goooboooogn
0 5560 19850 1-16

On the Nested Heap Structure in Smoothsort

B¥T BE B R
Kohei Noshita and Yoshinobu Nakatani

Department of Computer Science

Denkitusin University, Chofu, Tokyo 182

Abstract

An idea for building up the nested heap structure is presented, which
leads to an efficient variant of Smoothsort. The worst-case complexity
is substantially improved in the sense that the number of comparisons

is at most 2n 1og2n, which is as many as that of the well-known Heapsort.
This smooth algorithm is also able to '"'smoothly' sort Hertel's examplés,
for which the original Smoothsort fails to be smooth in terms of the
number of inversions. Another variant shares all the basic characteristics
with Smoothsort, i.e., it is a smooth algorithm in situ with O(n log n)
comparisons in the worst case. Furthermore, it is also smooth for
Hertel's examples. Some other variants with different cﬁaracteristics

are also suggested.

1. Introduction

Smoothsort is a comparison-based sorting algorithm by Dijkstra
([1], [2]), which has the following three basic properties:
(1) The number of comparisons in the worst case is O(n log n), where
n is the number of elements to be sorted. (The base of logarithm
is 2.)

(2) 1t is '"smooth'" in the sense that, for presorted (i.e., already

sorted) input, the number of comparisons is O(n) and the number
of swaps (i.e., interchanges of two elements) is zero.

(3) It is an "in situ" algorithm, i.e., it requires only O(1) memory
words of (Flog n! + ¢) bits for the working space, where c is a
small integer constant (>1).

We define ¢ = rlog n'+ c as the word length.

The well-known Heapsort ([3], [7]) is not smooth, but has the
other two properties above.

From the complexity viewpoint of practical sorting algorithms,
the constant factors of their complexities must be taken into
consideration. In this sense, as analysed in detail in this paper,
S@oothsdrt is not enough efficient to replace Heapsort, in spite of
its smoothness property. Therefore, it is natural to ask whether the
worst—-case complexity of Smoothsort can be improved to be competitive
with that of Heapsor;x This is our first question to be investigated
in this paper.

Hertel [4] has pointed out that Smoothsort fails to sort smoothly
for some input in terms of the number of inversions included in input.
He has shown an example of input for each n, named Hertel's input,
which forces Smoothsort to make O(n log n) swaps. Note that Mehlhorn's
algorithm [6] makes only O(n log log n) swaps for Hertel's input, although
his algorithm requires at least 2n words for the working space. Our
second question is whether we can modify Smoothsort to sort Hertel's
input smoothly.

This paper presents an idea for building up the nested heap structure
[7], and describes two variants of Smoothsort based on this idea.

They are more efficient than the original Smoothsort in various senses.

-2 _

In our variants, we will use familiar balanced binary heaps rather
than Leonardo trees [1]. The reason for this will be explained later,

The main results of this paper are now summarised.

The first variant, named N, has the following properties.

(1) The number of comparisons in the worst case is at most 2n log n,
which is as good as that of Heapsort.
(2) It smoothly sorts not only presorted input but also Hertel's input.
(3) It requires, however, either 3 log n words or 4 log log n words
for the working space, depending on whether our machine executes
a certain type of bit-searching instruction quickly. In any case,
N may still be called in situ, at least in less strict sense.

The second variant, named E, shares all the three basic properties
with Smoothsort, and it also sorts Hertel's input smoothly. The number
of comparisons in the’worst case, however, is not as good as N by some
constant factor.

Some other variants are briefly described, and their detailed
analysis is left for the future investigation.

While we analyse the total running time, rather than the number
of comparisons, of our algorithms including the original Smoothsort,
we encounter a delicate problem on the index calculation in the packed

working space, which is also discussed in this paper.

2. Smoothsort Revisited

In this section we sketch the algorithm of Smoothsort, and review
some complexity results. The reader is assumed to be familiar with
[1] and [3] as well as Heapsort [5]. For brevity, let S stand for

Smoothsort.

Our basic data structure of S is the ordered set of binary heaps,
whose general structure can be seen from an example for n=24 in Figure
1. The words 'left', 'right', 'up' and 'down' are to be understood
from this picture. Given n elements as an input in a linear array
Al1..n], S sorts them in the ascending order in the following three
steps.

