. More precisely

we have the following result .

Theorem 5 [2]

For any G, if G acts trivially on W, then the germs in QG(V,W)
which are not }(G ~ finitely determined lie ih a subset of

infinite codimension.. o

In a rather different direction we have the following

proposition about real analytic germs.

Proposition 6

If h = R and f is = )<G - finitely determined real

analytic invariant map germ then it is also Ck -~¥( -

finitely determined for all k such that 0L k<o

Proof. If f is ¥<G-" finitely determined there is a
suitable representative T of f such that ?& is trans-
versal to O at all points with closed GC — orbits in

VC t= VQQQQh_If X 1is any point in V then GC.X ~1s closed
(schwarz [9] p.59) and so f is transversal to O at all
points in a punctured neighbourhood of O in V. The result now
follows from the geometric criterion for Ck - finite deter-

minacy (see Wall [12) Theorem 6.1). a

-5 -



Z_ = Lguivariant Functions

If the action of G on W is non~trivial then we may lose the
genericity, and even the existence, of K:G - finitely deter=-
mined germs.

Let G = Zp, identified with the p-th roots of unity; let t

denote a generator of Zp. Define an action of G on V = ¢

by
tOCX/] 9 s e e ,Xm,yq,o‘oo ,yn) = (tX,i ,...,tXm,y,l,.... ’yn)

and on W =€ by
t.Z = tqZ

for some g satisfying O € a4 < D «

Theorem 7  [8]

(1) There exist )(G - finitely determined germs in gG(V,W)
- 1
n > (g+m=-1)!  _ e
g¥(m-1)!
(2) Pinite determinacy with respect to holds outside a
G

if and only if n=0 or

subset of infinite codimension if and only if one (or more)
of the following conditions holds:-
(a) n =20 (b) q € 2
(c) m g (¢) (m,q) = (2,3),(2,4) or (3,3).

We give a sketch of a proof of the theorem.

Any £ in EG(V,W) can be written
£Gy) = S Ex) T4

. J
where i Z'j} is the set of monomials of degree g in XgyeesX

m
and the fj are invariasnt functions on V. So f is deter-
mined by a (non-unique) invariant map f : V—>M, where M

is the space of homogeneous forms of degree q in m variables.
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Using arguments similar to some which are standard in

singularity theory it can be shown that

fis K - stable at x in V'~ V® if and only if it is
transversal to O at x,

and

~

fis K ; - stable at x in yY G

if and only if f[,G : V'—>N
is transversal to the orbits of the natural action of GL(m)
on M.

Thus, by Theorem 2, F(G - finite determinacy is reduced to a

set of transversality conditions on a puncturdd neighbourhood

of O

The number of these transversality conditions is finite if and
only if n = 0 or the number of GL(m) orbits in M is finite;
this latter condition is satisfied if and only if m < 1 or

g £2 or (myq) = (2,3). In these cases )(G finite determinacy

is certainly generice.

More generally we can stratify M so that each stratum is
foliated by GL(m) orbits. If the strata of codimension < n
are foliated by orbits of codimension € 1 in the stratum then
the points where f is not transversal to the GL(m) orbits
generically form a set of dimension O and so they can be
excluded from a sufficiently small punctured neighbourhood of
O. Conversely, if there is a stratum of codimension < n which
is foliated by orbits of codimension >»1;,then we can cons-—
truct f (and hence f) with points of non-transversality in
any neighbourhood of O which can not be removed by perturbing
T slightly. This means that no extension of a suitable Jjet
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of f can De }{G -~ finitely determined, and so %(G -~ finite
determinacy can not be generic. There exists a stratification
of M such that the strata of codimension £ n are foliated by
orbits of codimension ¢ 1 if and only if we are in one of the
cases of the previous paragraph or (m,q) = (3,3) or (2,4).

This completes the proof of (2).

