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1. Introduction

Using the gradient descendent technique, several gradient
adaptive lattice (GAL) algorithms were developed [1] [21.
Compared with a non-lattice gradient least mean square (LMS)
algorithm, these GAL algorithms generally converge faster, and
their convergence rate is independent of the eigenvalue  spread
of the input data covariance matrix. Moreover, in digital
computations, the roundoff noise of filter output due to
parameter accurancies by quantization must be paid much
attention. Several studies show that lattice filters can achieve
a superior performance to a corresponding direct realization, on
which the structure of the LMS algorithm is based. Thus, in this
respect too, the GAL algorithms are expected to have good
properties.

From the above reasons, the GAL algorithms have received
much attention as a 1linear prediction algorithm. But in
computational complexity the GAL algorithms are not so simple as
the LMS algorithm. Therefore, to be free from hardware complexity
and reduce an amount of computation time, several simplified
versions of the GAL algorithm, what is called, the simplified GAL
(SGAL) algorithms were proposed [3]. In these algorithms, PARCOR
coefficients are computed using a sign-converter. These SGAL
algorithms were applied to a vocoder and excellent results were
obtained. Though the SGAL algorithms hold good features
accompanied with the lattice structure, it doesn't match for the
GAL algorithm in the convergence properties. Therefore in the
SGAL algorithm it is rather important how we set a step size

parameter. /
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Several results concerning with the convergence properties
of the gradient type algorithms, i.e., the LMS algorithms
including their simplified versions and the GAL algorithms, have
been carried out so far [4] [5] [6]1 [7]. In this paper, assuming
that the input signal is a stationary random process, convergence
properties of the SGAL algorithms are analyzed. First,
convergence models are derived, which predict the mean value
trajectories of the estimated PARCOR coefficents and give us the
convergence rate. Secondly, the variances of the estimation error
of the PARCOR coefficients in steady states are calculated.
Lastly, the performances of these algorithms, i.e., the
convergence rates and the error variances, are compared. These
results are available on the choice of the step size. Numerical

simulations are performed to show the validity of our analysis.

2. Algorithms

Let xt

mean and P

be a scalar stationary Gaussian process with =zero
p+1 (p=0,1, s»*) PARCOR coefficients which play an
important pole in lattice algorithms.

Now we discuss the six recursive algorithms for estimation

of ?p+1_ A basic adaptive lattice structure is given by

0 .0
@p =T =Xy
p+1__p.pp+l_p
el =el+Py T4 (2.1)
p+1__p p+1 _p
re _rt_1+?t er (2.2)
where eE and rE are the forward and backward prediction errors
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for p-th order, respectively. The estimated PARCOR coefficient

?§+1 is given by either the following equations:

a) PE::=?E+1—iéf(eg+1rg_1+r§+1eg) (2.3)
AR AT LR, 2.4
C) FEI1=PE+1—drE+1sgn(eg) (2.5)
D) YEI}=(1-M)YE+1-dsgn(eg)sgn(rﬁ_1)
ey -sinc S o
E) PE:1=PE+1—dsgn(rE+1)sgn(eE) (2.7)
F) pPlopP* ! gsgn(xP*T)eP (2.8)
and
sgn(x)= { t: iig (2.9)

where o 1is a small positive constant, called the step size
parameter. When we run these algorithms, we must adjust the step
size adequately such that our desirable convergence properties
can be obtained. The first and second algorithms are the GAL
algorithms. The others are SGAL algorithms in which PARCOR
coefficients are computed using a sign converter. The algorithm
D seems to take much time to compute the sine function. But
preparing the corresponding table of the sine' function, the
computational time can be fairly reduced.

We assume that the mean square value of eP is equal to that

t
of rP and write it as 62 i.e.
t-1 p,t’ !

2 2

El(eD)?1=BL(f_)%1=¢7

. (2.10)

3



154

where E[e] denotes the expectation opefator. Since PE+1 is slowly
varying with respect to egei, the random variable eEeE is almost
independent of the random variables f5+1. Therefore, taking the
ensemble average of eEeEPE+1 and applying the averaging principle

[8], we approximately have
P PpP+1, _or P P, p+1
E[etetft ]—E[etet] E[?t 1 . (2.11)

Under these assumptions, all E[P€+1] in the above six algorithms

converge towards
p+1__ p_P PP
Pr7 =~Ewlefry ;1/Eulegel], . (2.12)

where E_[-] denotes the expectation operator when t-o9

3. Convergence Models

In this section, for each of the above six algorithms, we
derive a convergence model to get the convergence rate. This
model gives the ensemble average trajectories of the estimated
PARCOR coefficients, which start from the initial wvalues and
converge towards their steady state values.