Step 1: Build the set of heaps in a similar way to the heap~-creation
step of Heapsort.

Step 2: Sort the set of roots of those heaps by means of the straight-
insertion algorithm, which transfers each element from right
to left by comparing it with its two sons and the root of the
left-adjacent heap. Each straight-inserting process for one
element is always followed by the sifting-up process for finding
the proper place for the element in question.

Step 3: Repeat the maximum-selection process from right to left, by

deleting the rightmost element, and transferring, if any, its

two sons one by one toward the left by straight-inserting, followed

by sifting-up as in step 2. This step corresponds to the

maximum~-selection step of Heapsort.

The key for implementing S is how to represent the set of indices
of roots. Define m =|_ log(n+l)j. A pair of arrays X and H of m (more
precisely, m+l1) words for each suffices for this purpose, where X and
H contain the indices of roots and the height of corresponding heaps,
respectively. The height of a heap is understood to be counted from
1; thus the height of a leaf is 1. (In practice, for the values in

H, 2 to the power of height is preferred.)

-4 _

As an alternative method for implementing S, in situ, we introduce
an array B[l..m] of bits, in place of both X and H. We can assume
that B can be packed into a single word of ®w bits in the usual sense
of the uniform cost criterion on random-access machines. The most
basic property of B is that

B[s] = 1 iff there is a non-rightmost heap of size 25-1.

We also introduce a simple variable t (1<t<{m) as an index of B
for indicating the height of the rightmost heap. Given an index of
the root of a heap and its height, we can easily find its two sons
and the root of the left-adjacent heap in 0(1) time. Furthermore,
we can also calculate the height of any of two adjacent heaps by way
of B. (The timing analysis of this calculation will be discussed in
detail later. Note that, if X and H are used, this calculation can
be trivially done in 0(1l) time.)

Now we evaluate the efficiency of S by counting the number of
comparisons in the asymptotic sense. This number will be denoted by
C. (The number of swaps are easily estimated.) We derive an upper
bound of C in the worst case. Let Cj stand for the part of C in Step
i (1£i<3).

C, = 4n.

This is obvious from the analysis of Heapsort [5].

= 3(log n)2/2 + (2 log n)(log n) = 3.5(log n)z.

(@]
I

The first term is due to the straight-inserting process of length log n.
Note that three comparisons are made for determining if an element

is to be transferred to the left. The second term comes from the final
sifting-up process.

C3 = 3n(log n)/2 + 2n log n = 3.5n log n.

- Deriving C, needs some analysis, since the number of heaps varies from

3
1 to log n. We can prove the following. (The proof is left to the
reader.)

Proposition The total number of heaps summed up throughout the execution

in Step 3 is about n(log n)/2.

Hence we have the first term. Note that the coefficient 3 has been
mentioned in CZ. The second term is due to the sifting-up process
of at most n elements.

Hence we have the desired upper bound C in the worst case:

C = 3.5n log n.

For presorted input and Hertel's input, the number of comparisons

is easily shown to be O0(n) and O(n log n) [4], respectively.

The reader who only wants to see the outline of our variants may
skip all parts of the timing analysis of the index calculation. Now
we begin the first part of this analysis, that lasts until the end
of this section.

We introduce the following machine instruction. Let

bitsearch(v,h,k)

be an instruction operating on the value of v of w bits, which searches
v for k-th 1 toward higher bits (left) by starting at h-th bit (h>1),
and returns the obtained position as a result. We assume ﬁhat it searches
toward the right if k < 0. For example,

bitsearch((1010011010),3,3)
yields 8. (A bit number is to be counted from 1 toward the left.)

For the timing analysis, we assume either of the following two

types of machine.
Type 1I: 1In the same way as other instructions for basic arithmetic
operations on w bits, this type of machine executes bitsearch
in 0(1) time.
Type 11: The instruction bitsearch takes d units of time, where d
is the number of bits between the start bit h and the destination
bit. (This instruction is probably implemented as a subroutine.)

Now we verify that in S the total running time is proportional
to the number of comparisons on Type II machines. Note that this trivially
holds on Type I machines.

