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Abstract

In a regular group divisible (GD) design with parameters v, b, r, k,
Ayr AZ satisfying rk - sz = 1 and kz = kl + 1, it is shown that the
design must be symﬁetrical (i.e., v = b). Furfhermore, the parameters

of such symmetrical regular GD designs can be derived in terms of

only two integral parameters.

1. Introduction

The lafgest, simplest and perhaps most important class of 2-associate
partially balanced incomplete block designs is known as group divisibl
(GD). A GD design is an arrangement of v (=mn) treatments in b blocks
such that (i) each block contains k distinct treatments, k < wv; (ii)
each treatment is replicated r times; and (iii) the mn treatments can
be divided into m groups of n treatments each, any two treatments

occurring together in A, blocks if they belong to the same group, and

1
in Az blocks if they belong to different groups. GD designs are

classified into three subtypes : (a) singular, if r = Al; (b) semi-

regular, if r > Ay and rk = A,V ; (c) regular, if r > Al and rk > Azx
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In this paper, as some boundary between a semi-regular type and
a regular type, we may consider a regular design satisfying rk-k2v=l.
Among this class, a case with A2=Al+l, that has a strong statistical
meaning on optimality, is discussed. We here characterize regular
GD designs with parameters v, b, r, k, Al’,kz satisfying rk—kzv =1

and A2 = A,+1, by showing a symmetry of the design and deriving a

1
presentation of parameters in terms of only two positive integers.

2. Symmetry of Regular Designs

The problem in this section is now as follows. Does there exist a
non-trivial regular GD design with parameters v = mn, b, r, k, Xl’

Xz satisfying‘

(2.1) rk - AZV =1,
(2.2) Ay = Ay + 1,
(2.3) b > v ?

To show the non-existence of such GD designs, we first need two
lemmas.

Lemma 2.1. Let B, Yy, § be integers such that 8, vy > 2, 0 < § < By
and (BYz-l)/{G(BY—G)} is an integer greater than or equal to 2.
Then either 1 < § < v or (B=~1l)y < 8§ < By-1.

Proof. Since B, vy > 2, it is obvious that (BY2—1)/{6(BY-6)} cannot

be an integer if 6§ = 1 or § = By~-1. Hence 1 < § < By~1l. Now

(2.4)  (BY2-1)/{6(By-8)} > 2 iff 282 - 28ys + (By>-1) > oO.
The roots of the equation 262 - 2By¢$ + (Byznl) = 0 on 8 are given by
§ = (BY)/2 + (1/2) (v28(g-2)+2) Y2,

Hence in order that (2.4) holds it is necessary that

ls - (8v)/2] 2 (1/2) (v2e(8-2)+2) Y2 > (1/2) (v¥(a-2)H /2



= yv(g-2)/2,
i.e., either § > y(B=1) or § < y. Thus, either 1 < § < y or

Y(B-1) < § < By-1l, completing the proof.

Lemma 2.2. Let B8, v, & (> 2) be integers such that(Byz—l)/{S(BY—é)}
(=, say) 1is an integer and § < y. Further let y = ud - a where

0

A

a £ §-1. Then & = u.
Proof. First note that if (872—1)/{6(BY-6)} is an integer then so is
(BYz—l)/G. Therefore, Y cannot be an integral multiple of §, i.e.,

1 <acx §-1. Now

(8v2-1) /{8 (By=8)} = [ByL(u-1)8 + § - a} - 11/(By8-82)

—~
N
w

Y

I

(u=1) + {(u-1)82 + By (6-a) - 1}/(By6-82).

Since y > &, we have p > 2 and the second term in the right-hand
side of (2.5) must be positive. Therefore £ > u-1l. Since £ is an
integer, we get

(2.6) g M.

v

Since p > 2, it follows that & > 2. Next,
2 _ . 2 _ 2 . 2 :
(BY"-1)/{s8(By-6)} = & iff BY"-1 = ES8By-E6~ iff B = (£6°-1)/{vy(&6~-v)}

Hence 2 < vy < &5 and by Lemma 2.1 (replacing B, v, § there'by £, 8§, v
respectively), it follows that either vy < § or v > (E-1)8. Since

Y > §, we obtain v > (£-1)8. Recalling that vy = ué-o, it follows
that ué-a > (£-1)68, i.e., (p-&E+1)8 > a.  Since o > 1, we must have

u-g+1 > 1, i.e., u > & and.applying (2.6), the proof is completed.

