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Thermodynamics of the Exponential Lattice

Morikazu Toda (7 ® 2 %mn)

5-29-8-108 Yoyogi, Shibuya-ku, Tokyo 151

In this note, thermodynamical and statistical-mechanical
tratment of the exponential lattice is presented. Especially,
it is pointed out that the partition function can be written
as a product of harmonic and unharmonic parts. Consideration is
also given to the wave propagation through the lattice at fini-

te temperatures.

§ 1. Thermodynamics

The Hamiltonian of a one-dimensional lattice with nearest

neighbor interaction is written as

M = Z/%‘j:+§;?5(rn)- (1.1)
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Tor the exponential lattice,the interaction potential is
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The pressure P is the average of the force, or
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and the internal energy E is
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and in the classical case, the law of equipartition of energy
gives
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Thus we see that the internal energy of the nonlinear lattice

is a "linear" function of the temperature T, the presure P,
and the length L of the lattice:
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Let G be the thermodynamic potential, then we have the
thermodynamic relations
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Therefore if we introduce the "partition function" £ by
G(T,.P)=—-NrT lrg £-(3. P) (1.10)
with (3:‘/k73 (1.7) yields the differential equation
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we see that ® satisfies the equation
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where ¢ remains as an arbitrary function in the frame-work of

themodynamics. We note that (1.9) gives the equation of state

N a+P kT N & ,
N - = . (1.15)
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The same problem can be treated following the standard
method of thermodynamics by introducing entropy S by the second

law of‘thermodynamics,

a‘E=TdS“FdL" (1.16)

Then, (1.7) gives
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Integrating we can write the result as

_ Ny bRT N a+P (1.20)
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where the functionf}emains arbitrary in the‘frame—work of thermo-
dynamics. However, comparing (1.15) with (1.19) we obtain the
following relation between § and y :
\ 3'z)
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§2. Partition Function
The partition function (per particle of the lattice) for a

pressure ensemble is given as ( Y=RF= P/hT’)

ﬁﬁ,x)=” i%—d—re—FHéxr (2.1)
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and #% is the effective potential, which includes the effect

of the pressure P, defined by
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where ¥ is the effective diameter defined by
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where we have introduced the function ¢ by
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— dz) = e dx . (2.8)
Z - o0

Comparing (2.2) and (2.7) with (1.12), we see that the function
¢(z) here is identical to the function we had introduced in the
first section.

Since the effect of pressure is simply expressed by the
first and the second factors of the right-~hand-side of (2.7),
and the argument z, it is sufficient to deal with the case of
P=0, to study the property of the function ¢ (z)

When P=0, we have
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and the partition function reduces to
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In the right-hand-side of (2.10), the factor /htiﬂo is the
well-known partition function of a harmonic oscillator, and

therefore the second factor § (z) represents the effect of un-



harmonicity.

8§ 3. Binet's Formula

To study the integral in (2.8), we write
o0
I={ e *PXy (3.1)
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(1) In the harmonic case ¢p)= _l!. %, we have
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(2) For the exponential interaction
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we have the harmonic term 13/2 as well as the unharmonic terms
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The functionAthus stands for the effect of the unharmonic terms.
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On the other hand, by some change of the variable, we see

that

IT=2 e’ [(® (3.5)

Thus, @(z) is related to the gamma function [ (2) , and there-

fore we have well-known expressions for it.
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One of them, given by Binet™ ', is
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By partial integration we may write
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Since 2==9/bk1‘ when P=0, the last expression looks as if the
unharmonicity would give rise to nonlinear modes, not those of

solitons but certain excitation, with the energy unitnﬁiznihxuz .

8 4. Nonlinear Waves at Finite Temperatures

Now we turn to the problem of the nonlinear wave propagation
in the lattice al finite temperatures. Many solitons are being
excited and the wave under consideration propagates through the
lattice interacting with these solitons.

F or comparison we first consider the case of the well-known

linear sound wave in a gas. Then we have the wave equation
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where ? is the density, y= CP/CV the specific heat ratio, R

the so-called gas constant, and M the molecular weight. We note

that the velocity ¢ 1is temperature dependent, reflecting the

fact that there are already thermal excitations in the medium.
In the nonlinear case, we may inte( Y, = v (P=0))
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In such a case, we have the nonlinear wave equation due to

Boussinesq and to Zabusky,
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Remembering (1.20), we get (when P=0)
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These values of (, and & , together with (4.5), furnish the
nonlinear wave equation at finite temperatures.
To chech our results, we examine the case P=0, and T —=>0 .

In this case we have 2=1%, = “/hkT and 2, >»1 , so that

‘\"2)=1’72“3"‘§"“O(?'=), (4.11a)
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¢ = - _}Lz_,_ O(‘;}) (4.11c)
Therefore in the limit of low temperatute, we have
€ = %\/—g =;\/:’_‘_”: (x=ab) (4.12a)
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which coincide with the well-known values.
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