goooboooogn
0 566 O 19850 48-63

48

Embeddings of Graphs in the 3-Sphere

IXBHE 22K % — (Shin’ichi Suzuki)

1. Introduction
Throughout this paper, we work in the piecewise- linear category, consist-

ing of simplicial complexes and piecewise-linear maps.

By a graph with u components (P<:Ss) = (K1 U.ooo UKU(:SS) will be meant
a pair of the 3-sphere 53 with a fixed orientation and its finite 1-dimen-

sional subpolyhedron P = K u...uKu with U connected components K

177

Uaeoo uKuc:Ss) is a link with u com-

1

Ku. A graph with P components (K1

ponents iff each component Ki is homeomorphic to the l-sphere Sl, and

especially a link with one component is a socalled knot. A graph (Pc:SS)

is called trivial (or unknotted) iff there exists a 2-sphere 52 in 83

such that 82 > P.
Two graphs (P<:SS) and (P'<:SS) are said to be equivalent (or of the
same knot type), denoted by (P<;83) = (P'<:SS), iff there exists an orienta-

tion preserving homeomorphism ¢ : S3 > 83 such that P(P) = P'. We call

the equivalence class of a graph (P<:SS) the knot type of (PC:SS). In the
paper, we do not clearly distinguish a graph (P‘:Ss) and its knot type.
H.Schubert [7] showed that every non-trivial knot is decomposable into

prime knots in a unique way up to equivalence, and Y.Hashizume [4] extended
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this unique prime decomposition theorem from knots to links. In the previous
paper [8], we also formulated and prove a unique prime decomposition theorem
for special graphs which were called n-leafed-roses ([8, Theorem 3.7]). In
this paper, we shall formulate another prime decompositions for graphs com-

bining above two concepts, and prove the existence and the uniqueness of the

decompositions.

2. Prime Decompositions for Graphs

In the paper, oM and °M denote the boundary and the interior of a mani-
fold M, respectively. For a subpolyhedron X of a manifold M, bf N(X;M)
we denote a regular neighborhood of X in M; that is, we construct its
second derived and take the closed star of X in M. For a finite 1-dimen-
sional polyhedron P, u(P) and B(P) stand for the number of connected com-
ponents of P and the l-dimensional Betti number of P, respectively.

For a graph (P<:SS), by the exterior E(P) we mean the closure of S3 -
N(P;SS). E(P) 1is a compact, connected and oriented 3-manifold with bouhdary
dE(P) = BN(P;SS). By AZ and VZ we sall denote the closures of connected
components of 83 - L for a 2-sphere I in 83; it will be noticed that AZ
and VZ are 3-balls by Alexander[1], and AZtJVZ =LSS, AZrWVZ = BAZ = BVZ
= X, '

A graph (Pc:SS) is said to be splittable, iff there exists a 2-sphere I
in 53 - P such that °AZr\P # @ and °Vzer # 0.

2.1. Definition. (1) A 2-sphere I in s3> will be called admissible

of type T for a graph (PCSS), iff
(1) ZoP consists of a single point, say w, and
(i1) (P-w)nbds #0, P-w)aVy # 9.

(2) In this case, we have two gréphs (Plc:SS) = (PrwAZ<:SS) and (P2<:SS)

2
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= (P nVZ c SS) , and we say that (Pc SS) is decomposed into (P1 c SS) and

(pzcsS) by £, and denoted by
3. . 3 3 .
(Pc8™) = (PlcS ) Vs (chS ), or simply by
Pecsdy = (PlcSS) v (chss).

2.2. Proposition. If (Pcsy = (plcss) v (2, cs%), then

W) = u(P) + U - 1, B = B + B(). [

2.3. Definition. (1) A 2-sphere I in s° Will be called admissible
of type IT for a graph (PCSB), iff

(iii) ZnP consists of two points, say a and b, and

(iv) the annulus A = X - °N(P;SS) =L - °N(aub ;L) is incompressible
in E(P).

(2) In this case, we choose a simple arc, say o, on I such that 3a =

{a,b}, and then we have two graphs (Q1 c SS) = (PnA uoccSS) and (QZCSS)

z

= (PnVovuac SS). We say that (P CSS) is decomposed into (Q1 CSS) and

)
(chss) by I, and denoted by

n

®csd) Q< s #y (Q, cs%), or simply by

Q<5 # (q,<8%.