Consider now the main problem. Let m, n > 2 in v = mn for non-
triviality. ©Now, a well-known relation r(k-1) = (n—l)Xl+n(m—l)A2
with (2.1) and (2.2) implies

(2.7) r = n + AZ.
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Hence by (2.1)

(2.8) k = (vA,¥1)/r = (mm),*1)/(n+k,) = mn - (mn°-1)/(a+h,)

which shows that (mnz—l)/(n+A2) must be an integer, say t (> 0).

Obviously

(2.9) A, = (mn®-1)/t - n.

‘The relation bk = vr yields, applying (2.7) and (2.8),

(2.10) b = vr/k = mn(n+r,)?/ (mod,+1).

Note that mn and mnA2+l are relatively prime and b‘is an integer.

Therefore, by (2.10), (n+A2)2/(mnA2+l) must be an integer. Also by

(2.3) and (2.10), (n+A2)2/(mnA2+l) is an integer greater'thah or

equal to 2. By (2.9), after some simplification,
(n+A2)2/(mnA2+l) = (mnz—l)/{t(mn—t)}

and hence (mnz—l)/{t(mn—t)} must be an integer (2 2). Obviously

0 < t<mn. Applying Lemma 2.1, we have established the following.

Theorem 2.1. For the existence of a regular GD design satiéfying
(2.1), (2.2) and (2.3), it is necessary that there exist positive
integers m, n, t such that m, n > 2, (mnz—l)/{t(mn—t)} is an

integer and either 1 < t < nor (m-l)n < t < mn-1.

If a combination, m t say, satisfies the conditions of

Ol nol OI
Theorem 2.1 with (mo—l)nO < t0 < mono-l, then the comb1nat10n»m0, no,
té also satisfies the same conditions where té = mono—to, and
obviously 1 < t! < n,. Hence we obtain the following.

0 0

Theorem 2.1A. For the existence of a regular GD design satisfying

(2.1), (2.2) and (2.3), it is necessary that there exist positive
integers m, n, t such that m, n, t > 2, (mnz—l)/{t(mn—t)} is an

integer and t < n.



In view of Theorem 2.1A, in order to establish the non-
existence of a regular GD design satisfying (2.1), (2.2) and (2.3),

it will be enough to prove the following.

Theorem 2.2. There do not exist integers m, n, t (2 2) such that

Kmnz—l)/{t(mn—t)} is an integer and t < n.

Proof. 1If possible suppose there exist integers m, n, t (2 2) such

. . 2 .
that (mnz—l)/{t(mn—t)} is an integer and t < n. Then (mn"-1)/t is
an integer and hence n must be relatively prime to t. Therefore,
there exist a positive integer g and integers’al,az,---,ag_l, ul,uz,
~--,ug such that

n = ult al,
t = uéal - Qs
(2.11) Gp T Hyl3 T Gy s
O.g_3 = ng_ld.g_z Otg_l,
%g-2 T Mg¥g-1 T v
and
(2.12) t > ul > az > a3 > ees > ag_2 > ag—l > 1.

The relation (2.12), together with the fact n >t, shows that

(2013) Ulr UZI D 14 U ; 2'

Now, by Lemma 2.2 and the first relation in (2.11),
(mn®-1) /{t (mn-£) } = u,

= (mnz—l)/{t(mn—t)} = {mn(ult—al)—l}/(mnt—tz)

i.e., ul
2 ‘ 2
(2.14) = Uy + {ult - mnal-l}/(mnt—t )
which shows that ultz - mnoy - 1 =0 and then m = (ultz—l)/(nal)



(ultz—l)/{ul(ult—al)}. Since m is an integer, it follows from

(2.12), (2.13), the second relation in (2.11) and Lemma 2.2 that
(2.15) (o t2-1) /o, (u tw )} =

: My 1o o
Proceeding as in (2.14), it follows from (2.15) that uzai - ultaz
-1 =0 and hence p; = (] - 1)/ () = ey - )/lo, e -0 ).
Since Hq is an integer, it follows from (2.12), (2.13), the third
relation in (2.11) and Lemma 2.2 that
(2.16) (oa2=1) Moo (uogq =)} =

. Moty G tH%17%) H3-
Proceeding as in (2.14), we have from (2.16) that u3a§ - u2a1a3 -1
_ _ 2 _ o .
= 0 and hence My = (U3a2 l)/{a3(u3a2 a3)} which is an integer.
Thus, proceeding step by step, consider the last but one relation in

2 ' .

Hg-1%g-2 ~ l)/{ug_l(ug_lag_2 - ag_l)} is an

integer. From (2.12), (2.13) and Lemma 2.2, since Ggop = Hg® -1,

(2.11) to obtain that (

it follows that

2
-1 - = ’
(“g—lag—z )/{ag_l(ug_lag_2 ag-l)} Hg

whence proceeding as in (2.14) and using the last relation in (2.11)

we get yu a2 1 T Hgo1%g-2 1 = 0 which implies

g g-1
(2.17)  u__, = (wa’  -)/a__ = (o’ -1)/(u a__ -1)
g-1 gg-1 g-2 g g-1 gg-1
=g + (ug_l—l)/(ugag_l—l).

