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On Topology of Real Algebraic Functions

by Goo ISHIKAWA

Several preliminary observations on the topological structures
of real algebraic functions are explained. )

The theory of real algebraic fuﬁctions is one of centers of
mathematics. On the other hand, topological SEﬁdy on real

algebraic functions can be regarded as a natural extension of

investigations on Hilbert's 16th problem.

In §1, a general problem is treated. As an example of
concrete investigations, a problem on topology of real pencils
of hypersurfaces is studed in §2. Several remarks and problems

are collected in §3.
1. Topological types of algebraic functions.

1.1. Let P" denote the complex projective n-space cp”.

Consider a non-zero polynomial with complex coefficients:
r = IF(XO,X1,...,xn; uo,u1,...,un),

which is homogeneous of degree d, r with respect to

X = (xo,...,xn), u = (uo,...,un) respectively. The equation

F = 0 defines a (possibly reducible) subvariety A = A[TF] of

n m . ,
P"XP of codimension one.

Our central object is the following diagram:



184

A

[TF] 7cl
P

where W= T[IF], ®=¥[F] are restrictions to A C P’ x P of
the projections to Pn, p™ respectively. This diagram is
regarded as a generalization (of a compactification) of a

polynomial mapping of corank at most one.

Fundamental Problem: For fixed (n,d;m,r), investigate the

topological structures of diagrams [TF].

An equivalence for diagrams [T}, [6] is a pair (H;h,h') of

"isomorphisms" such that the diagram

1
P“é———TW A[TF] ——Lﬂ p"

SR

n m
¢——— AlG ] ———> P
nI&] (6 ] Tkl
commutes. Here H = (hXh')|A.

The topological eéﬁivalence is defined by taking h, h' to
be homeomorphisms.
The number of topological equivalence classes is continuum

if d > 3 and r > 3. 1In fact, the family
(uoxo;u1x1)(uoxo—au1x1)(uoxo—bu1x1)

contains a continuous family of topological equivalence classes

(cf. [2]).
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1.2. Let us concentrate the case m = 1. Put (uo,u1) =

(A,u) and
F = ATF +A"uF, 4 ant TE +u'F
= 0 bl R o R
where Fi = Fi(XO’X1""’Xn) are homogeneous polynomials of degree
d (l = O,...,r)- D)

Then the diagram [IF] in (1.1) is called an algebraic

function of type (n,d;r).
To state results, we prepare several notions.

A "marked" partition type J-= <j0;j1,...,jp>' of r is the

equivalence class of a partition r = j. +j +...¥j by positive
0 -1 P

integers jo,j1,...,jp. Here two partitions

r = ]O+]1+...+jp = k0+k1+...+kq

|
e

are equivalent if jO or 9 = p and for some permutation o

=j. (l 1,...,p).

of {1,...,p}s i

Ko (i)
Put B = B[F]= {[x]€P" | Fo(%) = Fi(x) = ... = F_(x) = 0}.

For each point a = ([x],[A:ul) € A[F] with ([x] & B[F], we

denote by ja the intersection number of A[TF] and the line

1 . . . . . . -1
[x]xP . Define J, = <]a;ja1,...,jap> if the fiber 7 [x]

consists of p+1 points {a,a1,...,ap}.
-1
Then a decomposition A[TF] =RB[F]\J( \/J Rﬂ?hj)) is obtained,
where REJJW = {a€A | Ja = J} for each marked partition‘type J

of r.

The ramification data of T are n_1(B[Eﬂ) and REJJW for
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any marked partition type J of r.

An isotopy of algebraic functions [T], [6] of type (n,d;r)
is a pair (Ht,h't) of continuous one-parameter families of

1

homeomorphisms of P x P ' P1 respectively with parameter

t €[0,1] such that
(1) Ht covers h't (tef[0,11).
(ii) H, = id , h' = id ..
0 anP1 0 P1
(1iii) H1(A[Eﬂ) = A[G].

(iv) H1 preserves ramification data, that is, H1 maps

=~ BIF]) to = '(BI€]) and Rp(J) to Re(J) for any marked

partition type J of r.
If there exists an isotopy of [F] and [G], then they are

called isotopic.

Theorem 1. For each (n,d;r), the set of isotopy classes of

algebraic functions of type (n,d;r) is finite.