"

(Pes’)
It should be noted that the knot types of (Q1 CSS) and (Q2 ch) do not

depend on the choice of the simple arc a.

2.4. Proposition. Let I c s° be an admissible 2-sphere of type 11 for
a graph (PCS3) giving a decomposition (PCSS) E (Qlcss) # (chSS), and
we suppose that InP = {a,b}.
(1) If a and b belong to different components of P, then
u(P) = U(Ql) + U(Qz), B(P) = B(Ql) + B(Qz)-
(2) If a and b belong to the same component of P, then
HP) = u(Q) + U(QZ) -1, B(P) = BQ) + BQ,) - 1. [l

3



2.5. Definition. A graph (P<:Ss) is said to be prime, iff it satisfies
the following three conditions :

(0) (Pc:SS) is non-trivial and non-splittable,

(1) there are no admissible 2-spheres of type I for (Pczss), and

(2) for any decomposition (P(:Ss) £ (Qlc:SS) # (ch:ss) of type II, at

least one of (Qlc:SS) and (Q c:SS) is a trivial knot.

2

We can now formulate our prime decomposition theorem, to fix ideas :

2.6. Theorem. Every non-trivial and non-splittable graph (Pczss) can

be decomposed into a finite number of prime graphs, say (Plczss), cee s
(Pﬁc:Ss), and some trivial graphs, by some admissible 2-spheres of type I
and 11, such that (P1<:SS), cee (Puczss)‘ are unique up to order and
equivalence.

The proof of the existence of such a decomposition will be given in the

next Section 3 and of the uniqueness will be given in Section 4.

3. Proof of Existence of Prime Decompositions.
In order to prove the existence of prime decompositions for a graph, we
use the following Haken’s finiteness theorem on incompressible surfaces in a

3-manifold [3]. We refer the reader to Jaco [5, pp.42-50].

3.1. Haken’s Finiteness Theorem. For a compact, comnected and orientable

manifold M, there exists a non-negative integer nO(M) such that if {Fl’

s Pn} is any collection of mutually disjoint incompressible closed sur-
faces in  °M, then either (i) n < nO(M), (ii) for some i, Fi is parallel

to a component of oM, or (iii) fbr some 1 # j, Fi is8 parallel to Fj in

M. O
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The collection of non-negative integers nO(M) satisfying the conclusion
f Theorem 3.1 1is not empty. The minimal of such integers is denoted by

‘(M) and called the closed Haken number of M (Jaco[5, p.49]).

Let I be an admissible 2-sphere of type II for a graph (PCSZ)) giving
. decomposition (PCSS) = (Qlcssj # (chss), and we assume that (Q1 CSS)
nd (QZCSS) are obtained from PnAZ and PnVZ, respectively. From
iefinition 2.3(iv), the annulus A = X - °N(P;SS) is incompressible in E(P).
et B and C be components of BN(P;SS) nAZ and BN(P;SS) nVZ, respective-
.y, such that BnA = 9BnoA = 9B = dA and CnA = 3CnodA = 9C = JA. Then
re have two closed connected orientable surfaces AuB and AuC in E(P),
nd after a suitable slight modification of AuB and AuC, we have two
:losed connected orientable surfaces, say AA and AV’ in °E(P) such that

voth A, and Av are of positive genus. In particular, if both (QICSS)

A
ind (Q2 cSS) are non-trivial, we may assume that AA and A\7 are incom-

)ressible in E(P). (In fact, if B (resp. C) is compressible in E(P),
:hen we apply some surgery for B (resp. C) so that AA (resp. AV) is now

incompressible.) If B(Ql) = 1, then AA is of genus 1, From this, we

1ave the following :

3.2. Proposition. Let (P c 83) be a non-trivial and non-splittable graph.

(A)’ If there are no admissible 2-spheres of type 1 for (Pc SS) and
A(E(P)) = 1, then (PCSB) is prime.

(B If (PCSS) has a decomposition (P c"‘SS) = (Q1 cSS) # (QZCSS) such
that both (Q1 CSS) and (chsz) are non-trivial and B(Ql) =1 and B(QZ)

> 1, then it holds that
R(E(P)) = h(E(Q)) + h(E(Q)) + 1. 0

We are going to prove the existence assertion of Theorem 2.6, that is, the



following lemma :

3.3. Lemma. Let (P CSS) be a non-trivial and non-splittable graph.
Then (P CSS) can be decomposed into a finite number of prime graphs CPlc SS),
, (PuCSS) and some trivial graphs by some admissible 2-spheres of type

I and 1I.