Let the forward and the backward prediction coefficients
corresponding to the PARCOR coefficients {Fl, Pi, e, f5+1l be

p p L p p P cee P . _
{a1,t’ a2,t' o, ap,tk and {b1,t’ b2,t' ’ bp,t}’ respective

ly. Then eg and rg can be expressed as

p

pP_ p

e =% ai,txt—i (3.1)
i=0
p

b_ p

ri= EO biltxt—p+i . (3.2)
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Order updating recursions for a? t and b? ¢ are given by
’ ’

p+1_ p p+1, P _

ab p=al (+PRTTRD L4 Ly ag, =1 (3.3)

p+1 p p+1_p ' P _

b —b:L o 1+? ap+1—i,t bO,t—1 . (3.4)

From (3.1) and (3.2), we have

E(epepl=§ g E[a? 1 E[aP 1 R, . (3.5)
t7t i=0 =0 i,t j.t i-j

E[ePrP 1-% 5 E[aP ] Elb ] R (3.6)
e, r = a .
t t-1 i=0 =0 t 1 p+l1-i-j

where R _E[xtxt+i].

Since (bP ) and ?E+1 are uncorrelated, we have

p
p+1-i,t-1"' ap+1—i,t

p+1 p+1 p P,
Ela ] E[a t]+E[P }E[bp+1—i,t—1] E[aO,t]‘1 (3.7)
p+1 p+1
E[bl 1= E[b . 1]+E[? ]E[ap+1 'y ¢ ] E[bo £J=1 . (3.8)
Let kg+1 be defined as
P+ls_pr PP p_p
kt E[e ry_ 1]/E[etet]. (3.9)

It is clear that kE+1 converges towards ?p+1 when t—,
A): Taking an ensemble average of both sides of (2.3) and

applying the averaging principle to it, we have [4]

p+1 p+1 p+1.2
E[Pt+1]—(‘l o(c‘ t)E[? ]k cp ey (3.10)

I1f E[Pp+1] are given, kg+1 and d; £ can be computed from (3.5)-
14

(3.9), and then E[Pp+1] from (3.10). Using these manipulations

iteratively, we <can get the mean value trajectories of the

estimated PARCOR coefficients, i.e., the convergence model.

§
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2}

Lo
B): Similarly we have the same convergence model as (3.10).
C): We assume that eg and rE_1 are jointly Gaussian with zero
mean. Defining the joint distribution denéity function of eE and
rg_1 as f(eg, r€_1), it can be expressed as
p
f(e rt_1) »
1 (eP)24(xP_)%e2kP* PP |
= 2 p+1,2 P~ p+T) 2
2 1-(k 2 1- k ) .
neZ A 1- (BT 62 (1= AT
Using (3.11), we have
E(rP*'sgn(eP) 1=E(rP__ sgn(eP) 1+E(PP* " 1E[ePsgn(el)]

t t t-1 t t t t
- joo dep SOO( P E[PP”] p) f(ep rp ) drp
T Tt Lo t1tEUE %t t’ Tt t-1

oo o0 1
- p p p+ p _aP p p
Io det idn(rt—1_E[Pt ]et) £( ey rt_1) drt-1
=2 P+l _yp+1 (3.12)
={r (EPy 1-k¢ 16, ¢ -
Hence the convergence model becomes

p+1 p+1 {'— p+1 3.13)

E(Py, =01 oq{ Sp, ¢ )EIPY 1+ kg™ G, ¢ (
D): Similarly we have
E[sgn(ep)sgn(r 1)]

00 (00 °°j°° p P g,P
= p p P 1% _ - def dr
=2 So So fleg, ry_4) deg dry 4 -2 50 o f(-e rp_1) t 9T
=— 2 sin~ 1 (xP* (3.14)
=R Sin (kt )

so that

p+1,_ . p+1 2 oy 1,,.p+1 (3.15)

E[Y{,11=(1-)E[Y{ J+olo Sin " (k ) .
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Noting that
. T . TC
Elsin( 7r§+1 )-sin( E(rg” N1

=2Efcos B (YE*T4m(YP* 1) sin T (yR  m(y B )

- ¥ 1 1 1

2c0s > EMYEY 1B T -EIYET 11=0 (3.16)
we have

BIPP* ! =sin(S-E(YP*] ). (3.17)

The equation (3.15) and (3.17) give the convergence model of the
algorithm D.