Though this result seems essentially in [3], we give an outline
of proof.
Let ¥ denote the vector space of homogeneous polynomials
F = E%xo,...,xn;XJL) of degree d,r with respect to x, u = (AVu)
respectively, and PY the projectification of X; P¥X = (X-0)/c*.
put & = {([F1,[x],[u]) € PXxP?xP' | F(x,u) = 0} and
R(J) = {([Eﬂ,[x];[u])Q)t l ([X],[u])él{F(J)} for each marked
partition type J of r. Each R(J) is constructable in %F.
Set R = SR(J)}. Further put B = f(EF],[x],[u])é;¥ | F.(x,u)=0
(i = O,...,r)}. Thus a decomposition %~ = B U U (R ) is obtained.

4



Consider the diagram

A’——éf'_}]?xxpl———’_;——-;'PXI

7

where @, |° are projections.

It suffices to construct a stratification (%*, X X

17 Xpy)

P}XP
of ($,7°) such that

(i) %* , X " 1 and XEK are Whitney stratifications of
PKX P

A, P(}CXP1 and PX respectively.

(ii) For each ZEX , ) induces a Thom
“PX R P()(x p

7 1z) of &) (3-P)" 1z——>""1
.| 0 e

stratification (X [ (8sT) "'z, x .
P )(P

(iii) /B and every R(J)€ R are stratified subsets of %¢ .
For this, the existence of "bonnes stratifications" is

essential (cf.[3])

1.3. Next assume T is a real polynomial (and m = 1).
Then the diagram [IF] has a natural real structure induced by the

complex conjugations tn’ 11 of Pn, P1 respectively:

n, T ] L _op!

P
l Th i 'Cnx'C| l/ -Cl
P

Ng ®  aAtp] —Ff 5p!

An isotopy (Ht,h't) of real algebraic functions [F], [€] is

equivariant if ('CnxT1)oHt=Hto('Cn>(t1) for any t€1[0,1].

If [F] and [6] have an equivariant isotopy, then they are

called equivariantly isotopic.

Theorem 2. For each (n,d;r), the set of equivariant isotopy
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classes of real algebraic functions of type (n,d;r) is finite.

For the proof, instead of the isotopy lemma, the equivariant

isotopy lamma is used.

1.4. Put

SIF 1 = {([x1,1ul) € "X P | (3F/dx)(x,u) = 0 (i=0,...,n)},

TIF ] = {([x],[u]) €P"X P | (DF/OA)(x,u) = (2F/2M)(x,u) = O}.

A[TF] is non-singular if and only.if SIFINTI[F] = 0.
Suppose A[IF] is non-singular. Then 45= PITF]: A[]F]———éP1
is called nice if each critical point of ¥ is non-dedenerate
and @ restricted to the critical locus is injective.
Let ¥ denotes the vector space of polynomials TF = TF(x,u)

of type (n,d;r).

Proposition 1. The set of [F]€P¥ such that A[TF] is
non-singular and P[F] is nice is a non-void Zariski open set in

P¥ invariant under the complex conjugation of P¥ .

Proof. Each TF&YX defines a map ‘Angcz————>H,

where H 1is the vector space of homogeneous polynomials
F(xo,...,xn) of degree d; H = HO(Pn,Cﬂ(—d)). Let 2 denote

the set of TFT&€P¥X such that }1—1'1:."'(0) + 0 , or, A:;F‘PI‘I(O)

=0 and its projectification )4E5 P1————§PH is
transverse to the locus of singular hypersurfaces D C PH. Then

%z is Zariski closed, and, [Fl1eéP¥ - 72 if and only if A[TF] is
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non-singular and ?[Eﬁ is nice.

Proposition 2. If A[TF] is non-singular and Y[IF] has only

isolated critical points, then §: ,uX(V) = r(n+1)(d—1)n. Here

XEA
/L denotes the Milnor number.
Proof. For r = 1, Proposotion 2 is proved in [5]. Then,
for any r, Proposition 2 is a consequence of Bezout's theoremn.

2. The number of singular points in a pencil of

real plane curves

2.17. A (real) algebraic function [F] of type (n,d;1) is

called a (real) pencil of hypersurfaces in P of degree d.

Example 1. Three pencils of plane conics (n=1, d=2):

(3)

(2)

The numbers of singular points in pencils (1), (2), (3) are
1,2,3 respectively.

