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COMPLEXITY OF PATH COVERING PROBLEMS IN

ACYCLIC ALTERNATE GRAPHS

Kenji UEMURA (1E# ®mi4) Tsuru Univ.

Takeo YAKU (4 M%) Tokai Univ.

1. Introduction.

There have been many studies about covering of graphs
by Yaku-Iwata(197?5),Boesch-Gimpel (1977),lwata(1978)C1]
and Yaku(1979)C21. In C2] an algorithm\of finding a branch
minimal spanning out forest is given. In this paper we
relate the approximate time complexiy of this algorithm
within the case of acyclic alternate graphs of finding a

maximal path cover.



Definition. Let G=(V,E) be a digraph. Edges (u,v)

‘and (w,x) in E are alternately adjacent, denoted by

(u,vi~(uw,x), if they are distinct and u=w or v=x.

s

V (=x)

, w (=w)
v .o

The symbol & denotes the reflexive and transitive

closure of ~ . Edges e and e’ are alternately equivalent

ife=e’. A graph G=(V,E) is alternate if e.r e’ for any

edges e and e’.,

We assume that our a]ternaté graph satisfies next two
conditions.
(1) The indegree of any node is no more than 3 and the
outdegree of any node is no more than 2.
(2) Graphs are acyclic even if we neg]ect the direction

of arrow and the outdegree of each terminal node is one.

We also assume that there is one special node of

outdegree #¥0 called a root and the graph is called a rooted

alternate graph.



X We will evaluate the approximate time complexity,
assuming each non-isomorphic rooted alternate graph to

appear under the same probability.

2., Maximal path cover.

Let G'=(V' ’E, )’ GZ.=(V7-’E2- ),...,Gm=(V“,E‘n) be
subgraphs of a digraph G=(V,E). If VYV, Y ...v=V and
v;,‘vﬁ?S(ifj), then P=(G, ,6,,...,6 ) is a partition of G.
Each subgraph is called a component (block). The partition

P is a path cover if each G‘L(i ¢ n) satisfies either

(i) G, is connected and there is a vertex disjoint path

€ € 000e, (l}i) in G, such that Ce' €, seeee I=E_ ,or
2 Z
(ii) G is a point, that is , G;=({uv), {) (veW).

For a path cover P=(G|'Gz""’G7L} of a graph G=(V,E),

G(P) denotes the graph

v
G(P)=(6,YG6," ... G_2.
n

The path cover P is maximal if, for any path cover Q,

#(E-E(P)) L #E-E(@)),that is ,#E(P) 2 #E(Q).
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3. Algorithms of finding a maximal path cover.

PROCEDURE ALTSEARCH(v,G,F)

Ve
G<
/%

/%

input

output

)

an alternate dag; vertices in G are */
marked °“UNCOVERED', "COVERED", x/
"UNVISITED" and/or "VISITED®. %/

/¥ v (input) a vertex in G} searching start from v. %/

/% F (output) the edges of a dag: a maximal path cover¥*/

/%

begin

for G. %/

mark v "VISITED";

while vertex u remaining in OUTLIST (uv)

marked 'UNCOVERED' do

begin

add(v,u) to F § mark u “COVERED";

while vertex x remaining in INLIST(uw)

end

end

marked "UNVISITED® do

ALTSEARCH(x,G,F)

S
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PROCEDURE ALTMATCH(G,F)

/¥ G (input) an alternate dag with outdegree */
/% atmost two. */
/¥ F (output) the edges of a maximal path cover %/
/% for G. ' */
begin

choose an arbitray vertex v in G;

Fi=gs

mark all vertices v with outdegree(v)21 “"UNVISITED";
find a vertex v with outdegree(v)=1 on a semipath

from v
ALTSEARCH(v,G,F)

end

4. Mean depth of alternate graphs.

Definition. The mean depth of any rooted alternate

graph G is defined by



E  pla)xq(a) where p(a)=1/2K sand k 1s the number

atterminal
of branches in the semipath from root
node of G
to a, q(a) is the length of this

semipath.

