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ABSTRACT
This paper derives a determiﬁant form formula for the genera]‘solution of coupled linear
equations with coefficients in K[Xl""’xn]’ where K is a field of numbers, the number of
unknowns is greater than the number of equations, and the solutions are ir
K(Xl,...,xn_l)[xn]. The formula represents the general solution by the minimum number of
generators, and it is a generalization of Cramer's formula for the‘ solutions in
K(xl,_.,,xn), Compared with another formula which is obtained by a method typical in

algebra, the generators in our formula are represented by determinants of quite small

orders.
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§1. Introduction

Let K be a field of numbers and let Xps e X be indeterminates., In the following, we
often represent X,  as X Let S denote the field K(X1"--’Xn—1)' This paper considers the
general solution of the following coupled linear equations
Poi(nx )y, + -0 4+ P x))y, = Py (xL00x)),
. (D
Poxpox )y, + -0 o+ P, 0x)ye = P (x0x ),
with unknowns Vis eeer Yy in S[x], where r<s and Pij eK[xl,,,,,xn]_

It is well known that coupled linear Diophantine equations with coefficients in Z are
solved by the Euclidean algorithm and the general solution is represented by generatdrs the
number of which is not greater than s-r if there éxist solutions, Since the FEuclidean
algorithm applies also to polynomials in S[x], we can solve (1) by applying the Euclidean
algorithm successively and obtain s—-r generators. However, the procedure is quite tedious
and often causes severe coefficient growth (see, for example, ref. 2).

As for coupled linear equations over fields, Cramer's formula gives the general solution
in a determinant form. We may, therefore, well expect the existence of determinant form
formula which gives all the s-r generators of the solutions of (1). With such a formula,

we can calculate the solutions easily without introducing unnecessary coefficient growth, .

The purpose of this paper is to derive such a formula,

§2. Basic lemmas

In this paper, the variable X =X is treated as the main variable, and the degree and
the leading coefficient in the main variable X of polynomial P are represented by deg(P)
and lc(P), respectively. Furthermore, the resultant of polynomials F and G in Xx is
represented by res(F,G). The greatest common divisor, to be abbreviated to GCD, over the
field K is defined by omitting numeric factor which is unit in K.

The following two:lemmas are essential in solving (1).

[Lemma 1] Given polynomials F, G, H in K[xl,,,,,xnl satisfying
GCD(F,G) = 1,

(2.1)
deg(F) + deg(G) > deg(H),
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there exist polynomials A and B in K[xl,,__,xn] such that
AF + BG + RH = 0,
R = res(F.G), (2.2)
deg(A) < deg(G), deg(B) < deg(F).

(Proof) Let deg(F) = ¢, deg(G) = m, deg(H) = k, and represent F, G, H as

. 2 2-1 .
F=fx"+1, x4+ + £, f,#0,
G =g x" + g X" 4.+ og, g #0, (2.3)
L K S
H= hx" + h _x + + hy, b #0.

Multiplying F, G, and H to, respectively, the last columns of the following determinants A
B, and R, and considering determinants which are coefficients of Xi, i=0,...,4+m-1, we se¢

that (2.2) is satisfied:

m—1 |y
fo To fo X
m—2
fo fTpy - R X
/M TOWS
0
f, fe~1 . fo X J
A= g, &, ' * & 0 (2.4)
8€n 8m—1 ° g, 0
rl rows
8n Bm_p ° g, 0 )
hy By t hy 0
e £+m+]1 columns ——————— —
B =

[replace the last column of A by (0 ... 0 <70 XY T, (2.5)
R = [replace the last column of A by (0 ... 0 0 ... 0 DF1./ |
Notes: Expanding R with respect to the rightmost column, we obtain famous Sylvester's
determinant for the resultant., The above determinants and Lemma 1 were discovered in the
process of generalizing the polynomial remainder sequenée in ref. 1. See, also refs. 2 and
3. It is easy to prove tha{ ‘A and B in the above lemma are unique.
Removing the degree restriction in (2.1), we obtain the following lemma,
[Lemma.2] Let F, G, H, and R be the same as those in Lemma 1 except that deg(H) = deg(F) +

deg(G). Then, there exist polynomials A', B', A" and RB" in K[xl,,,,,xn]‘ such that



k—£-m+]