In [5], the domain of numbers of singular points in pencils
of real plane curves of fixed degree is determined under a certain

genericity condition.
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2.2. ([5]1) 1In real algebraic geometry, it is effective to
estimate numerical invariants of a real algebraic object (e.g.
a real algebraic variety, a real algebraic mapping, a real family
of algebraic varieties) by those of its complexification. Such

estimatates take the following form:
(*) (real quantity) é(complex guantity).

For a natural family of real algebraic objects, the right
hand sides of inequalities (*) frequently turn out a constant.

Then it is important to ask the uniform estimate
(*") (real quantity) < (constant)

obtained by such a process is sharp or not.
Let [TF] = [/\F0 +/KF1] be a pencil of hypersurfaces in P

of degree d:

A —f o p

[TF]) T

Pn

A pencil [IF] is generic (resp. of finite singularity) if

A[TF] is non-singular and $P[IF] has only non-degenerate (resp.
isolated) critical points. (In Example 1, (1),(3) are generic,
and (2) is not generic.)
If a pencil [F] is of finite singularity type, then the sum
of Milnor numbers of ¥ at points in A is equal to (n+1)(d—1)n.
Especially, for a generic real pencil [FF] of hypersurfaces
n

in P of degree d, the number s of real singular points of

[F] satisfies the following inequality:
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(*") s ¢ (n+ 1)(a- 1)".

The sharpness of (*") for n = 1 is straightforward. 1In

fact, the pencil
d d
o= AT (xg-a;x) + MTT (x4-byx;)
i=1 i=1
has 2(d-1) real singular points if

b1<b2<...<bd<a1<a2<...<ad.

b1 bd a, ajy
For n = 2, the following is proved in [5]:
Theorem 3. ([5]) There exists a generic pencil of real plane

algebraic curves of degree d with exactly s real singular
points if and only if the non-negative integer s satisfies
s < 3(d-1)2 and s = d-1 (mod. 2).

To show the existence of a generic pencil with 3(d—1)2 real

singular points, it is sufficient to construct a pair of M-curves

satisfying some prescribed topological conditions.



A pair ([F],[G]) of real plane curves of degree d is a
M-pair if the following conditions are satisfied:
(i) [F] and [G] are M-curves.
(ii) The real parts of curves F = 0 and G = 0 intersect
2

transversely in RP at d2 points.

(iii) The union FG = 0 of curves has 2g empty ovals.

Proposition 3. Assume ([F],[G]) is a M-pair and assume

the pencil [AF + MG] is generic. Then s = 3(d-1)°.

For each 4 (d=1,2,...), a M-pair of degree d is

constructed, based on Harnack's mathod [4].

By Theorem 3, the domain of the numbers s of real critical

points of generic real rational functions h = f(x,y)/g(x,y),

(deg £ = deg g = d) on ]R2 is determined. The condition is

0 < s ¢ 3(d-1)%, s=d-1 (mod. 2).
2.3.
Theorem 4. ([6]) There exists a generic real rational
function h = f(x,y)/g9(x,y) (deg £ = d, deg g = d') on ZR2

with d # d' with exactly s real critical points if and only

if the non-negative integer s satisfies

s < (a-1)% + (@-1% +aa' -1,

s = (d-1)(d'-1) (mod. 2).

10
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3. Supplements.

3.1. A simple formula for indices of vector fields over a

manifold with boundary and its application.

Let M be a n-dimensional C® manifold with boundary 2M,
v a C*» vector field over M. Assume each singular points of
v is isolated and not on oM.

Let us classify the vector v(x) for a point x€ 9M into

the following three classes:

external tangential internal

First put M = MO, M = TO. Next put
M1 = %{éTb J WMx) 1is external or tangential},
T, = %célb I vix) 1is tangential}.
If M, isa C*® manifold with boundary T,, then put
M2 = ﬁ(éTH l v(x) 1is external or tangential w.r.t. M1$ = (M1)1,
T2 = gxé.T1 I v(x) is tangential{ = (T1)1.

Inductively, if Mk is a C® manifold with boundary Tk’

then put Mk+1 = (Mk)1’ Tk+1 (Tk)T’

Assumption: Mk is a (n-k dimensional) C% manifold with

boundary Tk (k =1,2,...,n=-1).

M
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Let S(v) denote the set of singular points of v. For each
x€S(v), ind_v€ % is defined. Put ind v = .  ind_v.
X X
X€S(X)
Theorem 5. Suppose M is compact. Then, under the above

assumption,

' . n .
ind v o= 37 (=1)7X(My) el (*).
i=0

Remark i. (1) If 2M = @, then ind v = X(M) (Poincaré-
Hopf's theorem).