Proof. We shall prove Lemma 3.3 by induction on the l-dimensional Betti
number B(P) and the closed Haken number h(E(P)). We may assume, without
loss of generality, that there is no vertex v of P with the degree deg(v)
<1, and so BR(P) = 1. V

If B(P) = 1, then (PcS3) is a knot since it is non-splittable, and
Lemma follows from the Schubert’s result [7]. (In fact, if there exists an
admissible 2-sphere I for (PCSS), then it must be of type II. If X
gives a non-trivial decomposition (PCSS) = (Q1 CSS) # (Q2 cSS), then we can
deduce that E‘(E(Qi)) < h(E(P)) for i=1,2.)

Now we wish to make the induction step and accordingly suppose that B(P)
> 2 and every non-trivial and non-splittable graph (P' CS3) with B(P') <
B(P) has a prime decomposition provided that B(P')f < B(P). or B(P') = B(P)
and h(E(P')) < h(E(P)).

If (Pc SS) is prime, then there is nothing to prove. So we assume that
(PCSB) is not prime. Hence, there exists an admissible 2-sphere I ¢ 83

for (P CS3), which gives a decomposition either

12

s (plcs3) v (chss) with B(P)) >1 and B(P,) > 1, or

n

(Pes’) Q < 53) #(Qyc 53) such that both (Q; < 53) and (Q,c %)

are non-trivial knots, according as ¥ is of type I or ty'pe II. We dis-

tinguish three cases :

(I) I is of type I : From our assumption, we can easily deduce that



0 < B(Pi) < B(P) (i=1,2) Dby Proposition 2.2. From the induction hypothesis,
(PiC:SS) has a prime decomposition (i=1,2), and so (PCISZ) has a prime de-
composition.

(II)-(1) £ 1is of type II and X intersects with P in different com-
ponents : By Proposition 2.4(1), we can deduce that 0 < B(Qi) < B(P) for
i=1,2, and so Lemma follows from the induction hypothesis.

(I1)-(2) £ 1is of type II and I intersects with P 'in one component :
It will be noticed that B(Qi) > 1 for i=1,2. If B(Qi) >1 for i=1,2,
then we can also deduce that B(Qi) < B(P) by Proposition 2.4(2), aﬁd S0
Lemma follows from the induction hypothesis as thersame way as that of above
two cases. We have therefore only to consider the case of B(Ql) =1 and
S(QZ) = B(P). Now (Qlc:SS) has a prime decomposition from the induction
hypothesis. By Proposition 3.2(B), EIE(QZ)) < h(E(P)), and then we can
deduce that (ch:ss) also has a prime decomposition from the induction hypo-
thesis, and so (P<:SS) has a prime decomposition.

This completes.the proof of Lemma 3.3.

4. Proof of Uniqueness of Prime Decompositions.
The uniqueness assertion of Theorem 2.6 will clearly follow from the

following four lemmas 4.1, 4.2, 4.3 and 4.4. (We refer to Fox[2,57].)

4.1. Lemma. Let (P(:S3) be a non-trivial and non-splittable graph, and
we suppose that there are two admissible 2-spheres L and L' of type 1

for (Pczss) giving decompositions

ne

®csd) (plcsz’) Ve (chss), and

n

(P<:53) (Qc:SB) VZ,(Q'czss), respectively.
If (Qc:SS) i8 prime, then either (Plc:SB) or (P2<:SS) has (Qc:SS)

as a prime component.
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Proof. Let w=2X2nP and w' =1X'nP, and we may assume that Q=PnAF
and Q' = PerZ'. If ZnXZ' = @, then we are finished ; and if w = w' and
LnX' = w, then we are also finished. We may assume, after a slight modifi-
cation, that X nX' consists of a finite number of simple loops. We distin-

guish two cases

Case 1. w # w' : We may assume that ZnZX' consists of a finite number
of mutually disjoint simple loops, say Cps vve s Sy Let Tl’ cee Tv be
disks on X' bounded by Cis v 5 Gy respectively, such that vTi W',
Let < be an innermost loop; that is, ZIWTl = BTl =c- Let 01 be the

l}JTI bounds

in S3 such that Bi # w by Alexander’s Theorem [1].