For executing the straight-inserting process, we must search B
repeatedly toward the left to obtain the height of left-adjacent roots.
In this case, the running time can be bounded by 0(log n) in total,
because each bit in B is scanned at most onde only from right to left.
Hence the whole cost of the index calculation is O(n log n) in the
worst case, since there is no other process which needs bit-searching
in B.

The same analysis is applied to Hertel's input, because they force
S to make O(n log n) comparisons during the straight-inserting process.

The case of presorted input is obvious, since we need not know

the height of the left-adjacent heap.

3. Improving the Worst-Case Complexity

We present a variant N of S, which has the three properties listed
in §1. .The basic idea of N is to make the heap structure be nested,
i.e., we build up another set of heaps from the set of roots of the

original heaps. The main point of this idea is that we can replace

the straight-inserting process in the first heaps in Step 3 of S by
a less costly process in the second heaps. The implementation of this
idea and its analysis are not so straightforward as they look, which
are the subjects below.

For convenience, let S1 stand for the set of heaps represented

in A (the first heaps), and R1 for the set of roots of heaps in Sl'

We represent R, in another array A, in the same heap structure as Sl’

1 2

denoted by S The set of roots of heaps in 82 will be denoted by

2°
R2.

in a pair of arrays X, and H, of 0(log n) words,

We represent R 1 1

1

as explained in §2. An array A2 of log n words suffices to build up

SZ’ where Azfi] contains an index j of X, (j-th root), rather thaﬁ

1

its index of A1 itself. An array AH2 of log n words is also used,

where AH2[i] is the height of i-th hode in S Note that the values

5
of AHZEi] for all i can be fixed prior to the execution. Another array

D2 of log n words is introduced to represent the inverse permutation

of Ay, i.e., Az[i] = j iff Dz[j] = 1i. This is used to locate where

an element in R, has been moved in S_,. As usual, R, is represented

1 2 2

in a pair of arrays X2 and H2 of log log n words, since the size of

R2 is about log log n. Note that H2 is redundant and need not be used,

because of AHZ'

For the discussion of the working space, it is important to note

29 AHZ and D2 can be directly packed into 0(log log n) words,

" since the value of each index contained in those arrays ranges from

that A

1 to log n, which is coded into at most log log n bits. By way of
those arrays, for example, when a root in R2 with index X, of X2 is

given, we can calculate the index (of A) of the left-adjacent root

in R2 in 0(1) time.

We are ready to describe the algorithm. The first two steps are
exactly the same as S. (The second step may be replaced by a simpler
one.) At the beginning of Step 3, D2, A2 and X2 (and HZ) are appropriately
initialised. The maximum-selection is repeated in the following way.
Step 3: Let z be the rightmost element in A2, which is the maximum

of all. The index of z in A can be obtained through D In

2"
A, z is at the root of some heap w, in Sl' The rightmost element

v in A is at some node x, in some heap w

? in 82 (in Az). Let

2

P, and 9 be, if any, two elements at the left and right sons
of v in A, and let Py and q2 be, if any, two elements at the

left and right sons of z in A respectively. (See Figure 2.)

2!

Step 3a [in case there exist two sons Py and 9 in A]
If z happens to be the rightmost element in A, let u be p;-
Otherwise, move simultaneously P, and v to the nodes z and
Py respectively (val), and sift up W, with Py- Let u be

the new element at the root of Wl' - (Note that so far no values

in A2 and D2 have been changed.)

Assign u to the rightmost node z in AZ’ and transfer it toward

the left by straight-inserting and sifting-up in S Finally,

2°
2

it toward the left.

increase S, by appending a, to the right end of AZ’ and transfer

Step 3b [in case there exist no sons in A]
If there exist P, and 9, in A2, transfer P, and q, toward

the left. (S, has been increased by éppending q2.)

2

If z is not the rightmost element in A, move v to the node

z, and sift up w, in A. Let u' be the new element at the

10

root of W, Assign u' to the node x, in A2, and transfer

u' toward the root of w and then, if necessary, toward the

2’

right along R (AH, is useful for calculating indices.)

2° 2

This is the description of N. Note that exchanging z and v in A at
the beginning of Step 3a leads to a less efficient implementation.
Now the basic properties are verified.

