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Dynamical System Arising in Nonstationary Motion of

a Free Boundary of a Perfect Fluid

by Hisashi OKAMOTO ~ HAE A Ak 1@
Mayumi SHOJI HEREWwAR  RKK H
ABSTRACT

We consider a free boundary problem for nonstationary motion
of a perfect fluid. We propose a simple model which describes
an irrotational flow around a celestial body. Our main concern
is to see the PDEs which describe the nonstationary motion of
the free boundary from a viewpoint of the dynamical sYstem.
Therefore we study the asymptotic behavior of free boundary
for a given initial data rather than existence of theisolution
itself or the regularity. Of course it is very hard to
acomplish it rigorously. So numerical simulation is a
powerful tool to see the system as a dynamical system. We
derive an evolution equation which is eéuivalent to the free
boundary problem. This rewriting enables us to give a simple
numerical algorithm which simulate the evolution of the free

boundary.

Introduction.

We consider a free boundary problem which is a model for a flow
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around a celestial body. We consider a flow in a plane which
contains the equator of the celestial body. In this plane we
consider a irrotational flow of perfect fluid around the equator.
For a fixed time t we denote the equator and the free boundary by
I' and vy(t) , respectively ( see Fig. I ). Then the doubly
connected domain enclosed by I’ and y(t) 1is the flow region,
which is denoted by Q(t). Our problem is now formulated as

follows:

Fig. I

Find a time dependent closed Jordan curve vy(t) and functions V =

v(t,r,0), P P(t,r,0) satisfying the conditions (1.1-8) below.

1]

(1.1) AV =0 (0 <t, (r,0) Qt) ),
(1.2) V=20 on I,
(1.3) =5 V(t,y(£,0),0) = y(t, 00T (t,0) (0 <t, 0<06 <21,
1 3%V 5( 112 g
(1. 135, ar[ w2 vp - 2 } -0 (0 <t, (r,8) Q(t) )
3%V 1 3 1.2 g
(1.5) 3tar ;ﬁ[ §|vv| + P -2 } =0 (0 <t, (r,0) Q(t) » )

[N}
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(1.6) P = O'KY(t) on y(t),

(1.7) v(0,t,0) = Vo(rre)l Y(OIG) = yO(G):

(1-8) IQ(t)l = U)0~

where

V : stream function P: pressure

Ky(t): curvature of «y(t), o: surface tension coefficient
|a(t)|: area of Q(t).

We transform this system of PDEs to an abstract evolution
equation, which enables us to discretize our problem in a simple
difference scheme. The resulting equation is of the following form:

o u _ _9 au
2 = 39 MU 5g) (o<t

(1.9)

u(0) = u,, g—‘é(O) = u

N . u .
Here A is a nonlinear operator of u and %E' and is a second

order "pseudo differential'" operator to be defined in the following.
The unknown u 1is a function of (t,6), where 0 < t, 0 < 6 < 27,
with a period 27 with respect to 6. The evolution equation (1.9)
is derived in §2 where precise definition of A will be given. We
close this section by some explanations and comments on (1.1-8).
That V is a stream function implies that the velocity vector

of the flow is given by ( - %%, %% ). Therefore (1.1) implies that

Cnd
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the fluid is incompressible. The equation (1.3) means that the
fluid particles on the free boundary move on the free boundary
throughout the motion. The equations (1.4,5) ére the Euler equation
written by V. The outside of the curve Y(t) is assumed to be a
'vacuum. Hence the equation (1.6) implies that the pressure
différence across the free boundary is proportional to the curvature
of the free boundary. The equation (1.6) is called the Laplace

equation ( see, e.g., Landau and Lifschitz [2] ).
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§2. Transformation to an evolution equation.

In this section we define the operator A and derive (1.9)
from (1.1-8). We first fix functions y(t,0) and %%(t,e), and we

consider closed Jordan curves with parameter t defined as follows:

y(t) = { (r,8) ; r = y(t,8) , 0 <6 < 27 }.

Here and in what follows we use the polar coordinates (r,0).
We restrict ourselves to solutions which are close to a special
solution which we call a trivial solution. It is defined to be a

stationary solution with radial symmetry. More concretely, we

define ry ? 1 by ﬂrg =T =W, and we consider a circle y# of
radius r, with the origin as its center. On the other hand, we
define V# with a real parameter a by
- S
vh o= Tog Ty log r (1 < r <« Ty ).
We also define pf o2 _ 1 _a |2 s 99 1 __a 2. Then
r 2{ rlog r, r, 2 rolog Ty

{Y#: V#, P#} is a solution to (1.1-8), which we call a trivial
solution. The parameter a expresses a magnitude of circulation,
whence the flow speed becomes larger if a becomes larger.