The necessity of the condition n = 0 or n » dim.lM --»m2 =
1)1t

Lgiﬂ_ill - m2 in (1) is clear from the above since

gqi(m-1)L .

dimeM - m2 is the codimension of the orbits of maximal
dimension in M. The sufficiency of this condition follows by
more or less explicit construction of P(G - finitely deter-

mined gernmse , a

Theorems 5 and 7 follow from a more general result [8] which

gives necessary and sufficient conditions for ${G’<TG and %<G
finite determinacy to be generic in €(}(V,W) for any reductive
complex Lie group G and complex representations V and W. There
appears to be a serious problem with proving the necessity of

the conditiong when (& = R.

Stable Unfoldings

In complete analogy with the non-equivariant case Damon [2]
proved that an equivariant map germ has a %(G - versal
unfolding if and only if it is }(G ~ finitely determined
(corresponding results hold for RG’ ’ZG’A‘G and CG)' However
there is one aspect of unfolding theory which doesn't
generalise in such a straightforward manner. Recall that for
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ordinary mep germs an unfolding is 44 stable if and only if it
is }( - versal and so the property of possessing an jL stable
unfolding is generic; this latter fact is important in the
proof of the topological stability theorem [4] and also in
that of the genericity of topological J4‘— finite determinacy
(el . f

However for equivariant map germs this is no longer true,
instead we need to replace }(G by a subgroup, denoted P@g\and
defined in [13]. Then it is true that an equivariant unfolding
is f%G - stable if and only if it is §{€ - versal and so an
equivariant germ has an JQG - stable unfolding if and only if
it is }(%.- finitely determined. If the action of G on W is
trivial then )(E» = }(G, but in general kg finite determinacy
is a stronger property than yG - finite determinacy and 5&2
finite determinacy may not be generic even when y~G -~ finite

determinacy ise

Example. Let G = Z2 with generator t and V be the
m+n dimensional representation defined by:=-
t.(xq,...,xm,yq,...,yn) = (txq,...,txm,yq,...,yn)

and W the similarly defined p+qg dimensional representatione.

Theorem 8 [8]

(1) Finite determinacy‘with respect to §<G is generic in

EG(VQW) for all myn,p and q.

(2) Finite determinacy with respect to }(E is generic in

E—G(v,w) if and only if one of the following holds:-
(a) m=20 (b) ps2

q m<p
-9 -
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The non-genericity of k‘g finite determinacy casts doubts on
the possibility of an equivariant version of the topological
stability theorem and Nakail [5] has found examples of pairs
(M,N) of Z, - menifolds for which equivariant topologically
stable maps are not dense and, locally, topological f*G -
finite determinacy is not generic. It is perhaps interesting
to note that in these examples the pairs of slice represen-—

G, G 1ie in the

tations (V,W) of pairs of points (x,y) in M
range n = gq+1, m = p=1 and so k(g finite determinacy is
not generic in EG(V,W). It may be possible to prove an
equivariant version of the topological stability theorem

if &(E finite determinacy is generic for all possible pairs
of slice representations; we might also conjecture that if
y&g - finite determinacy is generic in E:G(V,W), then so is

topological j*G - finite determinacy..

A Conjecture

S50 far we have no equivalence relation for which finite deter-
minacy is generic for all G,V and W. However the following
looks promisinge.

Definition

Two germs f,g in iEG(V,W) are ¢¥ - Vs - equivalent if there
exists a germ of an equivariant homeomorphism of (V,0) taking

£71(0) to g71(0).

Conjecture

The set of germs in EiG(V,W) which are not c© - Vo - finitely

determined has infinite codimensione
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A proof of this conjecture could perhaps be constructed using
» {

Thom's "blowing-up" idea (e.g. [6]) together with the

equivariant transversality theory and isotopy theorem of

Bierstone [1] and Field [5].

Finally we note that some related work, on the infinite

determinacy of equivariant germs, has been done by Wall [14].
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