The mean depth of n-node alternate graphs is defined
by UAL(n)/ALT(n), where ALT(n) is number of all n-node
rooted alternate graphs satisfying conditions (1)and (2),
and WAL(n) is the total sum of mean depths 6? these

n—node alternate graphs.

Proposition. Let TR(n) be the number of n—node

alternate graphs whose roots are terminal nodes and
WTR(n) be the total sum of mean depths of these n-node

alternate graphs. Then next equations hold.

w-2 .
(3) TR(2n)= > [TR(2n=2-i)%TR(i)I+TR(n=1)%(TR(n-1)+13/2
A=D
(h2 2)
n=1\
TR(2n+1)=2 TR(2n-1-1)*TR(i) (nz1)
PERv)

TR(0)=TR(1)=1,TR(2)=0

B>

o



>,
<)

(4)

3)

(6)

"o
ALT(2n)= D TR(2n+1-i)%TR(i)

A f
"~ .
ALT(2n+1)= z:CTR(2n+2—i)*TR(i)]+TR(n+1)*{TR(n+1)+1}/2
12

+TR(n+1)%{TR(n+1)+13/2

1m-3
WTR(2n)=WTR(2n-2)+{ D WTR(2n-2-1i)%TR(i)+WTR(n-1)2/2

A1

+2%TR(2n) (n2 1)

Im-2
UTR(2n+1)=UTR(2n—1)+ZEUTR(2n—1—i)*TR(i)/2+2*TR(2n+1)

PES

(ny 1)

WTR(0)=WTR(1)=0

an-|
WAL(2n)=WTR(2n)+{(3 WTR(2n+1-i)%xTR(i)1I/2

A=2

27
WAL (2n+1)=WTR(2n+1)+{Z WTR(2n+2-i )% TR(i )+WTR(n+1)2/2
(:2

outline of proof.

equation (3). An n—-node rooted alternate graph whose

root is a terminal node can be uniquely represented belouw.



(Ai is an i-node alternate graph). A

equation (4). An n—-node rooted alternate graph can be

uniquely represented below.

Voot

-~

root .-~ j’~’ N
. : e J; '\' \
4 ! ‘
. ;- A !
: "N ,
i / N ’
:1 / D4
(A
- ) . g
AA Avwl‘x

equation (5). Through unique representations of all
n-node rooted alternate graphs whose roots are terminal,
each i—-node graph appears TR(n-2-i)times except i=n/é-1.
And their sum of mean depth is WTR(i)*¥TR(n-2-i) or

WTR(n=-2-1)%TR(i).

If i=n/2-1, it appears TR(n/2-1)+1 times and the sum is

WTR(n/2-1)%{TR(n/2-1)+1)
And if i#n-2,there is one more branch for this i-node
graph from the root in the associated n-node graph. So

their value (except i=n-2) must be divided by two.
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Till now each first two edges from the root in any n—node

are not counted and their sum is 2TR(n).

equation (6). Almost the same as the case equation (5).

S. Numerical evalutaion.

According to numerical examples below, WAL(n)/ALT(n)

seems to increase less than O0(log n).

ny ALT(n)3 WAL (n)3 WAL(n)/ALT(R)
{WAL(n)/ALT(n)3X/1log n
20 1746 10307.3 5.90337 1.97059
40 3.77919E+07 2.68012E+08 7.09179 1.92248
60 1.12707E+12 8.56329E+12 7.59785  1.83569
80 3.89366E+16 3.06692E+17 7.8767 1.7975

100 1.46386E+21 1.17888E+22 8.05325 1.74874



These evaluation gives the conjecture that the
apprfoximate time complexity of algorithm ALTMATCH on
alternate graph of node n satisfying conditions (1)and (2)

is bounded by

ntlog n
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