Now we regard vy(t,6) and %%(t,e) as given functions which
are close to r, and 0, respectively. Then we can define a
function V Dby solving the Dirichlet Problem (1.1-3). More

precisely we consider an integrated form of (1.3), i.e.,
* 0 Y
(1.3) vit,y(t,8),6) = J Yt 0)ap(t,0)de + £(t) (00 <2m),
0

where f does not depend on 6. For a fixed time t the equations

\SL
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(1.1,2) and (1.3)* form a dirichlet problem. Hence it is uniquely
solvable with respect to Vv , if £f(t) is known and if vy and %%
are sufficiently smooth and Yy 1is sufficiently close to ry- The
function f 1is determined by the requirement that the circulation
is constant ( Kelvin's theorem ). This is expressed by the equation

2T 21 aV
(2.1) f %y-(tﬂ,e)de _ [ a—°(1,6)de.
o °f o °F

( Actually this condition is a necessary condition for the existence
of the solution, since (1.5) must hold on r = 1.) Now we give a
rigorous definition of VvV and f: first, define V1 to be a unique
sglution of A V1 =0 in Q(t), V1 = 0 on r =1, V1 =

[ Y(t,¢)%%(t,¢)d¢ on Y(t). Replécing the boundary condifion on
Y?t) by V2 = .1, we define V2 in the same way. Then the
functionn f is determined by the equality

2T 3V2 2T SVT

f(t)f 5;—(t,1,8)d8 + J 5;—(t,1,6)d9 =

Jz’ﬂ BVO
0 0

—(1,6)d6
0 or !

We put V = V1 + f(t)Vz, which completes the definition. Note that
V is determined by v, %% and the initial condition.
The next step is to solve the Euler equation (1.4-5). We begin

with a heuristic argument. Putting

oV 1 2
R=2c, Q=x|W["+p-J

the equations (1.4-5) implies that the functions R and Q must

satisfy



1 3R, 230 _ in q(t),
(2.2) T o8 8r
R 1 30 _ ;
_8r+rae_0 in Q(t).

N
This 1s a Cauchy-Riemann equation written in the polar coordinates.
Hence Q and R must be harmonic functions. Furthermore R = 0
on r = 1, because of the condition (1.2). Therefore 29 =0 on r

ar
= 1. In view of these facts and (1.6), we define a function Q to

be a solution of

AQ=0 in Q(t),
(2.3) %—%—:o on r =1,
_ 1 2 -
{ Q = 2|VV‘ + OKy(t) Y(tre) on 'Y(t)l

where V 1is the function defined in the previous step. Then we
define R by the equation below:
K

(2.4) R(t:rIG) =
J1P

Q
'g"e‘(trprG)dp-

It is easy to check that R and Q@ defined in this way satisfies
the equation (2.2). By the definition we see that R must coincide
with %% , 1f the solution exists.

We are now in a position to derive an equation which vy(t,q)

has to satisfy. This is done by differentiating (1.3) in t:we

obtain
_8_2_ 2 _a { av _ 3V 5y
atzy(t,e)=286[at+arat] (0<t, 0<g<27).

Consequently the function y satisfies
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2
2 2 _ ., av .3
o2 (B0 = 25 [ Rly(e) * 3r|y(e) ot ]'
. . 2 2
Introducing a new function u by Y = 1r, +u, we have
(2.5) ﬁ—Z—a(RI +_3_\_/ .a_Y]
) at2 1 Y(t) oar|y(t) ot )’

which is of the form (1.9). Finally the condition (1.8) is
equivalent to

2m
(2.6) f u(t,8)ds = 0 (0 <t ).

0
- Therefore we have arrived an evolution equation (2.5) to be solved
in some space of functions with zero mean ( (2.6) ).

To show that (2.5) is well-posed in the sense of the evolution
equation is not succeeded until now. But we think that the method
in Yosihara [6,7] will prove the well-posedness, although (2.5) is
completely different from that in [6,7]. We derived (2.5) mainly to
use it for the numerical simulation. In the form of (2.5),
numerical analysis is much egsier than the numerical analysis

applied directly to (1.1-8). Our scheme is presented in §5.



§3. Linearized equation.

In this section we study the linearized equation for (2.5).
The eqgqation (2.5) is highly nonlinear and its analysis is difficult.
-'But, as we will show later, its linearized equation is easy to

analyze. Regarding the right hand side of (2.5) as a function of u

and %%, we take the Fréchet derivative at u 0. Then we obtain

the following equation:

2 2
RIS N S
ot 36
3
+ H—1 b2 + =9 du + H—1 au 0
r3 96 r3 ae3
0 0
(3.2) u(0,8) = uy(8), 2(0,8) = u, (o),
where b = —3—— , H 1is an operator defined by
rolog ry
i
(3.3) H : v ein® (-i)—2L 0 ind
nZo © n#0 2o enon
0 0
e
Observe that the coefficient Rn = g ?n tends to 1 as n »
r, - r
0

+o, and to -1 as n » -», Consequently H is equal to a Hilbert
transform modulo a smoothing operator.b Now we see that the equation
(3.1) is of second order in time and of third order in the space
variable 8. The derivation of (3.1) isvfound in [3].