disk on X bounded by ¢ with 9, # w. Then the 2-sphere o

a 3-ball, say Bi,

Since (P<:Ss) is non-splittable and 01(1P'= @ and Tlr\P = @, it holds

that Bier = . Now we have a new admissible 2-sphere (I - 01) uT, of

type I which gives the decomposition (P<:SS) = (P1<:SS) v (P2<283). After

deforming (I - 01) ut, slightly away from X', we may obtain a new admissi-

1

ble 2-sphere, again denote it by Z, which intersects L' in a subcollection

of c¢ , C .

2’ v

By the repetition of the procedure, we can get rid of all intersections

c <y of XnX'; thus Lemma 4.1 is established for Case 1.

1, cee

Case 2. w = w' : This case is the same as that of Suzuki[8, Lemma 3.9].

We may assume that InZ' consists of a finite number of simple loops, say

Clo e s S dl’ cee dk’ such that cirwcj =0 (i#3), d.lndj = w (i#3)
and (cl U.ooo Ucv)rw(dlu... udkj = @. By the same way as that of Case 1,
we can remove the loops Cl’ cee s S and now we may assume that XnZX' =
d1 Ues de. At least one of these loops, say dl’ bounds a disk, say tl,
on X' which contains no point of Z in its interior; ertl = atl = dl'
Let 1 and si be disks on I bounded by d1 with Sy usi = %. Then we



two admissible 2-spheres Z. = s_ ut, and 22 = si ut, of type I for (Pc

1 1 1 1
SS). We can deform Zl UZZ in 83 so that Zlnzz = w and (Zl UZZ) nxn' =
d2 U.eoo de. Moreover, we can deduce easily that Zl U ZZ decomposes (P c SS)
into three graphs, say (Picss), (Pécss) and (P%CSS), such that
{ (plcs3) = (picsz') v (pécs3) and (p‘zcss) = (péCSS) if ot A,
(plcs3) z (Pich) and (p2c53) z (pécss) v (PécSS) if ot v
Repeating the procedure, we have A+1 admissible 2-spheres, say Zl’ s

Z)\+1’ of type I for (PCSS) having the one point ® in common. In parti-
cular, these 2-spheres decompose (PICSS) and (ch'Ss) into A+ 2 graphs

and (Z,u... UZ>\+1) nZ' = w. Since (Qc SS) is prime, we can take an admi-

1
ssible 2-sphere of type I, again denote it by Z', in S3 such that Z'

n

gives the decomposition (Pc 53) Qe SS) v (Q'c SS) and (Zl Ueou U Z)\ﬂ) n

= ' =
AZ' (Zlu... UZ}\_‘_l)nZ w.

Thus, we can conclude that (Qc SS) is a prime component of either (P1 c
SS) or (P2 cSS). This completes the proof of Lemma 4.1. 0

4.2. Lemma. Let (P CSS) be a non-trivial and non-splittable graph, and:
we suppose that there are two admissible 2-spheres I of type I and L' of

type 11 for (PCS3) giving decompositions

{14

3 3 3
(PcST) (P1cS)VZ (PZCS),and

Q< 53) ey Q' < SS), respectively.

e

(P s’
3 . . . 3 3 3
If (QcS") <s prime, then either (Pl cS™) or (P2 cS87) has (QcST)

as a prime component.

Proof. We set InP =w and Z'nP = {a,b}. If ZnI' = @, then we are
finished ; and if w = a (resp. w = b) and ZnIXI' = w, then we are also
finished. We may assume, after a slight deformation, that X nZX' consists

of a finite number of simple loops. We distinguish two cases :
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Case 1. wn{a,b} =9 (i.e. w # a, w # b): We may assume that Zn3X'
consists of a finite number of mutually disjoint simple loops, say Cl’ oo

c,- let © > Cyo respectively,

1’ 17 00t

such that s # w. If there exists a loop, say c.» in ¢

> 0, be disks on I bounded by ¢

.o c such
1’ > v

that c; bounds a disk T, on L' with Ti{1P ='Tif1{a,b} = (, then we can

choose an innermost one, say s in these loops ; that is, < bounds a disk
! it} = = = .