A'F + B'G + fz RH =0,
(2.6)
deg(A') =< deg(H)-deg(F), deg(R") < deg(F),
A"F + B"G + gt ‘™ IRH =,
(2.7)
deg(A") < deg(G), deg(B") = deg(H)-deg(G).
(Proof) It is evident from the following determinants:
k—2 N
fp Ty =m0 0y X
k—g—1
fp Tp oy © 0 X
rk—2+1 rows
0
{ f o o o f X
2 £—1 0 7 .
A' = : o (2.8)
€n Bm_q1 * ' & 0
. ° ° . o . . . >£ TOWS
gm gm~1 : gO 0 7
hkhk—1" 'hoo
« k+2 columns
v ' £2-1 0 T
B' = [replace the last column of A' by (0 ... 0 X LX), (2.9)
R" = * [exchange £ and m, f. and g, i=0,....max{£,m}, in A'], (2.10)
A" = + [replace the last colummn of B" by (0 ... 0 x™ % . x* »T1. (.11
The next lemma is essential in deriving a Cramer—type formula.
[Lemma 3] Let ng be the following determinant of order r+2 with elements Pij,
i=1,...,r+2, i=1,....1.&,%:
Pll ‘ Plr Pl€ P17?
Dsu = ——Dng = : : : : s (2.12)
Pr+2,1 c Pr+2,r Pr+2.§ Pr+2.v
where & and % are any two elements of {«,B,7,0}. Then, we have
DegPrs + D,,Dys + D, gDy, = 0. (2.13)
(Proof) For r = ( and 1, we can easily prove (2.13) by direct expansion of determinants.

Assume (2.13) is true for r=(,1,...,t—1, and consider the case of r=t, Defining

(a,b) = (b,a) = PlaPip t PoPop + 0o+ P Piioys

and D_.D as

we can represent DwﬁD 5P aspy

ré’ DarD
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(1,1) .. (1,t) (1,7r) (1,8)

DD, s = |(t. 1) .. (t,t) (t.7r) (t,8)],
(a,1) .. (a,t) (a,7) (a,d)
(B, 1)y .. (B,t) (B, 1) (B,9d)
(1,1) .. (1,t) (1,8) (1,8)

D, Dsp = |(t. 1) .. (t,t) (t,8) (t,B)/,
(ax, 1) .. (a,t) (a,d) (a«,B)
(r.1) .. (r.t) (r,8) (7.F8)
(1,1) .. (1,t) (1.B) (1.7)

D,sDp, = [(t.1) .. (t,t) (t,B) (t,7)
(e, 1) .. (a,t) (a,8) (a,71)
(8,1) .. (&8,t) (8,B) (o8,7)

Let us expand these determinants with respect to the last two rows and columns, an
consider the coefficient factor in the term proportional to («,a)(8,b)(r,c)(d,d), i.e., th
factors other th.an (x,2){B,b)(7r,c)(d,d) in the term.

Case 1: Terms proportional to («,B8)(r,d), (a,7)(8,B8), and («,8)(B,r). We easily see thai
except for the sign, the coefficient factors of these terms are the same, the top-lef
minor of order t. Hence, the sum of these terms is. found to be zero,

Case 2:  Terms proportional to (@, ) (B, (r,0), 1=i<t, 1=5i<t, hence t=1, or term
proportional to (a,i)(f,i)(r,c)(d.,d), 1=i,c,d<t, hence t=2. There are only two terms whic
are proportional to (a,1)(#,})(7r.0), and they come from D‘”DGB and Dou?DBr‘ We easily se
that, except for the sign, the coefficient factors of these terms are the same, Hence
terms proportional to («,1)(B,j)(7.8) cancel ~-each other. The same is true for term:
proportional to (a,i)(B,i)(r.c)(d,d). (Note that the top-left tXt submatrix is

symmetric.) Similarly, the terms proportional to (e,i)(7,j)(8,B), &etc. and term:

proportional to (e,i)(7,i)(d,d)(B,b), etc. disappear.
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Case 3: Only the remaining terms are those proportional to («,a)(B.,b)(r,c)(d,d),
1<a,b,c,d=t, and a, b, c, d are different from each other, hence t=4. There are three
tetms containing (a,a)(f.b)(r.c)(8,d), and the coefficient factor of each term is the
following determinant of order t-2: |