E): Also in this algorithm, the convergence model can be obtained
in the same way as stated in the above. But here we present a
rather detailed derivation for later use. We define the  joint
distribution density function of (eP, rP__, PE”) and the di-

p+1

stribution .density function of t as g(eE, rE_1,

Fp+1) and

h(PE+1), respectively. Since (eg,~ r€_1) and PE+1 are almost

uncorrelated, we can have gZ%f-h. Let G(eg, rE_1, fE+1) denote the
random variable expressed as the function of eE; r§_1 and Fp+1
Then the expectation of G becomes
p _p p+1,y,_ p p+1

E[G(et, T g Ft )]—jjf Geg de dr dP

= p p+1

-J[”Gfde arP_. ] n apP

=e[ [ £ aed arf | I o p+1 (3.18)

t

where ?p+1 is the expectation operator of Pp+1. Using

this property, the probability of sgn(r§+1)sgn(e§)=1 becomes

EUS £(ef, P ) def ar? ] p+1 , (3.19)
(2 p2lebrely 00 b e i
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After some manipulations, the integral (3.19) reduces to

: p+t1 ., p+1l
v o[ Py ke
— + — E|Tan ————— p+1 (3.20)
2 T Vi-(xP*1)2 /[Tt
£ .

We can establish the following approximation:

+1 | p+1 p+1 p+1
L[ PPk . [ El 1-k
E | Tan ! (—i;~——i**_ -Tan L Pt t p+1

f1_(kE+1)2 /1_(kE+1)2 £

p+1_ p+1
£ CEPET

Jw—(kfc’”P

=E |Tan" p+1 p+1 p+l , p+1
(BE(PET 12" (PR -KETT) [ op+i
1+ ol 2 t
’1'(kt )
I~ =0. (3.21)

1 p+1,2
(E(PP* 1 1-kP™T)
( p+1,2 t 7%t
1=k ) (” 2 )

1-(P*

From this, (3.20) approximately becomes

p+1 p+1 .
10 _1(E[Pt 1-ky )

— + — Tan 1-(kg+1)2

2 K
On the other hand, the probability of sgn(rg+1)sgn(e5)=—1,can be

(3.22)

similarly'given by

11 _1( E[FEH]—){E”)
— - — Tan = .
41—(k‘t’ )2

(3.23)
2 X

From the above, we have



195

E(Fp+1]=E[FE+1]—dE[sgn(rE+1)Sgn(eE)]

t+1
k{:)+1 _E[PEH ] ) »

=E[P€+1]+.EEiTan_1(

(3.24)
T V-2
F): Using the same technique as in (3.21), we have
E[sgn(rg+1)eg]
[ 0 p p p p b
=2E S dr S ; e - f(e r ) de ] p+1
t-1 +1 t rTeoq t
=00 r§_1+PE es) 0 t
2 oG, . (E(PPYTj-kP*T)
== B, t t t (3.25)
TC _ p+1,,.p+1T .2, 5p+]1 :
128 1P LB (PP
so that
E[‘)’p+11=(1—,—7:- “Sp,t )E[ P+l
t+1 ﬂ;VG_ZE[FE+1]kp+1+E2[PE+1] t
(3.26)

+ —g—~ O(GD’t k kp+1
TC J p+1,,.p+1 2 op+1 t :
1-2E[PLT kST +ETIPET ]

4. Variance of the PARCOR coefficients error

The estimated PARCOR coefficients FE+1 computed by the
algorithms A-F fluctuate around Fp+1 in a steady state. 1In this
section, we derive the variance of this fluctuation for each
algorithm.