We consider a special solution of (3.1-2) which is of the form
4 = exp( At + inf ). This function U satisfies (3.1) if and only

if the parameter ) satisfies
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(3.4) A% - 2inb)A -nb? - (( b2 4 =g yin + 0—3(in)3 /(iR_) = 0.
r r
0 0
1/2

0(n2_1)/rg + g/rg

-

, we define A+(n) and

Putting bn = ;5 (1+an)/r0
A_(n) by
(3.5) A, (n) - i[ bn * /%;[(nan)bi - bz} }

Then for each n ZZ {0}, we have two solutions of (3.1)

represented by G = exp( A,(n)t + inf ). To study G we put

n 2 2
B(n) = // ﬁ;[(1+an)bn - b '

: * * %k N
and b = min b_ , b = min /1+an bn .

n;1

Then we see

*
i) that B(n) is real and nonzero if 0 < b < b ,

A
o

%
ii) that RB(n)'s are still real but some of them vanish if b
* %
< b ,
iii) and that PB(n) is a pure imaginary number for some n # 0 if
* %

b < b. Therefore Ai(n) is a pure imaginary number for all n
£ 0 if 0 < b < b**, and the real part of A (n) 1is positive for
some n if b** < b ( see Fig. IT'). If we take an integer n
such that Re X (n) > 0, then & = exp( A_(n)t + in6 ) is an
exponentially growing solution if b** < b. For 0 < b « b* the
solution { 1is a bounded oscillating solution. Taking the real
part of {i, we see that the function

nb

(3.6) w(t,8) = cos(nb +nbt)cos(B(n)t) + (n)

sin(n® + nbt)sin(B(n)t)
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0 < a < a* a = a* a** < a

Fie. I

/!
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satiafies the equation (3.1) and

(3.7) w(0,8) = cos(nd), %(o,e) = 0.

Therefore we can conclude that w is periodic if nb/B(n) Q and
that w is aperiodic if nb/R(n) Q. Since B(n) depends on b
continuously, both cases take place. We hope that there is periodic

solutions and quasi-periodic solutions to the nonlinear equation
(2.5) for sdme initial value uy = gcos(nf) + 0(52), u, = 0(82)
with a small parameter ¢, which is asymptotically egqual to ew(t,0)

as € » 0. In Fig. IIT we show a numerical experiment to this

nonlinear problem.

§4, Stability of the trivial solution.

In this section we state results and conjecture concerning the
stability of the trivial solution. In [5] it is proved that
branches of nontrivial solutions bifurcates from the trivial
solution with a as a bifurcation paramater. It is also shown that
there are countable number of bifurcation points {an} which are
explicitly calculated. The shape of the free boundary of the
bifurcating solution is computed numerically ( see Fujita et al. [1]
). We put a* = minf{ a ; n = 1,2,**+}. Then we can see that a* =
b*/(rglog ro) ( see [5] and (3.5) ). Now one may conjecture that
the trivial solution is stable if the velocity of the flow is so

E 3
small that 0 < a < a and that the trivial solution loses the

b3
stability at a = a . Concerning this conjecture it is worthy of



notice that in the linearized equation the trivial solution is
* %

unstable if a > a = b**/(rglog rO). But we cannot say anything
for 0 < a <« a** since all the eigenvalues lie on the imaginary axis
( see Fig. I ). On the other hand, the existence of progressive
wave solutions is proved in [4]. They exists even when 0 < a <« a*.
Since they are a kind of periodic solution, we find that the trivial
solution might be stable for 0 < a < a* but it is not
asymptotically stable. This is supported in another'aspect.

Indeed, the simulation ( Fig. III ) shows that there is an orbit
which does not approaches to the trivial solution.

On the other hand, we conjecture that the trivial solution is
unstable if the parameter a 1is greater than a**. In Fig. IV we
show a numerical computation which shows that there is no
time-global solution if a > a**.

Finally we consider the stability‘of the progressive wave
solutions. We computed numerically the solution with an initial
value which is close to a progressive wave. We have found that it

"progresses”" for a long time and we have found a little change of

the shape. So we think that the progressive wave is stable.
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§5. Discretization.