(1,1) .. (1,1¢t)

«— no (c', ), (d',+) rows
(¢, 1) .. (t,t)
T no (-,a), (+,b") columns

where {b',c",d"} = {b,c,d}. If we call the last two columns of the determinant in (2.12)
additional columns of types & and %, the above determinant is nothing but the product ‘of
two determinants of the form (2.12), where the order of the determinants is now t—-2 and the
additional Coiurnns are of types a and b' for one determinant and of types c¢' and d' for the

other., Hence, the problem reduces to the case of r=t—-4,L //

§3. Solutions of single equation

We first investigate the following single equation:
Py, + -+« + Py, =P, k3.1)
P, e Kix,,...x 1, i=l,..,s+l.
Nithout loss of generality, we may assume that
deg(D) = 0 where D = GCD(Pl,...,PS). (3.2)

‘If deg(D) # 0, D must pseudo—divide P i.e.,

a4’ /D is a polynomial in S[x] so far as

P
'3.1) has solutions, Hence, we have only to divide (3.1) by D, satisfying (3.2).)
Tfurthermore, without loss of generality, we may assume

GCD(PI,Pz) = 1. (3.3)
"he reason is as follows: If condition (3.3) is not satisfied, we may construct

P, = P, + 4Py + - - - + AP, A, e Klxox 1,

n

uch that GCD(PI,P'z) = 1 and consider the equation

M ' “ e e L v = —_
Pryg + Payy + Pgyy TPy = Pop Vi T Vo Ad,

Suppose, for simplicity, that

deg(P)) < deg(P,) + deg(Pz), i=3,....,s+1. (3.4)



Then, Lemma 1 tells that there exist polynomials A, and Bi in K[Xl,...,xn] such that

Aipl + BiP2 + RP, = 0, i=3,...,s+1,

(3.5)
R = res(Pl,Pz)_
Multiplying R to (3.1) and using (3.5), we obtain
PRy, = Agyg — -+ = Ay + A )
+ PZ(Ry2 - 83Y3 -+t = BSyS + BS+1) = 0.
Since GCD(PI,PZ) = 1, this equality is equivalent to
- Ry, + Agyg + -+ Ay, - A, = - Py, (3.6)
- Ry, + Byyy, + -+ + By, - B, = Pu, (3.7)

where u, € S[x]. Since R is a unit in S, we can solve (3.6) and (3.7) for arbitrary Vg

S Y and u, in S[{x]. Therefore, representing the general solution of (3.1) as

2
7 = u23_7(2) b us§(8) + }—,(s+1)’ (3.8)
y = (5, Vg s Vo),

uj, i=2,...,s, are arbitrary elements in S[x],

we obtain the generators }7(2), 37(5) and a particular solution §(SH) as
7 = (PR, -P /R, 0 ... 0), (3.9)
7 = (AR B/R, 0 .0, 1,0 . 0), i=3...s, (3.10)
g = (-a,, /R -B_, /R, 0 .. 0). : (3.11)

Since Ai, B, and R are represented by determinants whose elements are coefficients of Pl’

P and Pi, the above generators are of Cramer type.

