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STRUCTURAL ANALYSIS OF AUTOMATA NETWORK
-=STRUCTURALLY REDUCED NETWORK=--
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#1. Introduction

The automata network was defined to be an edge labeled directed
graph with element finite automata allocated at inner vertices(1),(2),(3).
As was discussed in the concluding remarks of our previous paper(3),
we consider hefe an automata network as a graph with vertex labeling
fundtion @:V—>H, where H is the set of colors. Note that the function
p specifies a "color" from H to each inner vertex, but does not an
element automaton itself. (When we investigate the situation where
it is essential what actual element automaton is to be placed at
each vertex, we should introduce another one to one function y :H—>M
where M is the set of all finite automata.) The countable set of
colors H is taken to be fixed during our whole study.

Thus an automata network, which is under investigation here, will
be called a colored network and expressed in ‘the form (G,p) where
G=(V',E), V'=VUVI where VI is the set of input vertices and E=
(E

lJEZ""’Ek) where E. CVxV' specifies edges which are labeled with 1.

Definition 1. Inverted graph

Let A=(G, g ) be a colored network. The inverted graph G of G
is defined to be an edge labeled directed graph (V',E) where E=
(-E'.l,fz....,-fk), Ei_C V'xV and (u,v)éf}. if and only if (v,u)e—Ei.

From the definition of E. (see (1)), it will be seen that in G

at most one edge having the label i goes out from each inner vertex.
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Definition 2 Conjugate machine

Let V' be finite and A=(G,B8). Then A can be considered to
be an incompletely specified sequential Moore machine where the
state set is V', the input alphabet is K={1,2,...,k }7the state
transition is determined by E and the output function is (3 .
If (u,v)e_E'i (that is (v,u)eEi) then the machine goes from the
state v to the state u by means of input i. Since @ has been defined
only for vertices in V, we extend here g so that for ueV; @(u)
may be a certain "color" which is different from any other color
allocated to the other vertex than u. We call such a sequential

Moore machine the conjugate machine of A.

#2. Relationships between S? and equivalence relation in the standard
sequential Moore machine

In the text books of automata theory (for example, Salomaa 1969),
the noninitial sequential Moore machine is defined as a 5-tup1‘e
(Q,X,Y,f,g) where Q is the state set, X and Y are input and output
alphabet respectively, f: QxX-Q is the state transition function
and g: Q-Y is the output function.

A pair of states p,q¢€Q is defined to be equivalent ( and denoted
by p=q) if and only if g(p)=g(q) and for every weX* g(f(p,w))=
g(f(q,w)) where g(f(p,A))=A ( A is the null word).

The relation = 1is clearly an equivalence relation.
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The notion of equiyalence = can naturally be extended to an
incompletely specified sequential Moore machine. That is, for an
element ae X if f(p.a) is not defined, f(q,a) should be also

undefined in order to be the case where pzq.

We describe here the definition of the structural equivalence
relation in the colored network. Let A=(G, g ) be a colored network
with G=(V',E). An equivalence relation R on VxV is called a structural
equivalence relation of A if and only if the following condition holds:
if (u,v)€R then '(‘3(,u)=.(3(_v)_ and (E(u),E(v)) &R, where E(u) and so

on is the abbreyiation of El(”)’EZ(U)""’Ek(u) and so on.

Proposition 1

Let A=(G, @ ) be a finite automata network and 5(@ ) be the
equivalence relation in the conjugate machine A of A. Then 2(@’)655A.
Proof

If p=(@)a, then g@(p)= G(q) and E(p)=(@ )E(q). The latter
holds from the fact that in terms of sequential Moore machine, if
p=q then for every we X* f(p,w)=f(q.w). So from the definition of
SER, =(@) is a SER.

Corollary 1

If A is structurally reduced, then its conjugate machine is

reduced in the sense of the ordinary automata theory.

Proposition 2

For every R in $, , if (p.q) &R then ps(@)q. That is, any

relation in ﬁﬁ is a refinement of =(B).
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Proof
If (p,q) €R then @(p)= G(_q) and (E(p),E(q))€R. So e(’E(,p)); |

Q(E(q)). By induction for every nonnull string w from E*, @(_pw)=

@(qw). This means ps(@ )q. Here pw denotes,as in the paper (1),

(...(Ei](p))...) where w=E1. Ei .WEs

E. (E, i
1 2 h

Th That

A colored network (G,B) is said to be structurally reduced
(s-reduced) if and only if S@={ Ro’ﬁ . (In the case of element uniform
network, A is s-reduced if 5A={RO,RU§ .)