Since by (2.12), (2.13), 2, the second term in the

o >
g-1' Hg =

- right-hand side of (2.17) is a proper fraction. Therefore, from

(2.17), u is not an integer. This is a contradiction. Thus,

g-1
the proof is completed.

Thus, a regular GD design with parameters v, b, r, k, kl’ Az

satisfying rk—kzv = 1 and Xz = kl+1 must be symmetrical (i.e.,



v = b).
Remark 2.1. The following is an illustration of the relation (2.11):

Let n = 32, t = 25. Then

32 = 2.25 - 18,
25 = 2-18 - 11,
18 = 2-11 - 4,
11 = 3-4 - 1.

Hence g = 4, a; < 18, a, = 11, a5 = 4, LBY = 2, My = 2, p3 = 2, u4 = 3.

Remark 2.2. From Theorems 2.1 and 2.2, it holds that: There do not
exist integers m, n, t (3 2) such that (mnz—l)/{t(mn—t)} is an integer
greater than or equal to 2. Writing h = (mnz—l)/{t(mn—t)}, it follows
that there do not exist integers m, n, t, h (> 2) such that

(2.18) mn? - mhnt + ht? = 1.

It is interesting to see whether the.non—existence of m, n, t, h
satisfying (2.18) follows directly from the arithmetic theory of
quadratic forms (treating m and h temporarily fixed) or from the
theory of Diophantine equations. In that case the proofs for the

present problem can perhaps be considerably simplified. But the

authors do not know such an approach.

3. Classification of Regular Designs

We shall derive the parameters of regular GD designs discussed in

Section 2 in terms of only two. integral parameters.

Lemma 3.1. Let a a

17 72
(ai—l)/a2 = aj (say) and (agfl)/al = a, (say)

be integers satisfying a, a, > 1. Suppose

. 2 2 2
are 1ntegers. Then each of (al-l)/a3, (a3-l)/al, (az—l)/a4 and

(ai-l)/a2 is an integer.
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.. 2 _ 2_ - .
Proof. Trivially (al—l)/a3 = a, and (a2 l)/a4 a, are integers.

. )

Now, since a, = (al-l)/a3, we have
. 2 .02 2 2
a, = (a5-1)/a; = {(aj-1)"-a3}/(a;a3)

_ _ _ 2, 2 2, _
Since a, is an integer, it follows that
2.2 2
[(al—l){(a1~l)(al+l) +a3}]/(ala3)
is an integer and in particular, (al-l){(al—l)(al+l)2+a§}/a1 is an

integer. Since a, > 1, a; and al—l must be relatively prime.

Consequently, {(al—l)(al+l)2+a§}/al is an integer. Now,
2,2 _ 3 2 _ 2_
(al l)(al+l) +a3 = aj + aj a; +.(a3 1),

and, therefore, the integrality of {(al—l)(al+l)2+a§}/al shows that
(aé-—l)/al is an integer. Similarly, (ai—l)/a2 is also an integer.

Thus the proof is completed.

Let o be a positive integer with «a 2. Define polynomials

Y

Pt(a) for t > 0 as

PO((X) 1, Pl(a) = oy

(3.1)

]

P (o) = aP,_j(a) =P _,(a), t=2,3,--.

In this case, it is easy to show the following two lemmas.

Lemma 3.2. For each fixed a (2 2), {Pt(a)}, t > 0, is a strictly

increasing sequence of positive integers.

Remark 3.1. From Lemma 3.2, it is obvious that Pt(a) > 0 for all
t >0 and o 2 2. By (3.1), Po(a) =1, Pl(a) = a, Pz(a) =,a2—l,

P3(a) = a3—2a, P4(a) = a4-3a2+l, etc.

Lemma 3.3. For each t (> 2) and each a (> 2),
{P (o) + P _,()}/P _;(a) = a.

In particular, Pt(2) = t+]1 for every t.



On the other hand, it follows that the definition in (3.1)

gives another representation of Pt(a) as

Po(a) =1, Pyla) =a,
(3.2) 5
5@)P (a) =P ;)" -1, t=2,3,""".