T on with T1r1P @ and T nTl 3T1 c1 Now we can remove c1

from X nZ' by changing I as the same way as that of Case 1 in the proof

of Lemma 4.1. Therefore, we may assume that every ci (i=1,...,v) bounds

disks Ti and Ti on L' such that Tier = a and Ti(\P =b; and so ci

is essential on the annulus A' = %' - °N(P;S3). Let < be an innermost
one on I ; that is, GlfWZ' = 801 =c. Then oy is a disk in °E(P) such
-that GlrnA' = 801 =c- This contradicts to Definition 2.3(iv), and so we

deduce that X nl! @ ; thus Lemma 4.2 is established for Case 1.

Case 2. wn{a,b} = w : In this case, we may assume that w = a (w # b).

Now we may assume that X nZX' consists of a finite number of simple loops,

say ¢ , C d ... , d,, such that c:.L ncj =@ (1#3), di ndj =

1’ A
(i#j) and (c1 U.ooo ucv) n(dl U.oo Udk) = (. By the same way as that of

Case 1, we can remove c1 Ueus ucv from ZnZ', and then we may assume that

Inx' = d1 VIS UdA. It follows from this condition that every di bounds

a disk, say ti’ on I' such that ti #b (i=1,...,)). Now Lemma follows

by the same argument as that of Case 2 in the proof of Lemma 4.1. 0

4.3. Lemma. Let (p<:33) be a non-trivial and non-splittable graph, and
we suppose that there are two admissiblé 2-gpheres L of type 11 and L'
of type 1 for (Pc:SS) giving decompositions

3, ~ 3 3
(PcS™) = (Plcs ) #Z (PZCS ), and

10



(P‘:SS) = (QC:SS) Ve (Q'céss), respectively.
If (QC:SS) is prime, then either (Plczsz) or (P2<:Ss) has (Q‘ZSS)

as a prime component.

Proof. The proof of Lemma 4.3, which is omitted here, is very similar to

that of Lemma 4.2 exceptkfor obvious modifications. B

4.4, Lemma. Let (P<:SS) be a non-trivial and non-splittable graph, and
we suppose that there are two admissible 2-spheres I and L' of type 11

for (Pt:SB) giving decompositions

1

(s (p1<:ss) s (p2<:53), and

n

(Pes) 2 (QeS’) #y, (QcS), respectively.
If (Qc:Sz) i8 prime, then either (Plc:SS) or (ch:SS) has (Q<:SS))

as a prime component.

Proof. We set ZnP = {a,b} and Z'nP = {a',b'}, and we may assume that

(Q<:SS) is obtained from PnA In the following three cases, there is

e
nothing to prove :

(1) Zol' =9,

(ii) {a,b}n{a',b'} consists of one point, say a = a', and ZnI' = a,

(iii) {a,b} = {a',b'} and InZ' = {a,b}.

We now assume, after a slight modification, that X nZI' consists of a
finite number of simple loops. We distingﬁish three cases :

Case 1. {a,bln{at,b'} =@ : If ZnZ' # 0, Fhen we may aséume that ZnZ!
consists of a finite number of mutually disjoiht simple loops, say Cls wve s
- For clarity, we divide the proof into three steps.

(1) We suppose that there exists a loop, say i in ZnZ', such that

s bounds a disk, say T;, on L' with Tifw{a',b'} = ., Then, we can

11



54

choose an innermost one, say c¢., in such loops ; that is, o bounds a disk

1,
1 - = ' s
Tl on I such that Z!\Tl 8T1 cl. Let 01 and 01 be the disks on

Y bounded by ¢y

If Glr1{a,b} =@ or Oirw{a,b} = @, we can remove c, from InI' by
changing ¥ as the same way as that of Case 1 in the proof of Lemma 4.1.

If Olrw{a,b} = a (or o,n{a,b} =b), then it follows from the same argu-

1
ment as that of Case 1 in the proof of Lemma 4.2, that the annulus A = I -
°N(P;83) is compressible in E(P), which contradicts to Definition 2.3(iv).
We see that such a loop c; does not exist.

(2) If there exists a loop, say C.s in ZnZXZ' such that ci bounds a
disk, say Oi, on X with Oitw{a,b} = @, then we can also remove ci from
ZnX' by the same way as that of above (1).