" A reduced Moore machine has no pair of equivalent states.
Corollary 2
If the conjugate machine of A is reduced, then A is s-reduced.

Proposition 3

There is a case where $(3 contains other relations than 5(€)'

Proof

Look at the following example.

V= { v1.,v2,v3,v4'} E; | E

Vol V3| Vs
V3 | V2 | V3
Va | V1| Vs

B (v)= ?(v3)=a G(v2)= (?(v4)=b
In this example _=,(€)=([v1,v3],[v»2,v4]), but Spalso contains

(Lvqsv3lavysvy).



Let us investigate here the important role of SiT’ or the
set of SER's with uniform elements allocated to a fixed graph G.
When we write A=(G, 3 ), we assume that E& is nonuniform or limage(ﬁ )]22.
Definition 3
Take an arbitrary R from Sﬁ" A coloring function @ is
said to be consistent with R if and only if (p,q)€ R implies
e(p)= ?(q). @ is called a maximum coloring function consistent
with R if and only if (p,q)&R implies ?( p)= f(q) and
(pya) %R implies F(p)#(i(q)-

Proposition 4

Let R be an arbitrary relation from $q_. If eis consistent
with R then R &€ 5@
Proposition 5

For every B .‘56 S__ Sq_.

Proposition 6

Let R be an arbitrary relation from Sq_(R#RU). Then there
exists a Moore machine whose state transition diagram is G and such
that R = 5(@) Where (3 is the output function.

Proof.

As such a @ ,» take the maximum coloring function: consistent
with R.

Note: A Moore machine treated in Porposition 6 is called a Moore
machine on G. By defining the output function in many ways, we have

as many distinct Moore machine on G.
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Proposition 7

Let G be a graph whose conjugate machine is reduced (the

output function is defined in some way). Then fi% is not necessarily

{RoRy} -

Since if .$¢={R0’RU]‘ , then %3 = IR,Y for every B it is
meaningful to investigate the properties of ji%.
#3 Structurally reduced colored networks

In the previous section we investigated the structure of
Egéof finite colored networks in contrast to the finite sequential
Moore machine. Here we are going to treat some properties of

structurally reduced (not necessarily finite) networks, in particular

element uniform networks.

Property 1
If an element uniform network G=(V,E) is s-reduced, then

any augmented network G'=(V,E') is also s-reduced, WherevE{Z)E-

Note that the converse of this property does not holds.

Property 2
For every G=(V,E) there exists E' such that E'DE and

G'=(V,E') becomes s-reduced.
Property 3

When the number of vertices is prime, if there is a
Hamiltonian circuit having the label i (i=1,2,...,0r k) in

the inverted graph of G, G is s-reduced.
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Property 4

When k=1, only the rings with prime length can be s-reduced.
Property 5 (a corollary of Theorems 4.1 and 4.5 of (2))

Suppose that G is a group graph. Then G is s-reduced if
and only if G has no nontrivial subgroup. Since every (countably)
infinite group has at least one nontrivial subgroup, every infinite
group graph is not s-reduced.

Property 6
A colored network A=(G,(3 ) is s-reduced if and only if there

exists a mapping ¥ : H>M such that Eaﬁa= {RO’RU§ .
Property 7
An s-reduced graph is necessarily strongly connected in the

sense of automata theory.

#4 Concluding remarks

1) As was discussed in Section 2, in the finite case our
definition of structural equivalence relation was proved to be
very similar to the notion of state equivalence in the Moore machine.
What happens if we extend such a finite automata theoretic notion to
the infinite system ?

2) Beside the theoretical work we developed a computer program
for generating i%’and are continuing computer experiments using it.
In particular we want to get a conclusion about how "often" the
s-reduced networks are generated. Though we have not made enough
experiments, it seems that the ratio of the number of s-reduced
networks to that of strongly connected graphs becomes near 1 when

the number of vertices becomes large.
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3) Though we have established an algorithm for generating :5?
(3), which is not the same as that used at the computer experiment,
we have not evaluated the efficiency of the algorithm. It is also
a problem to be soved to obtain an efficient algorithm for

determining whether a given colored network is s-reduced or not.
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