99
The only remaining task is to remove the restriction (3.4), which 1is quite easy if we

use Lemma 2, That is, if

d = max{deg(P)) | i=3,...,s+1} — deg(P P,) + 1 2 1, (3.12)
we generate A, and B,, i=3,..s+l, in K[Xl,...,xn] such that

d -—

AiP1 + BiP2 + lc(Pl) RP, = 0,

deg(A,) = max{deg(P,)-1, deg(P;)-deg(P)}, (3.13)

deg(B,) < deg(Pl).
Then, (3.1) is reduced to the coupled equations

d — A

- Ic(P)) Ry, + Agyg + -+« + Ay, - A = P,u,, (3.6")

d e o e - — v
- lc(Pl) Ry, + Bgy, + + By, By P u,, (3.7



which are directly solved to give the general solution,

§4. Solutions of coupled equations

Suppose equations in (1) are linearly independent over K(X1""'Xn)' Then, without loss

of generality, we may -assume

A = : : # 0. (4.1)

With this assumption, we can rewrite (1) as

AYy = = By piYesy T 00 T BAY, T A

.o : (4.2)

ls+17

Ay = - A

r r,r+1yr+1 -tttz Arsys + A

r.s+1°’

where Aik, 1=<i<r, r+1=£k=<s+], is the following determinant:

A, = : : : : S (4.3)

P

rk r,i+1 - rr

The following theorem is essential for proving the main theorem given later.

[Theorem 1-1] Let A # 0, and for some i and j, 1<i#j<r, let Al * 0, A i # (0, and’
SCD(A,AUH) = GCD(A,ALHI) = 1. For t=i and t=j, define R, as
d
R, = Ic(a)t res(A,At,rH),
, (4.4)
d, = max{0, deg(a,)-deg(aa, , )+1 | k=r+2,..,s+1}.
For k=r+2,...,s+1, construct Atk and Btk satisfying
Apd + Bya ot RA, =0,
(4.5)
deg(B,,) < deg(a).
Then, we have
Bik/Ri = Bjk/Rj. (4.6)

Proof) We note that the R,, A, and B, satisfying (4.4) and (4.5) can be calculated by
1sing Lemma 1 or 2. Moving the i-th and j-th columns in A etc., to the rightmost, and
‘epresenting A, A 41 A AJ. r+1° Ajk as determinants of the form given in (2.12) with

idditional columns of types 1, j, r+1, k, we obtain the following relation by Lemma 3:



DO

Al + 85 B T 8508 L) = 0,
where Aijk is the following determinant:
P11 .. P1,r+1 .. Plk .. P1r
ik
Prl A Pr,r+1 . Prk -t Prr
(i) (i) «— column number
Let GCD(A,Aik,AJ.k) = D, then (4.5) implies D | B, and D I Bjk. Hence, defining
A=DA', A, =DA/, Ajk:DA;k, Bik:DBi'k’ Bjk:DB;k,

we can rewrite (4.5) and (4.7) as

AikA' + Bi'kAi’r+1 + RiAi'k = (, deg(Bi'k) < deg(a"),
¥ ' \ — 7 v

AjkA + BjkAj,r+1 + RjAjk = 0, deg(Bjk) < deg(A"),

R v . ' —

AMA g 8RB T BB = 0

Elviminating Ai'k and A;k from (4.5") and (4.5"), we obtain

v v A — A \J A\
R.ab (Ap A" + Bl A ) = RAL (A A" + BLA, ).

Eliminating A;kA from (4.7") and the above equation, we obtain

ir+1
Y ] T
AikAj,r+1(RiBjk - RjBik)
— ] ' _ 1] v
= A (RjAjkAik RiAikAjk + RiBikAijk)‘

We consider only the case of deg(A) > deg(D), because if deg(A) = deg(D) then B,

(0. Then, since GCD(A',AJ. r+1) = 1, (4.8) gives
A" A;k(RiBJYk - RjBi'k).

Similarly, we obtain
A A;k(RiBJYk - RjBi'k).

Since GCD(A',A;k,A;k) = ], these relations imply

A" | (R.B!

Bix R.B!) or

Bl - RB,).

A I(Rg%k iTik

Since deg(a) > deg(Bik), deg(Bjk), the above relation leads to (4.6)..//
Theorem 1-1 and (4.8) give the following corollary.

[Corollary] The Ajk, j#1, 1s calculated .from Aik, B Ri and Rj as

ik’

Ay = (RjAjkAik + RiBikAijk)/RiAik‘// ‘

This relation is quite useful in actual calculations because calculation of R, A

Bik is quite time consuming.