(3) Now we may assume that every < separates a and b on I and

a' and b' on X' (i=1,...,v) and so c cv are concentric on both

17 e

L and I'. A single one of these loops, say cl, bounds a disk, say 01, on
Z which contains no point of X' and contains a. Let T and Ti be the
disks on I' bounded by ¢ with T, ® a' and Ti > b'. If 01<:AZ', then
we have two admissible 2-spheres Zl =0,UT and 22 = Glthi of type II

for (Pc:Ss) and also for (Q<:SS) with Zl npP = {a,a'},Zz nP = {a,b'}.

Since (chss) is prime, one of (QnA. cA_. ) = (PnA, <A_ ) and (@QnA
z )} z z X
1 1 1 1 2
c AZ ) = (PrwAZ c:AZ ) represents a trivial knot (i.e. is equivalent to the
2 2 2 ‘
standard disk-pair (D1<:D3)), provided that AZ c AZ' and AZ c AZ" and
1 2
so we can deform I so that ZnX' c‘c2 U...uc. This argument implies
that a e Gl c VZ' (and also b e VZ' as well), and so XZnZXZ' consists of
even number of loops.
Now in the loops ZXnZi' = CjU...uc, we choose adjacent loops on I, say

12



c1 and Cys such that the annulus B < I bounded by clthé lies in AZ"

Let B' be the annulus on X' bounded by c uc,. Then the torus BuB!'

bounds a socalled solid-torus, say T, in AZ' as BuB' is unknotted in

83 (Alexander [1]). Since (Q<:83) is prime, it is easy to check that TnP
= @ from Definition 2.3. Therefore, we can deform X along T ambient iso-

topically in S3 keeping P fixed so that InX' c CgU...UC .

Repeating the procedure, we can deduce that X nZX' = @ and also Zr\AZ'

= @ ; and completing the proof of Lemma for Case 1.
Case 2. {a,b}n{a',b'} consists of a point : We can assume, without loss
of generality, that a # a' and b = b' ; and that ZInI' consists of a

finite number of simple loops, say c , c.,d e dA’ such that

1, -\)’ 1’

cincj =0 ({d#7), dindj =b (i#j) and (clu...‘uc\))n(dlu...ud)\) = Q.

We also divide the proof into three steps.

(1) If there exists a loop, say c;» in ZnZX' such that c. bounds a
disk T, on L' with Tifw{a',b'} =@ or’ c; bounds a disk o, on VZ;
with Oirw{a,b} = @, then we can remove c; from % nZ' by the same wa} as
that of Case 1(1) and (2). Therefore, we assume that every ci separates a
and b on £ and a' and b' =b on ZI' (i=1,...,Vv).

(2) Now among loops d s dk’ there must be at least one, say dl’

1’

that bounds a disk, say t on L' whose interior contains no other loops

l’

i t M = = 1
Cis vev s c,» d2, e dk and the point a K T ntl Btl d1 and t1 % a'.

Let s, and si‘ be the disks on X bounded by d1 with s, @ a. Then we

have two admissible 2-spheres ZO SltJtl of type II and Zl = SilJtl of

type I for (P<:SS) with Zo(wp = {a,b} and erwP = b. We can deform

i

. 3 _ Vo
ZO uZl in S so that ZO nZl = b and (20 UZl) nx c1 U... UCV ud2 U .

ud Moreover, we can easily deduce that 20 uZl decomposes (P<;SS) into

A\
three graphs, say (Pic:Ss), (Pé<:83) and (P%c:SS), such that

13



b1

R

e

(PicSS) v (pycs), (pzcsS) (pécss) if t, A

1 z’

{(plcss)
c VZ'

(P, < 5%y

1?2

1

3 3, ~ 3 3
] 1 ' 1
(P1c8™), (P,c87) T (Phes”) v (PycST) if t

Repeating the procedure, we have A+ 1 admissible 2-spheres ZO of type

IT and Zl, cen Zk of type I for (P(ZSS) having the point b in common

such that (ZO UZl u...‘uZA) n' =b UC U... Ucv,'Zi nx' =b (i=1,...,v),

3
1 =
ZOer b Ucju...ucy and ZO‘JZI Uaoo UZA decomposes (Plc:S ) and (P

3, . . -
c S) into A+2 graphs. The argument here is very similar to that of Case

2

2 in the proof of Lemma 4.1.