A): Let rewrite (2.3) as

p+1 _op+1_ . _ oA (. P.P,.P
P PT=(1- 3= (efep+ry

o) p+1 p+1
t+1 rt~1))(Pt -

1

_ pP..p 1 pp+1, P.P,..P p
N(etrt_1+ 5 P (etet+rt_1rt_1)). (4.1)

7



Squaring both sides and taking the ensemble average of them, the
cross term of the right side becomes zero by the averaging
principle. Hence the variance of the estimation error of the

PARCOR coefficient, Varw(PE+1), can be expressed as follows [5]:

Vare (PP )=Lin 5l (pR*1_pp*1)2;

p+1,2,2.2 2
(1"(}3 )7) Gpd :O(Gp (1—(Pp+1)2)2 (4.2)
2-Catt2+ (PP %) 2

B and C): As for B and C, in the same way as in A, we have

(1-(PP*1)2)g%a o2
- P_x ___P_(pP*1)2) (4.3)
2 , ,

2
2-307
and
‘ 1,22
(1-(PP"H 562
Varg(pP*T)- 2 ~=,f1§ G- (PP NPt (4.4)
2“7f-+qux 8

respectively.

D): Upon setting Yp=.%%sin—1(?p), we can easily get the error

variance of YE+1 as follows:
p+1, o p+1,2, ~ % p+1,2
Varg,(YP ) =320 (1-rP" 52— (=P H 5 (4.5)

Since the following approximation can be established in a steady

state .
PEH_PpHg_TE(_ (Y€+1_Yp+1 ) cos lzt_Yp+1 ), (4.6)
we have
2
Var,, (PP )Z%Varm(YE”)H—(PPH %) . (4.7)

(O
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Substituting (4.5) into (4.7) yields

2
T

var, (PP*1) = == ot (1-(PP* ) ) (1-(yP* ) %) (4.8)

E’: Since PE+1 is included in an argument of a sign function in
{2.7), we can not explicitly get PE+1 out of the sign function.
Therefore we can't apply the same techniqﬁe as stated in the
above. Since, in this case, E+1— Et1=q’or ~ol, we regard the
behavior of FE+1 in the steady state as a discrete Markov précess
and write a probability of PE+1=iN as Pi' where i is an integef
and we omit the superscript p for simplicity. If PE:}:ﬂX,
sgn(r€+1)sgn(eg)=1 when PE+1=(1+1)M or sgn(rE+1)sgn(e§)=—1 when
PP*'-(i-1)«. Then from (3.19) and (3.20) we can establish the

following recurrence formula in the steady state.

1 1 » (i+1)o -pP+?
1P |
+ ~ ..}Eqan ( yﬁii}g;ﬁja) P, 4 ‘ (4.9)
Note that
iof - pP*1 I

(4.10)
2

for all most i in the steady state. Upon applying Tan_1(x)§x to

(4.9), it reduces to

( 1 (i+1)el-pPtT ) 1 (i-1)d-pP*! ) oy
P.=|— =+ P, +[— - P, , (4.11
i > ,}1_(Pp+1)2 i+1 ( 2 /1_(Pp+1)2 i-1

Then the solution of (4.11) is given as follows:

i
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A

P,= : : (4.12)
1 Ma-ac+i)-T(ac-1i) .

where

a=T[J1—(Pp+1)2ﬁ¥
c=0.5+fp+1/a-d
A: a normalized constant

. ® ¢, x-1
I’: Gamma function such that T?x):‘o e tTT'dt .

As long as (4.10) holds, it is guaranteed that a-ac+i>>0 and ac-
i 0. Using the approximation that T(x+1);xxe—XJ27(x, (4.12)

including the normalized constant reduces to

1 [ (ioz-fp”)zJ |
P,= exp|~- —m———— (4.13)
. '\)K(a-—Z)/Z (a-2)2/2 .

This equation shows that PE+1 is Gaussian with mean Fp+1 and

variance (a—2)d2/4. Therefore we have

}1~(Pp+1)2 dZ
4 : .

Varg,(PP*!) = (a-2)x?/ 4=

J1-(PP*T)2
e

4 .

of-
8

(4.14)

F): Also in this algorithm ?E+1 is included in an argument of a

sign function. But by quantizing eE in step size 4, we can treat

this algorithm in the same way as in E. Upon setting ei:ja and
E+1=i¢3d, we approximately have

r(j,i)=Pr{rE_1+(iAo( )eE) 0, eE:jA‘i

(3+1)A

P p p p
= de f(e;, r ) dr
jjA tjr€_1+(i£\d)eg>0 t -1 t-

1

/2
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~ 4 (30) 2] [ 2(PP* -ia0) (54)

= ———exp|-— —— + /2 (4.15)
2§, 247 Gp Y1-(PP*h) .