(4.7)

(4.57)
(4.5")
4.7

(4.8)

:B‘ =

ik

(4.9)

- and
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Theorem 1-1 is slightly generalized as follows:
[Theorem 1-2] Let A # 0, and for t=i and t=j, 1=i#j<r, let

GCD(A’At,rH"“’Ats) = D, A

GCD(A/D,.A, /D) = 1, (4.10)
deg(a/D)) > 0, deg(a, /D) > 0.

Furthermore, let

R, = le(a/D) % res(aA/D,.A, _, /D),

t

(4.11)

2 _
d, = max{0, deg(a,/D)-deg(aa, . /D)I+1 | k=r+2,...,s+1}.
For k=r+2,...,s+1, construct Atk and Btk satisfying
AL (/D) + Btk(At,r+1/Dt) + R (&,/D) =0,
(4.12)
deg(B,,) < deg(a/D,).
Then, we have
A | (RB, -R;B,) where A = A/GCD(A,D,D,). (4.13)

(Proof) Putting A, = A/Dt, Ktk = Atk/Dt, t=1’,j,'we can rewrite (4.12) and (4.7) as

(AikAi/g)5 + Bikgi,r+1 + Risik = 0
(ApAa/B)A + ByA, .+ RA, =0, (4.14)
&.&ijk + gik&j,rﬂ - 5jk&i,rﬂ = 0. ‘
where gijk = AijkGCD(A,DiDj)/DiDj, Note that Zijk eK[xl,,__,xn] because (4.7) implies
DiDj | A'Aijk. Since A | A, and A Aj, equations in (4.14) are of the same forms as

(4.5"), (4.5™) and (4.7")., and we obtain (4.13) by performing the same calculation as that
in the proof of Theorem 1-1.,//
[Corollary] If deg(&) = deg(Ai) = deg(Aj) in Theorem 1-2 then we have

Bik/Ri = Bjk/Rj.//

Now, we prove the main theorem.

(Theorem 2-1] Let A # (, and for i=l1,...,r let A # (0 and GCD(A,Ai,rH) = 1.
Representing the general solution of (1) as

= =(r+1) ... =(s) ={s+1)

y = u v + +uy +y , (4.15)

Uy j=r+1,...,s, are arbitrary elements in S[x],

~(r+1) ={s)

the generators y . ¥ and a particular solution y®&*!

are given as



where R, A, , and B t=1,...,r, k=r+2,...,s+1, are defined by (4.4) and (4.5).

tk’

(Proof) We first solve the last equation of (4.2) by the method described in

Representing the general solution of the equation as

Vo= 3T e u g™ g

"'(S+1)
r+1 s y ’

V' = 0, Yeige e YO

r S

we \obtain
'"y(r+1) _ _
y = (8, ., /R, “AR, 0 ... 0),

}_]'(r+2)

= (A, .,,/R. B /R, 1 0 . 0),

r,r+2 rr+2 r

.

I (A, /R, B /R, 0 . 0, 1),
§'(s+l) = (-A, ,,/R,, -B SR, 0 ... 0).

r,s+1 r’

Substituting the above solution y' into the i—th equation in (4.2), we have

Ay =+ (8 14

A)urﬂ/Rr

(A B + R A

i,r+1 7 r,r+2 T i,r+2)u

/R,

r+2

(A, B, + RAu /R

ior+1lrs

+ (A B + Roa /R

ir+1-r,s+1 r r

Consider the coefficient of u, and the last term of this equation:

k
(Ai,r+1Brk + RrAik)/Rr, r+2<k<s+1.
Using the relation (4.5), we can rewrite this expression as
(Ai,r+1RiBrk + RrRiAik)/RiRr
= — AR - Ai,r-l—l(RrBik—RiBrk)/RiRr'