(3) Now it is easy to check that every c; separates a and b on ZO

and a' and b' on X' (i=1,...,v), and so we can remove Cis wve 5 € by
the same way as that of above Case 1(3) ; proving Lemma for Case 2.
Case 3. {a,b}n{a',b'} = {a,b} = {a',b'} : We can assume that a = a' and

b =b', and that ZnX' consists of a finite number of simple loops, say Cyo

1 1] 3
> o dl’ cee dk’ dl’ e dK, and even number of simple arcs, say e

s €ops such that c; ncj =0 (1#3), dirwdj

a (i#3), dfnd} =b G#5),

= B = i 1 § 1
e;ne. = de, Bej {a,b} (i#3), (clu...uc\))n(dlu...udxudlu...UdKu

eju... U eZm) =9, (d1 u...&jdk)rw(di Uwuo'oU dé) = @, (d1 U ...LJdA)rw(el U.oo

ue ) = b. If there exists a loop,

Zm) 2m

say co in ZnZ' such that cs bounds a disk T, on L' with Tirw{a,b}

= (] t
a and (dltj...leK)(1(61 U...ue

=@ or a disk o, on Y with Girw{a,b} = {, then we can remove ‘ci from
Z nZ' by the same way as that of Case 1(1) and (2). Therefore, we assume
that every cs separates a and b on bdth Y and X' (i=1,...,v). It
should be noted that if v > 0 then m =0, and if m > 0 then v = 0.
There are two subcases to consider :

Case 3.1. ZnZ' = CpuUene Ucthdlu... UdAleiU... udé : In this case,

Lemma follows from the quite similar argument to that of Case 2(2) and (3),

and we omit the proof.
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6<

2. 202 = 'u... ! :
Case 3 dlU deudlu udKuelu ue2m By the same

way as that of Case 2(2), we have A+k+1 admissible 2-spheres I of type

0

IT and Zl, vee Z)\, Zi, , Z; of type I for (PCSS) such that
= 1= * = = = i j * * =
ZOnZi a (i 1,...,)\),20n2k b (k 1,...,K),Zin2j a(1#3),2kn2h
' = i= * = = vt =
b(k#h),ZinZ a (i 1,...,)\),an2 b (k 1,...,K),ZOnZ e u... v

3 3
8 * *
e and ZOUZlU...UZXUZIU...UZK decomposes (PlcS) and (PZCS)

into A+k+2 graphs.

then the simple

We take in X nZ' adjacent arcs on I', say e and €5
loop e1 ue'2 bounds a disk, say €, on I' such that Zona = 9 = eluez.
Let 6 and &' be the disks on ZO bounded by e ue,. Then we have two
admissible 2-spheres Z(l) = due and Zg = §'uve of type IT for (PCSS)
with ZgnP = ZgnP = {a,b}. We can deform Z(l)uzg in S3 S0 thaf Z(l)n Zg
= {a,b} and (E(l) ng) ni' = e U...Ue, , and in particular Z(l) uzg uZl Uoeus

UZA U Z"l‘ Usow U ZZ decomposes (P,1 c Ss) and (P2 c SS) into A+x+3 graphs. k

Repeating the procedure, finally we have A+k+m+1 admissible 2-spheres

0 0 i} .

Zl, e Zm+1 of type IT and Zl, cen Z}\, Zl, e ZK of type I fqr

(PcS>) such that zgnzg = {a,b} (E#0), zgnzi = a (E=1,...,m+1; i=1,...,
0 * = = s k= = i F * * =

Ny BaTE = b (E=lml kel 0), I0Zo = a (43), BB = b (kAR),

ZgnZ' = {a,b} (E=1,...,m1), 3,02 = a (i=1,...,0), a3t = b (k=l,... k)
0 0 . . 3
and Zlu...UZm+1U21U...UZXUZIU...UZK decomposes (PlcS) and (P

c Ss) into = A+k+m+2 graphs. Since (Qc 83) is prime, we conclude Lemma

2

for Case 3.2 as the same way as that of Case 2 in the proof of Lemma 4.1.
In every cases, we see that at least one of (P’i ch) and (PZCSS) has

(QCSS) as a prime component, and completing the proof of Lemma 4.4. 0
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