In fact, P__,(@)P () = P__ (@)® = P,_,(@){aP | (@)=P,_,(a)}-P__; (@)?
= aP,_,(@P_ (@) -P,_, P _ (% =2_ (7{cP £-2 (@) Py @)1
Po_,(@)? = P (@){P__;(@)+P (@) =D, _ (@) }=P_ )2 =P, (@P ()

2(@)2, for t > 3. Hence Pt(u)Pt_Z(a)—Pt_l(a) = Pz(a)PO(a)
-Pl(a)2 = -1. [Note that Lemmas 3.2 and 3.3 can also be derived from
(3.2) by induction.] The form of (3.2) will be used frequently.

Lemma 3.4. Let p and s be positive integers such that p > s. Then
(pz—l)/s and (52—1)/p are both integers if and only if p and s are
of the form

p = P (o), s = P

for some o > 2 and t > 1.

Proof. [Sufficiency] Let p = P (a), s = Pt-l

t > 1. Then by Lemma 3.2, p > s and p, s are both positive integers.

(a) for some o > 2 and

Now by (3.2), for t > 2, (pz-l)/s = (Pt(a) l)/Pt 1 a) = Pt+l(a),

(sz—l)/p = (Pt_l(a)z—l)/Pt(a) = Pt_z(a), which are both positive

integers by Lemma 3.2. If ¢t =1, then p = a, s = 1 and trivially

(p*-1)/s = o®-1 and (s®-1)/p

0 are integers. This proves the
sufficiency part of the lemma.  [Necessity] Let p = EO, s = &l
with EO > gl. First suppose gl =1, then p = go = Pl(EO), s =1 =
Po(go), and the necessary part follows with t = 1 and a = EO. Next
suppose El > 1. Let

(3.3) £, = (s°-1)/p = (E2-1)/E,.
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Note that go > &4 implies £y = (gi—l)/go < (Ei—l)/(€l+l) = El—l, i.e.,

(3.4) 52 < gl.

. _ _ 22 _
Now, if £, = 1, then by (3.3), €9 = El 1 and hence EO Pz(El),
El = Pl(gl) and the necessary part follows with t = 2 and a = El.
Next let gz > 1. Note that (pz—l)/s = (55—1)/51 and (sz—l)/p =

(gi-l)/io (= 52) are both integers (with § > 1) and hence by

0’ El
Lemma 3.1, (Ei—l)/gz‘and (gé-l)/gl (= 53, say) are both integers.

Clearly, by (3.4), ;5 (£3-1)/(E,*1) = £,71, i.e.,
(3.5) g3 < gz < Eq-

. 2 2
Now, if g3 = 1, then gl = gz—l, gogz = El—l, so that EO = P3(£2),

£y = Pz(gz) by (3.2). Consequently the necessary part follows again
with t = 3 and ¢ = £y Following the above procedure (see in
particular (3.5) - here {gj} is a decreasing sequence so that at

some stage some gj must be unity), in general there will exist
. _ 2_ =
integers g (> 1), gl > 52 S cee > gg = 1 such that (El l)/EO = 52'

2 2
(E —l)/E = E r " g (E "1)/€ = E 2

2 1 3 -2 -3 -1, -1 =1 (= .

g g g (Eg—l )/59_2 ( Eg)

Then it follows from (3.2) that p = Eo = Pg(gg_l), s = gl = Pg—l(
£

This completes the proof of the lemma.

é_l), i.e., the ﬁecessary part holds with t = g and o = gg-l (> 1).

As seen in Section 2, the present design is symmetrical (i.e.,

v = b and hence r = k). Consequently, after some manipulation along
with v = mn, rk—vA2 = 1 and (2.7), the parameters of this design may
be written as

v =Db = 2n + 12 + (n+l)(n—l)/12,

k=n+ 2 A, = Ay, =1, A

27 1 2
2 2
2 + (n® + Az - l)/(nkz), n.

(3.6). r 2;

e

m

- 10 -
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Here, without loss of generality,

n>>\2.
Because, the complement of the present design does not change both
association scheme and eigenvalues corresponding to r—Xl and rkflzv
in the original design. Then we can consider only a case of v > 2k
which implies n > AZ'

Since m in (3.6) is an integer, (n2+A§ - l)/(nkz) and then

(n2 +YA§

so that ()

- 1)/n must be an integer. But (n2+A§—l)/n = n + (Ag—l)/n,
g—l)/n is an integer. Also the integrality of v shows
that (n2—1)/x2 is an integer. Thus, (Ag—l)/n and (nz—l)/k2 are both

integers and n:>A2. Hence by Lemma 3.4, n and AZ are of the form

(3.7) n = P.(a), A, = P__ (a)

for some t > 1l and ¢ > 2. Then

2 _ 2 _
(3.8) (n -1)/X2 = (Pt(a) —l)/Pt_l(a) = Pt+1(u)'
while by Lemma 3.3,

2,.2 - 2
(3.9)  (@"+A3-1)/(nk,) = {(a°-1)/A, + A,}/n

= {P 4 (@)+P _; (@) }/P _(a) = a.
Applying (3.7), (3.8), (3.9) and Lemma 3.3 to (3.6), the parameters
of a regular GD design with rk - kzv = 1 and Az = Al + 1 can be
written as
v =Db = (a+2)Pt(a), r =k = Pt(a) + Pt—l(a)f