Owing to Theorem 1-1, the last term of this expression vanishes and we obtain
1

vy, = + Ai,r+1ur+1/Rr

TOA LU/ Ry o+ A USSR - A LR

20
r -(r+1) __
y = (& /R o A R, AR, 0L 0),
TR 2 A A _.R.B .. /R, 1,0 . 0
y 1,r+2 17 = r,r+2 r’ r,r+2 Tr’ ’ v ’
I Ce (4.16)
=(s) _
7 = (AR, .o AR B, RL O L0, 1),
ARRE L S S A /R, -B /R, 0 . 0
LY 1,541 &y oo rs+1” S rs+1” T . ’

83



20

Therefore, y; € S[x], i=l,....,r-1, and combining the above solution and y', we obtain the
generators (4.16).//
Notes: We can calculate the solutions of (1) by successively solving each equation of (1)
and substituting the solutiqn into the yet unsolved equations, This method introduces
extremely large factors which exactly cancel each other between the numerator and
denominator. However, proof of the cancellation is quite tedious.

Theorem 2-1 is slightly generalized as follows,

[Theorem 2-2] Let A # (0 and

GCD(AA, , .nB) = D, i=l,...r,

' (4.17)
deg(D)) = 0,
GCD(A/D,A, /D) = 1, i=l,..r, (4.18)
D, | A, over S, i=l,....r. : (4.19)

Construct A, and B, k=r+2,...,s+1, according to the formulas (4.12) with (4.11). Then,
formula (4.16) with the following replacement gives the general solution of (1):

Ay/R, — Ay /R + A, (RB, -RB_)/ARR_. (4.20)

i,r+1

(Proof) Solving the last equation of (4.2) after dividing it by Dr, and substituting the
solution into the i-th equation of (4.2) and dividing it by D.. we have

Ay, = + (A, A )urﬂ/Rr

i’i ir+1°r

+ {AiAi,r+2/Ri + A

(R.B, ,,~RB_ )RR Ju_,

ir+1 e Tir 42 TiTr 42
+ .

+ {AiAis/Ri + A (RrBisﬂRiBrs)/RiRr}us

i,r+1

|

{aA, ,S+1/Ri A (RrBi ,s+1"RiBr ,s+1)/RiRr '

11

where A = A/Di and ﬂik = Aik/Di as before. We have Ai | A over S because deg(Dr) = 0, and
Theorem 1-2 with j = r implies A].l | (RrBik—RiBrk), k=r+2,....s+1. Hence, the A in the

above equation is in S[x] for arbitrary u . ug in S[{x]. (Note that, because D e S,

F1r o

we can delete the common factor Dr in the generators.) //
The conditions (4.18) may not be satisfied in many actual cases. In such a case, we
have only to construct

A — ¢ v .
Birrr T Biprr T oAb T +oAA A e KIxnox 1, (4.21)

such that GCD(A/Di,A.'

1r+1/Di) = 1, i=1,...,r, and consider the equations



R/

— A — \ 4
Ay, = Al AlsyS + A

_ [
o141 T PrraeYree

1 1.,s+1°
_ v _ ' — e e e — v
Ayr - Ar,1r+1yr+1 Ar,r+2yr+2 Ars:ys + Ar,s+1’
T = _ —
where y, = Vi Akyrﬂ’ k=r+2,...,s.

85. General case (rare case)

If the conditions in Theorem 2-1 are satisfied, the general solution of (1) is given by
the beautiful formula (4.16). If the conditions are not satisfied but the conditions in
Theorem 2-2 are satisfied, we have less beautiful but still simple formula (4.16) with the
replacements (4.20). The latter condition of (4.17) will be satisfied in most practical
cases, and the ‘condition (4.18) will also be wvalid in such cases so far as the

transformation (4.21) is applied. We must, however, consider the rare cases in which

deg(Di) # (0 for all i=l,...,r, (5.1)
where Di = GCD(A,AiHl,___,AiS), In this case, if ahy of the conditions
D, | A o,y over S, i=1,...,T, _ (5.2)

is not satisfied, the coupled equations (1) have no solution. Hence, we assume (5.1) and
(5.2) throughout this section.
Following Theorem 1-2, we introduce the following quantities:

C, = GCD(A,D,D), i=1,...,1-1,
’ (5.3)

C. = GCD(a,D) = D_.

r

fi

Note that C_ | C,. Defining Ki and }71 as

~

A, = A/Ci, i=1,...,1, _ :
(5.4)

y, = (ci/Di)yi,‘izl,...,r,

we can- rewrite (4.2) as

~ ~ ~

MYy = 7 By Yo
. ' (5.5)

Aryr =T Ar,r+1yr+1 -ttt T Arsys + Ar,s+1 !