The total number of comparisons is at most 2n log n, since the

sifting-up process in S, in Step 3 is invoked only once and the rest

1

can be done in O(log log n) comparisons. The property for presorted
input is obvious. For Hertel's input, we have eliminated the costly

straight-inserting process along R This implies the desired

1°
0(n log log n) comparisons.

Obviously, the working space consists of 2 log n words for X1

and Hl’ plus- 4 log log n words for A2, AHZ’ D2 and X2. As before,

X, and H, can be replaced by a single word B Hence, we need only

1 1 1°
4 log log n words .for the working space.

Now we get into the discussion on the index calculation in this
packed working space. The index calculation here.is this: for a given
index X, of AZ’ calculate the corresponding index 3 of A. The calculation
proceeds as follows:

y = A2[x]; {y-th root in Sl}

j o:= bitsearch(Bl,m+1,—y);

X, :=A(Bf%2j_l)*2j—1—j {masking off the lower (j-1) bits minus j}
end

We can assume that all the operations in this calculation can

be done in O(1l) time, except bitsearch. Therefore, on Type I machines,

- 10 -

we need not impose any extra cost on the total running time within
constant factors. But on Type II machines, the upper bound of, for
example, the worst-case running time is at best expressed to be
0(n log n log log n), since, during the straight-inserting, transferring
and sifting-up processes in 82, we must count (log n) time per comparison.
(Note that in the packed working space, yet another array AH1
of log log n words may facilitate the index calculation during
straight-inserting in RZ’ where AHlfi] represents the height of the

.)

root in R, which corresponds to i-th root in R

1 2

4. The Second Variant and Its Extension

We present another method, named E, for implementiné our basic
idea. Here the second set of heaps is directly embedded in A, rather
than separately represented in A2 of N.

The properties of E are summarised:

(1) o(n lﬁg n) comparisons in the worst case,
(2) Smooth for Hertel's input as well as presorted input,
(3) In situ in the strict sense, i.e., 0(1) words for the working space.

For implementing E, two familiar arrays B1 for S1 and B2 for 82
suffice for the index calculation. The nested heap structure of E
is éasily understood by studying an example in Figure 3. As seen in
Figure 3, if t is the height of a heap w in Sz,bthere are 251 heaps
of S1 included in w.

For brevity, we give three essential points for implementing and
analysing Step 3 of E, as the first two steps are the same as before.
(1) ordering relation

As R is‘directly represented in A, the value of any element v

2

- 11 -

11

12

in R2, is always maintained to be larger than (or equal to) its two
sons in R1 as well as its two sons in R2 and its left-adjacent root

in RZ' Thus, in the straight-inserting process, 5 comparisons are necessary
for determining whether thg element in question is to be tranferred
to the left-adjacent root.
(2) maximum-selection
On deleting the maximum, four elements Py> 4y (in R2) and Py>

9 (in Rl) may emerge for readjusting R See Figure 4. As in Step

9
3a of N, Py and q, are taken up for transferring toward the left.

This transfer of Py and 9 is followed by sifting-up in S, and, possibly,

2
by another sifting-up in Sl' Note that this final sifting-up process
may cost 4 log n comparisons, and it has never occurred in the previous
variant N.

In the other case Ehat no p, and q, emerge, which happens n/2
times, P, and q, are taken up for readjusting RZ’ and transferred in
a similar way as above.

The total number of comparisons in the worst case is obviously
O(n log n). Note that Py taken up in the first case may emerge later
as either pz(leaf) or qg-. (It is difficult to analyse how frequently
Py and q, actually emerge, although it is predetermined only by n.
We have exhaustively calculated it by computer up to n=5 105. This
seems to be strongly suggesting 2.8n log n comparisons in the worst
case, but so far we have not been able to prove it in general. In
the computing experiments, E has made about 15% less comparisons than
S for random input of n = 16000.)
(3) index calculation

During straight-inserting and sifting-up for transferring an element

- 12 -

in RZ’ at most 5 log . log n nodes in S1 are taken up. However, for

finding the index of left-adjacent roots in R B must be scanned toward

29
the left, which costs log n time in total on Type II machines. 1In
the worst case, the running time of this index calculation may be
comparable with that of the sifting-up process in Sl' Hence, the
worst-case complexity is O(n log n) time in total. For Hertel's input,
however, the running time is (n log n), while the number of comparisons
is O(n log log n). For presorted input, the order of the ruhning time
may be n log n, because we need bit-searching in B for the index
calculation, for example, for obtaining the index Py