(2) By the formula (*), ind v 1is computed from only the
behavior of v along M.

(3) The above assumption is '"generic" ([11,[81]).
The proof of Lemma 1 is achieved by the induction on n.

Let P be a closed C* manifold and E a line bundle over

P. For two sections F, G € [7(E), put
V(F) = {xeP | F(x) = 0 € EX}, B = V(F) N\ V(G),

and consider the rational function ([F:G]l: M - B ———}I&ﬂ, defined
by [F:Gl(x) = [F(x):G(x)].
Take F, G '"generic" and decompose M - (V(F)\J V(G)) 1into

connected components {Ui}. Put Di = Cl Ui and

DD; = {xe QDi—B ‘.grad[F:G](x) is external}.

Proposition 4. The number of critical points of ([F:G] is

not less than 2 ] X}Di) - X()DI)I.
i

12
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3.2. Isotopy classification of real loci of real algebraic
functions of type (n,d;r).

A real isotopy of two real algebraic functions [TF], [G]

of type (n,d;r) is a pair (Ht,h‘t) of one-parameter continuous

families of homeomorphisms of 'IRPnX]RP1,]RP1 respectively such

that
. L]
(1) Ht covers h £
- o v
(ii) HO = id, h 0= id.
(iii) H1CRA[E1) = RA[G]
(iv) H maps the ramification data of Rn[IF]: RA[T] —> Rp"

1
to that of Wi E]: RA[G] —> RP".

(To define the ramification data of RWT, marked partition

i

types of non-negative integers s satisfying s £ r, s r
(mod. 2) are used.)

For example, the number of real isotopy classes of real
algebraic functions [TF] of type (2,2;1) such that A[TF] is
non-singular and Y[IF] is a Morse function is equal to three.
The classes are distinguished by the numbers of real base points.

Related to the results in §2, we have a general problem:
Determine the homological possibilities (over % or %/2%Z) of
real singular loci of ¥ and real ramification loci of T for

"generic" real algebraic functions of fixed type.

It will be needed to develop "real intersection theory".

1

3.3. After choosing an orientation of RP , denote s
(resp. b) the number of real singular points of index i
(i = 0,1,2) (resp. real base points) of a generic pencil

of real plane curves of degree d. Then

13
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b < d2, b=d (mod.2),
S = S,+S.,+S, < 3(d—1)2, s = d-1 (mod. 2),
0 7172 =
1-b = S3=8¢+S,

Do these determine the domain of pairs (50,51,s2;b) or

(s,b) for generic pencils of real plane curves of degree d?

3.4. Let [TF] = [AFO + MF,;]1 be a pencil of real plane

1

cubics. If RA is non-singular and RY: RA —>5 RP is a Morse

function, then the real isotopy type of [IF] is determined by

1

the numbers b, s and the position of critical values on RP

= S1 marked by their indices.
By (3.3) and Harnack's theorem, logical possibilities of

real isotopy types are followings, omitting the types obtained by

1

changing the orientation of S':

b =29, s =12.
[010111111111]
[011101111111]
[011111011111]
(0112111111111
[011112111111]
[O111111211111]
{011111111211]
[011111111112]

b=29,s =10
[0111111111]

b=9, s =28

(111111111
b=7, s =12

(0101011111111
(010111011111
070111110111
[011101110111]
[010112111111]
(0101111271111
(0701111112111

[010111111112]
[011201111111]
[011101121111]
[01T11011112711]
[011101111112]
[01T1211011111]
[011112011111]

b =7, s =
[0101T111111
[0111011111
[0112111111
[0111121111
[0111111211
[0111111112]

0.

1
]
]
]
]
]

b=7, 8.
1

s =
(011111111

b=7, s = 6.
[111111]

b =5, s = 12.
[010101011111]

14

[010101110111]
[010111010111]
[010101121111]
[010101111211]
[010101111112]
{01071120111111]
[011011011211]
[010111011112]
[010112110111)
[010111120111]
[010111110112]1
[010112121111]
[010112111211]
[010112111112]
[010111121211]
[010111121112]
[010111111212]
{011201121111]
[011201111211]
[011201111112]
[011101121211]
[011101121112]
[011101111212]
(0112120111111
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b =5, s = 12.
[011211011211]
[011211011112]

b =5, s = 10.
[0101011111]
[0101110111]
(0101121111
(0101111211 ]
[0101111112]
(0112011111 ]
[0111011211]
[0111011112]

b =5, s
[0101111
[0111011
[0112111
[01111211
[01111112]

8.