Writing the probability of'Pp+1=iAC( as P,, we have
t . i

"

Pi= 5 J(3+i,-3)P, . - (4.16)
j=-00 ) ’

It is very difficult to derive the solution of this recurrence
formula. Therefore we assume that ng1 is Gaussian with mean fp+1

. 2
and variance 47, i.e.,

P.=A exp|- . (4.17)
i 2d2
Substituting (4.17) into (4.16) gives
1 2 T 1,2
Varg(PPY')=a%= \/—8—(1—(}’10* 1) Gpol - (4.18)

The derivation is presented in Appendix.

5. Simulations

Numerical simulations were performed to support the\validity
of our methods described in sections 3 and 4. Here we mention
only about the algorithm E. Using the data generated by the
eighth autoregressive process whose ‘PARCOR coefficients
correspond to (F1, Fz, Y, P8)=(O.9, 0.8, 0.2), we estimated
PARCOR coefficents by the algorithm E with a step sizeol=1/32.

Fig.1 depicts the convergence models, i.e., the ensemble
average trajectories of E[PE+1], for p=1, 2, 4, 8. Curve 1 is the

trajectory of our proposed convergence model (3.21) and Curve 2

[3



is the' simulated trajectory obtained by averaging 100
realizations. We find that our model predicts very closely the
experimental results. The bias between Curve 1 and 2 for the
first order is due to the approximation (2.10). In higher order
cases, the bias arises mainly due to the fact that the
fluctuation of the PARCOR coefficients in the previous stages
have changed the stochastic properties of the following stage
inputs.

On the other hand, Fig. 2 presents the error variance
Van»(P§+1) of the simulated and theoreﬁical values. The black
line shows the theoretical values computed by (4.14) and the
numbers enclosed with a circle indicate the plots given by the
simulation results. It can be seen that our theoretical results
agree with simulation results, where the number corresponds to
the order of PARCOR coefficient. To get the simulatedvresults, we

also carried out the time averaging on the results from t=501 to

£t=1500 when t is sufficiently large such thatj’t[‘_j+1 has converged.

6. Performance comparison

The convergence properties of six adaptive lattice
algorithms, i.e., convergence  models and parameter error
variances in steady states are investigated so far. 1In this

section, we compare the performance of these algorithms.
Assuming that lE[PE+1]—kE+1I<<i, we apply several rough
approximations to our convergence models. Then they can be

reduced to the following simpler form:

E(PP*] =(1-}A)E[PE”]+/U<§” . (6.1)

(¥



For example, as for algorithm F, we can approximate (3.23) as

p+1 p+1
Bls n(rp+1)ep]_ O((Sp t EPY 1-k¢
g p+1,2 p+1 p+1,2
k ) (E[Pt ]~kt )
1+ 1~(kp+1)2
t
~ od §
_(kt

Hence/u can be simply ekpressed as

oG _ 0,6
iz . (6.3)
ot

The parameter MK determines the convergence rate. The larger /i

becomes, the faster E[FE+1] converges towards Pp+1.

The form of K
is summarized in Table 1 for six algorithms, where we omit the
superscript p for simplicity. This table indicates that the
convergence rate depend§ on not only the step size o but also
input power Gg in the algorithms A,B,D,F, and PARCOR coefficient
Pp+1 in E,F. '

The variance of the estimation error of the PARCOR
coefficient, Var (Fp*1), is also summarized in T;ble 1. It is

easily found that Var (?p+1

} becomes large in proportion to the
magnitude of the step size. Therefore we must trade off between
the convergence rate and the error variance when we choose the
step size; The variance of the estimation error is affected by
the input power ‘and input statistics in almost all algorithms. It
- is reasonable that the algorithm C and F have the same

convergence properties and the error variance though they are

derived using the different techniques.

(§
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Now we choose the step size d so that all of these
algorithms have the same convergence rate/&. These/(—normalized
variance of PARCOR coefficients error Vg;m(Pg+1) aré shown - in
Table 1. Comparing Gg}ugfg+1) in magnitude, the performance of
the algorithms can be obtained. Fof example, as for B and E with

3 3

p+1 and 7.32+1073,

f=1/32 and PP*1=0.9, Var(PP*!) becomes 2.97-10°
respectively. So it can be concluded that the performance of the

algorithm B is about 2.5 times superior to that of E at the cost

~of increased computation time. It is also interesting to note

that the performance of the algorithm E is slightly inferior to

that of the algorithm C or F despite its simpler structure.