In summary, E has all the desired properties in terms of the number
of comparisons, but, on Type II machines, presorted input as well as
Hertel's input requires some extra running time. |

As we have seen two methods based on the nested heap structure,
it is now easy to generalise our idea to the multiple nested heap
structure.
Namely, N and E are naturally generalised to Nk and Ek with k nested
heaps, where k is a constant. The number of roots of the top heaps
is 0(n 16§157T3g n). This may be only of‘theoretical interest, but
useful to preserve the smoothness property for naturally generalised
Hertel's input, which force to create the worst-case behaviour in
straight—inserting in the top heaps. Furthermore, we can make the
depth of nesting to dynamically change with the maximum depth of O(log*n),
leading to another variant N* or E*. (Taking log*n logarithms of n
yields 1 or less.) In this case, the worst-case complexity must be

multiplied by lognn.

- 13 -

14

5. Concluding Remarks

In this paper we have presented several variants of Smoothsort
and analysed their complexity. Some computing experiments for random
input up to n = 16000 have supported our ideas for speeding up Smoothsort.
In these experiments our first variant N has shown the best performance
in terms of the number of comparisons among all the smooth algorithms
in this paper including yet another variant without nested heaps mentioned
below. In case n=16000, N has made only about 10% more comparisons
than Heapsort.
In [1], Dijkstra prefers Leonardo trees to binary heaps, because
the number of roots of Leonardo trees are about 20% less than the size
of Rl' But, as discussed in our variants, this size is by no means
significant — the leading term of the worst-case complexity depends
iny on the sifting-up process on a heap. Furthermore, as shown in
§3, the binary heap structure enables us to calculate indices efficiently.
The original Smoothsort is an elegant algorithm with the three
basic properties, but it needs further investigation from the complexity
viewpoint, as we have seen an approach based on nested heaps for improving
its efficiency. Without nested heaps, the reader may have come up
with another simple variant which seems very efficient in the worst
case, provided that n is small, say n£220$106. Let n be fixed to be
220. The original Smoothsort makes about 3(log n)/2 + 2 log n = 70
comparisons per one element in Step 3 as seen in 2. If R1 is represented
in a separate array in a similar way to N and a modified straight-insertion
algorithm is employed, we can prdve that this requires only

(3/8)log n + 2 log n = 48 comparisons. This simple variant in situ

in less strict sense, however, has not been able to beat our best N

- 14 -

19

for random input of n=16000 in our experiments.

References

[1] Dijkstra, E. W., Smoothsort, an Alternative for Sorting In Situ,
Science of Computer Programming, 1 (1982), 223-233; 2 (1982), 85.

[2] Dijkstra, E. W. and A. J. M. van Gasteren, An Introduction to Three
Algorithms for Sorting In Situ, Info. Proc. Lett., 15, 3 (1982),
129-134.

[3] Floyd, R. W., Algorithm 242 Treesort 3, Comm. ACM; 7, 12 (1964),
701.

[4] Hertel, S., Smoothsort's Behavior on Presorted Sequences, Info.
Proc. Lett., 16, 4 (1983), 165-170.

[5] Knuth, D. E., The Art of Computer Programming, Vol. 3 (Sorting
and Searching), Addison-Wesley (1973).

[6] Mehlhorn, K., Sorting Presorted Files, 4th GI Conference, Lecture
Notes in Computer Science, 67 (1979), 199-212,

v[7] Williams, J. W. J., Algorithms 232 Heapsort, Comm. ACM, 7, 6 (1964),

347-348.

- 15 =

16

lL23b4s567 15 22 24

Figure 1. The heep structure in Smoothsort (n=2k)

ﬂﬂ/r

Z-+ U
N 1 9

"

Figure 2. Two sets of heaps in N

A0 44 75 77

1k 9 13 4 111 317107 22 15 6 20

Figure 3. An example of two sets of heaps in E (n=28)

———===0

Figure 4. The ordering relation of four sons in E

- 16 -