~

where A, = Aik/Di as before. Note that ¥ = y_ because C. =D, and A, | A, i=1,...,r-1,
because Cr | C,. Furthermore, since D, | Ci, i=1,...,r, we have ?i e S[x] if y; € S[x].

Generalizing the Theorem 2-2, we have the following theorem which gives the general



DO
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solution of (5.5).

[Theorem 2-3] Let A # (0 and GCD(A,AUH) =D, # 1, i=]1,...,7. Construct A and Bik,

k=r+2,...,s+1, according to the formulas (4.12) with (4.11). Then, the general solution.y

= (?1,..,§r,yr+l,_’,,ys) of (5.5) is given by (4.16) with the following replacements:
A et Re ™ gi,r+lci/DrRr’ AR, — _&r/Rr’

Aik/Ri - AikCi/DiRi + Ai,r+1(RrBik—RiBrk)/AiRiRr'

(5.6)

(Proof) Theorem 1-2 is true even if deg(Dr) # 0. Hence, the same proof as for Theorem 2-2

applies to this case. //

Finally, we must solve coupled equations (Ci/Di)yi = ?i, i=1,...,r—1, with ?i given as

+ e+ CisuS + C Cik e S{x], k=r+1,...,s+1. That is, we must solve the

Ci,r+1ur+1 is+1?

coupled equations of the following form:

Povy F PrpetYesr 7000 T P = Py
. . (5.7
Pryr + Pr,r+1yr+1 oot vPrsys = Pr,s+1’
where P, P, ¢ K[xl,.,,,xn], and deg(Pi) #* 0, i=1,...,r. (If deg(Pi) = ( then -the i-th
equation of (5.7) is satisfied by arbitrary Vogpr - Y4 in S{x], hence we can delete it.)

Note that if (1) is already of the form (5.7) then (5.5) 1s identical to (5.7).
The coupled equations (5.7) can be solved in the following way. We assume, as before,

k=r+2,...,s+1, such that

GCD(P,.P ) =1, i=l,...,t. We construct R,, A, and B,

ir+1l ik’

R, = 1(:(I:’i)di res(P,P, ).
' (5.8)
d; = max{0, deg(P,)-deg(P,P,  )+1 | k=r+2,...s+1}, “

AP+ B P, + RP, = 0,

ik®i,r+1 it i

(5.9)
deg(B,, ) < deg(P)).

Using A, and B, ., we can transform the i-th equation of (5.7) to the following equations

ik’
Vi = Py F Ay phg¥erg T 00 0 T ALY T A R,
(5.10)
yr+1 = (= Piui + Bi,r+2yr+2 L Bisys - Bi,s+1)/Ri’
where u, is an unknown in S[x]. These equations are such that the first equation is

automatically satisfied by any u, in S[x]. Hence, equating the right hand side of the
second equation of (5.10) to that of equation for i=r, (5.7) is transformed to the

following r—1 coupled equations:



R Pu - RPu + (RIBr,r+2—RrBl,r+2)yr+2 + oo
+ (RlBrs—RrBls)ys = (RlBr.s+1—RrB1.s+l)’
4 - . . : (5.11)
Rrpr—lur—l B Rr——lprur + (Rr—lBr,r+2__RrBr—l,r+2)yr+2 T

+ (Rr—lBrs_RrBr—-l,s)ys = (R B R.B )

r—17r,s+1 “ror—1,5+17"

\

Coupled equations in (5.11) are the same form as those in (5.7) but simplified in that th

number of equations is decreased by one. Note that the degrees of the coefficien
polynomials in (5.11) are never greater than those in (5.7). Therefore, the problem i
reduced to a simpler one. Continuing the above reduction, we can solve (5.7) witl

suppressing unnecessary coefficient growth,

§6. Comparison with ‘another formula

Using the idea of Hermann([4] (see, also Seidenberg[5]), we can easily represént thi
generators of the solutions of (1) in a determinant form. Equations in (4.2) show that (1

has the following solutions

“(r+1) _
D = A e B A DL D),
. (6.1)
=(s) _ _
Vap = B o A 0 .0 0, -0).