In this section we give a scheme by which we computed the
nonlinear evolution equation (2.5). We identify S1 with the
interval [0,27) and we divide it into N subintervals of equal

length. We denote the mid-point of the subintervals by ej ( § =

1,2,+++, N ), whence ej = Z%:l m. We first define the initial data

(y(0,K)}y_, and ({Y(0,k)}}_, by

. d
Yo(O))r T(0K) = 55 Vo(rg(8),8) g (1 <k <M.

1]

we put +y(1,k) = v(0,k) + 1y(0,k) ( k =1,2,¢ee, N ), where T is
the time mesh. When we have {y(m,k)}g=1 for m=1,2,¢¢¢,n, we
put Q(n,k) = ( y(n,k) - y(n-1,k) )/t and define vy(n+1,k) by the

following scheme.

1-st step. We define functions Qj:
-1 r? 4 4rg - 4r0rc03(6—9.)
(5.2)  o.(r,8) = 7 log 5 . (13 <N ).
J w 4r0r + 1 - 4r0rcos(6—ej)

Observe that Qj vanishes on T and is harmonic inIRZ\{(2r0,6j)} ’
whence the singular points lie on the circle of radius 2r0.
Therefore the free boundary near the trivial solution does not touch

the circle. We then define functions V and V

1 2 by

N N
V1(n:r,8) = j;ocj@j(r,S), V2(nlrle) = j§_16j®j(rle)l

where the coefficients {aj} and {Bj} are determined by

k-1
2 L L
Vitneyag e = L STy(n,s)y(n,s) + gy(n,k)y(n, k),

/7
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Vz(nrY (nlk) lek) =1

( see the definition of V1 and V2 in §2 ). We then define

by

r2'ﬂ' AV

£(n)| 2
)

2m 9V 2m 3
—;;t——(n,1,e)d6 + 1 i

1
Yy 5T (n,1,8)d6 = o

<

0 t

Actually this is equivalent to
1 12'”
L

\
. | £ . =
R ) (n) + 'Z1aj o

1 j J:

W12

| g—‘tl(n-1,1,e)de.
J .

Now we put V(n,r,08) = V1(n,r,6) + f(n)Vz(n,r,e) and -

(0«

(5.3) t, = |vv<n,r,e)l2

k (rre)'—'(Y(nrek)lek)

N we define harmonis function

[N

2-nd step. For 1 < jJ

-1 2 2
Wj(r,e) = Ir log ( r™ + 4r0 - 4r0rcos(6—6j)

-1

2.2 1
- log ( 4ror + 1 - 4r0rcos(6—6j) ) + > log r.

47

2
Observe that Y. is harmonic in R \{(2r0,ej)} and satisfies

{Aj}

N
=0 on . We define Q by Q= )

xjwj(r,e), where
j=1

determined by

1

= -9
Q(nlY(nlk)Iek) = ztk + OK(nlk) - Y(n,k) ( 1 _i

Here t is defined in (5.3) and K(n,k) is a discretized

k

curvature defined by

2 2
' _xy(n,k)™ + 2y'(n,k)” - y(n,k)y"(n,k)
(5-4) K(nlk) - 2 . 2 3/2 14
. Y(n,k) + v'(n,k)

20

k

S

<

N

).

by

f(n)

(n-1,1,6)d6.

ov.
3
or
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where we have used the following abbreviation:

,Yl(n,k) —- Y(nlk+1)2;1 Y(nlk—1) ( h — ZW/N )'

y{n,k+1) - 2y(n,k) + v(n,k-1)
h? )

Y"(l’l,k)

3-rd step. We define R(n,r,6) by

r

120
7 P

e(n.p.e)do-

(o3

R(n,r,08) = J

This integral is explicitly calculated and we obtain

2r0(r—1)sin(8—6j)

R(n,r,0) = ) %% [ tan”
=1

2
j 4r0 + r - 2r0(r+1)cos(6—6j)
-1 2r0(r—1)sin(6-ei)

2 2 *
4r0r + 1 - 2r0(r+1)cos(Q—6j)

+ tan

We also put Z(n,k) = %%(n,Y(n,k),Gk)§(n,k)-

4-th step. We determine {Y(n+1,k)}g=1 by the following scheme:

y(n+1,k)2 - 2y(n,k)2 + Y(n—1,k)2 /(212)

_ 20 1 29 vt
= - Y(n,k)ar(n,Y(n,k),ek) + EW'S) ae(n,Y(n,k),Gk) Y'(n,k)

N Z(n,k+1) - Z(n,k-1)
2h -

This discretization is obtained from (2.5) in the following way. We

first carry out the differentiation with respect to 6 and then we

o
~
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replace the derivative of R Dby those of Q by means of (2.2).

To study the stability‘we have linearized this scheme and found
that it is stable if T2/h3 < rg/(Zo) and if we choose h
sufficiently small for a fixed mode n. For general initial values
we cannot conclude the stability. This is a problem to be solvéd in

the future.
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