1]
1]
1]
]

b =5, s = 6.
[111111]
b=25, s = 4.
[1111]

b=3, s =12,

[010101010111]
[010112010111]
[010101011211]
[010101011112]

[010101120111]
{010101110112]
(0101011212111
[010101121112]
[010101111212]
[010112011211]
(0101120111121
f010111011212]

b =3, s =10.
{01010101111]
[0101011211]
[0101011112]
[0101120111]
[0101110112]
[0101121211]
[0101121112]
(0101111212]
[0112011211]
[0112011112]
[01T11011212]

b =3, s = 8.
(010112111
{01011112]
[01120111]
b =3, s = 6.
[010111]
[011211]
[011112]

b =3, s = 4.
[0111]

b =3, s = 2.
[11]
b:1,S=.12.

[010101010101]
[010101010112]
[010101011212]
[010101120112]
[010112010112]
[010101121212]
[0101172011212]
[011201011212]
[011201120112]

b=1,S=10.
[0101010101)
[0101010112]
[0101011212]
[0101120112]

b =1, s =
[01010101]
[01010112]
[01011212]
[01120112]

8.

b =1, s = 6.
[010101]
[010112]

Here,for example,

diagram:

(0112111111111

means the following

15
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3.5. Let H (resp. RH) denotes the vector space of (real)
homogeneous polynomials F = F(XO’XT""'xn) of degree d. Let

D D2 C H denotes the set of F such that the hypersurface

'I 14
defined by F has singularities with total multiplicities > 1,
> 2, respectively.

For each smooth map f: S1———>]RH— D2 transverse to

Mg = {(x1,1e1) € Re"X ' | £(0)(x) = 0},

and denote by q%: Me—> s the projection.

Consider the foliowing two notions:

(i) q% and ?g are equivalent if there exist a smooth
manifold M with boundary oM = Mfll Mg and a smooth map
P: (M M) — s(s'x1,8'%x 0,8"X 1) such that ¢| Mo = P,
?lMg = ?g ’ any critical points of ? is of fold type and
the set D(f) of critical values is a smooth submanifold of
S1X I.

(ii) Q} and ?g are equivalent if thete exists a smooth

map ~f: 81X I —>RH- D such that _f is transverse to

2
R(D, - D,), Hs1x 0 = £ and f’ls‘x1 = g.

Do they differ exactly?

3.6. For a generic real algebraic functions of type (n,d;r),
the number s of real critical points satisfies s < r(n+1)(a-1)".
Is this inequality sharp in general? Perhaps the constructions in

[7] are powerful.

16
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3.7. A substitute for Arnold's conjecture on estimates of
the numbers of connected components of complements of real
projective hypersurfaces. This relates to the estimates on the

numbers of rigid isotopy classes of non-singular real projective

hypersurfaces of fixed degree.

3.8. A general method to prove the sharpness of inequalities

(*') in 2.2.

3.9. Are the numbers of topological right-left equivalence
classes of polynomial mappings ¢*——>e™ of corank at most one
countable?

3.10. Let us take up an another compactification of IR2

and @2.
Let A = A[TF] be a curve in P'X P' defined by
TF = E%xo,x1;u0,u1) of degree (d,r). Suppose TF 1is real and

consider the real part RA CfRP1X]RP1. What to do first is to

study isotopy types of 1RA in 1RP1XZRP1 = T2.

Lemma. The number of connected components of 1RA does not

exceed 1 + (d-1)(r-1).

Is this estimate sharp?
The isotopy type of an embedding i: S1————>-T2 is
determined by i: H1(S1) = Z -——~>IH(T2) = ZPZ. Estimate the

number of non-trivial components of 1IRA.

17
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3.11. Reconstruct the theory of real manifolds (resp.
real mappings) as the theory of "real-complex manifolds"

(resp. "real-complex mappings").

Please teach the author related informations.
The contents in §1 closely relate to the recent work of

Nakai [ 1.

The author would like to thank I.Nakai for valuable
communications, S. Matsuda and Y. Tanaka for continuous

encouragements, and, M. Adachi and H. Toda for helpful supports.
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