We call these solutions apparent solutions. Let

d = max{deg(P,) | i=l...r; j=l....s}. : (6.2)

Then deg{(A) and deg(Aik) are less than or equal to rd, Following Hermann, it is easy tt

prove that every solution of (1) with deg(yi) =2 rd for some i can be represented b
apparent solutions, The remaining solutions can be represented as

rd—1 rd—2

y, = ci’rd_lx + ci’rd_zx + + ¢« 4+ cC

1

0 =Los, , (6.3)
c; €S, =0,1,...,rd-1.

Substituting (6.3) into (1) and equating coefficients of x5 terms, k=0,..., rd+d-1, to zero

we obtain r(rd+d) coupled equations for srd ’unknowns Cij, Since c; € S, the solutions o

these equations are given by Cramer's formula.

The method described above is given in refs, 4 and 5, and it is a typical method i1

algebra. The degree in x of a generator obtained by this method is less than or equal t«
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rd-1, which is the same as our formula, However, in this method, the order of numerator
and denominator determinants is rd(r+1) which is considerably greater than 2rd-1, the order
>f determinants for Aik and Bik, Furthermore, the number of generators in the above method
is as many as rd(s-r-1)+(s-r), which is very inconvenient in actual applications., On the
>ther hand, the number of generators in our method is only s—-r. Hence, our formula is much
nore beautiful and useful than the formula obtained by the above method.

Finally, we present an example for the case of r=2 and s=5,

(Xzﬂ)y1 + (x2+x+1)y2 + (2x2—><)y3 + (2x2+3)y4 + (2)(2—3x+1)y5 = 0, ‘
(6.4)
Pr2xt2)y, + GxP-x+Dy, + C43x+5)y, + @x*-x+3)y, + (3x’-1)y, = 0.
The A and B i=1,2, k=3,4,5, are calculated as
A:2X4*4X3HX2—5X—1,
A = 5xt - 9x® - ex? - 9x - 5,
A, = 4x4 - 3x3 + 7x2 - 5x,
A = 3x4 - 14x3 + 6x2 - 3x + 2,
‘ 4 2
Byg = — X + 4x° + 5x + b,
_ 3 _ 2 _
Doy = Hx 2% 7x 3,
A ':x4~x3+3x2+4x—3,
25 )
These polynomials give the resultants R1 and R2 as
R1 = res(A,AIS) = -396,
R2 = res(A,A23) = -165.
Hencé, the conditions in Theorem 2-1 are satisfied. Using determinant representations

(2.4) and (2.5), we can calculate A, and B, i=1,2, k=4,5, as

Ay, = 12(- 1135%° - 932x® - 1078x - 410),
B,, = 12(+ 454x° + 282x* + 5llx + 82),
Ay = 12(+ 470° + 604x° + 341x + 199),
B,, = 12(- 188x° - 204x” - 152x - 53),
A, = 5(+ 227x° + 595%° + B51x + 509),
B,, = 5(+ 454x® + 282x" + 5llx + 82),
Ay = 5(~ 94x° - 290x* - 327x - 166),

By, = 5(- 188x® — 204x® - 152x - 53).

25
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Formula (4.16) gives the generators of the general solution as

-(3) _ B
v = (a8, -4, 0, 0),

—(4) _ .
7 = (R AR, By /R, 1 0),

-(5) _
7 = (AR, AR, B,oRo, 0, D).

That these generators satisfy (6.4) is easily checked. Furthermore, we can eaéily chec

the validity of relations (4.68) and v(4,9).
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