7. Conclusion

For each of four SGAL and two GAL algorithms, a convergence
model that»gives us a convergence rate, and a variance of the
estimation error of the PARCOR coefficient are derived. The
convergence rate and error variance are expressed as the
functions of a step size &, a input power Gg and’ PARCOR
coefficient»Fp+1. Our analyses show how to determine a step size
such that we can get a desirable performance especially in the

SGAL algorithms.
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Appendix
Substituting (4.17) into (4.16) yields

1 0 [ 1 1 o+ 2]
p,:————-——5 exp|-—75 - — =5 (X« +icld - )7 dx
L eres le 262 242 f
P p
(iaa —pP*T) joo [ %2 1 or1 2}
+ X -exp| - - (xot +ia P ) dx
ra2 f1o(pPT)2 Le 262 242
P P
2
oA 0o X 1
Y2 ] 1,2 ) o eXp[_ 2 "2 (% *iA""FpH’Z] ox
Teo V1-(pPTH S = 265 2d .

(A.1)
For simplicity, we define a, b, c¢ as follows:

a?=1/(262), p’=o’/(2a%), c=(pP-iset)/o

Then (A.1) leads to

. p[ (idol -fp”)zJ T exp( a2bzcz)
X - = —
2a2 2 q, aZ+b? a+b?

(iaa Py p2e T ( a2b2c2)
exp(- ~ 5 5

+ L]
Ttdg /J1Q(Pp+1)2 V(a2,p2)3 22,p2
ol [ 1 \/——TC—‘ bZC JZ\/T (aZbZCz)}
— s 5 4 0+ expi-
7(6?)1 PPN 2 L2 Via??)3 {a24p? Va?ip? al+b?

(A.2)
Comparing (2.8) wifh (2.5), the variance of the‘estimation error
of the PARCOR coefficients computed by (2.8) is expected to be
the same order in magnitude as the one by (2.5). Therefore it can
be seen from (4.4) that
(NGp/d)2<< 1. (A.3)
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Then we can approximately have

azbzc2
exp (— _*—2 >

a“+b

. 1,2 2
N (iad -pPH) o/zc*p pl | 2
Texp |- ——s—— ||1+ (iac -PE7 )% (A.4)
2 4
2d 24

Using this approximation, (A.2) becomes

o T = [
/R a) al+b? 27(65«/1—(?9” 12 V(a2sp?)3
2
J 1 I® xS % [
27 Va2ip? 242 271&;{2) Yi-(pP1) 24 (a2,52)3

< | ] TC
+
ama® 1-PH2 V(a2ip?)3

013 TC

2
+ Hiad -PP*1io0 (A.5)
4T(<Y;dz /\/T_d)p+1)2 (a2+b2)5J f

Considering that (A.5) must be established for all i, we have

1 1 IS O( ’ LS (A.6)
= + -
VZT\GP a~2+b2 2716;/\/1_(f>p+1)7 (a2+b2)3

o’a? o4 TC o3 , T
————E= 5 +
242 2r\¢§«/1-(fp”)2 V(a2sp?)3 47t<s;d24(1-(;>p”)2> (a2+b%)° |

(A.7)

The second terms of the right hand side in both (A.6) and (A.7)

can be neglected. Then, upon solving simultaneous linear

equations for dz, we can have (4.18).

(7
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Fig.2 Variance of the estimation error of
PARCOR coefficients
Algorithm /L Vary (P E” ) (;;;m(j)géﬂ )
2 1 2 :
A oS - (1-P% %% L2
2 1 2,2
i *S <5 (1-pHs £ (1-p?)
2. Y 2 s :
¢ *J;dd J;u—r )ols T/‘("J’z)
2 2
AN 2 2 T
° ™ 5 -1 0-F9 A% (1-P2)
20/ o
1N 2 2
E = Ji- e 2
Ty -p? g V1P 5 J-pY)
ol J—
2 LS 2 T 2
F ISV £
«fr—g 192 g V1-Pra M O-PD

Table 1 Convergence rates and error variances
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