(3.10)

AL =

1 = Peq@ -1, A, =P (ot)r;4m=cx+2,n=Pt(a),

which mean that all the parameters may be expressed in terms of only
two integral parameters a and t. For each o (2 2), t (; 1), Pt(u)

is an integer by Lemma 3.2, so that the expressions in (3.10) must be
integral-valued. Since o 2 2; it follows from (3.10) that m > 4 and

k > 3.

- 11 -
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The existing regular GD designs with rk - AZV =1 and Az =

+1 may be classified on the basis of (3.10) either according to
(; 1) or according to g (; 2). For example,
) t =1 leads to the series

v=>b=qg({@+2), v =k = q+l1, )\l=0, )\2=l,m=oa+2,n=a;

1) t = 2 leads to the series

v=b= (a*2) (a®-1), r = k = a®+a-1, A, = a-1, A, = a,
m=qg+2, n = a2~l;
.ii) oo = 2 leads to the series
v=Db=4(t+l), r =k = 2t+1l, A, = t-1, A, = t, m =4, n = t+1.

1
iing a method in Theorem 8.6.2 of Raghavarao [3], it can be shown
lat the existence of the series (i) is equivalent to the existence
; an affine plane of order a+l. Hence a design of the series (i)
.th ¢ = 5 does not exist. As far as the authors know, all the
:isting regular GD designs with rk - sz = 1 and Xz = Al+l belong

) one of the above three series.

mark 3.2. As shown above, for the existence of a regular GD design
.th rk-kzv = 1 and Az = Al+l, it is neceésary but not sufficient

lat the parameters are of the form (3.10). This leads to a problem
? identifying the values of t and o for which a GD design with the
irameters as in (3.10) really exists. But, this appears to.be an
itremely hard problem. This is just analogous to the following

:oblem: For an affine resolvable 2-design to exist it is necessary

1at the parameters are of the form

v az{(a—l)t+l}, b a{a2t+a+l}, r = a2t+a+l,

k

a{ (a-1)t+1}, A at+l for a

v

2 and t > 0.

1t it is hard to identify the values of o and t for which such a

- 12 -
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2-design actually exist (cf. Shrikhande [4]). Just similarly, it
is extremely difficult to enumerate the values of a, t for which a
GD design with parameters as in (3.10) really exists.
Finally, all the parameters of the present régular GD designs
and v 2 2k

within the scope of parameters r, k < lQKare listed along with

references (cf. Clatworthy [1]).

No v => r =k Xl Az m n references
1 8 3 0 1 4 2 R54
2 15 4 0 1 5 3 R114
3 12 5 1 2 4 3 R145
4 24 5 0 1 6 4 R153
5 35 6 0 1 7 5 non-existence
6 16 7 2 3 4 4 John & Turner [2]
7 48 7 0 1 8 6 R183
8 63 8 0 1 9 7 R191
9 20 9 3 4 4 5 John & Turner [2]
10 80 9 0 1 10 8 R202
11 99 10 0 1 11 9 unknown

Note that the existence of a design of No. 11 is equivalent to the

existence of an affine plane of order 10, which is unknown.

Acknowledgement

Thanks are due to Professor N. Iwahori, University of Tokyo, for
his comments about a polynomial in Section 3, which is derived as

the modified Tschebyscheff polynomial of first kind.

References

- 13 -



103

Clatworthy, W. H. : Tables of Two-Associate~Class Partially
Balanced Designs. NBS Applied Mathematics Series 63,
Washington, D. C. 1973.

John, J. A., Turner, G. : Some new group divisible designs.
J. Statist. Plann. Inf. 1, 103-107 (1977).

Raghavarao, D. : Constructions and Combinatorial Problems in
Design of Experiments. New York : John Wiley & Sons, Inc.
1971. |
Shrikhande, S. S. : Affine resolvable balanced'incomplete

block designs: a survey. Aequationes Math. 14, 251-269 (1976).

-

ul

[N ,ZF’C%;Z'?: EIT- ,,G:'ra,}?&s aMA Carm//affnafOYfC-S 7 1\ :Fiﬁg’flb T H 3.

- 14 -



