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Symmetries of complex projective spaces

Karl Heinz Dovermann

Let X be a topological space and G a group. In this
article G will be either Sl or a finite cyclic group. We

say that X 1is symmetric with respect to G if X admits an

effective action of G. This concept can be considered in many
categories. In the smooth category we consider smooth (Cm)

manifolds with smooth symmetries (smooth actions). Similarly

we can consider topological or locally smooth symmetries. We
discuss the effect of certain algebraic invariants, like
Pontrjagin classes, on the symmetries of a space.

An easy, but nontrivial, example is as follows. The space

X = Sl is symmetric with respect to every subgroup G of Sl,

The space Y = Sl \% Sl has only very few finite cyclic
symmetries. The only finite cyclic groups which act effectively
on Y are Zz and %4.

In some sense Petrie's conjecture [P1l] is the starting point
for the questions discussed in this paper. One formulation of
this conjecture is:

Suppose X 1is a closed smooth homotopy tp”  and

t € H2(X,%) is a generator. If X 1is smoothly Sl symmetric

then p(X) = (l+t2)n+l. Here p stands for the Pontrjagin class.

This conjecture has been verified for n = 3 by Dejter [De]
and for n = 4 by James [J]. It has also been verified in many
other special cases by Hattori [H], Masuda [M1], Petrie [P2],
Wang [Wa], and Yoshida [Y]. These references are only a sample.

The significance of the Pontrjagin class in this context is

that it determines the diffeomorphism type up to finite ambiguity.
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That is a result of Sullivan [S]. Observe also that for n = 3
there are infinitely many distinct differentiable manifolds
homotopy equivalent to tP”. 1In case n = 3, the first
Pontrjagin class determines the diffeomorphism type [MY,W].
A 1-1 correspondence between the diffeomorphism types and the
integers is given through the assignment Xk<——> k where
p (X)) = (4+24K)t°.

The question we are asking is:
Q: How do the Pontrjagin classes of a homotopy complex

projective space restrict its symmetries,

We begin with‘some results on Z., symmetries. A homotopy
equivalence f: X —> Y between smooth manifolds is called
tangential if TX and f£*TY are stably isomorphic. In this

case p(X) = f£*p(Y). We say than an involution (22 action) on

a homotopy complex projective space is of conjugation type if

the Zz fixed point set is Zz cohomology equivalent to a real

projective space. The main result is

Theorem (Kakutani [K], Dovermann-Masuda-Schultz [DMS], Stolz [St])
Suppose n 1is not of the form 2j—l and X 1is a smooth closed
manifold homotopy equivalent to tp". There exists a manifold Y
tangentially homotopy equivalent to X which has a smooth
conjugation type involution.

The proof is based on extensive %2 homotopy theory
calculations, %2 surgery theory and the calculation of
surgery obstructions, i.e., Arf invariants in terms of Sullivan's
characteristic variety formula and signatures. For a result on

free involutions on homotopy EPB'S compare also Petrie [P3].
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Let X Dbe a closed smooth manifold homotopy equivalent to

'mPn. Let t € HZ(X,Z) denote the cohomology generator. If

p(X) 1is not of the form (l+t2)n+l we say that its Pontrjagin

classes are not standard. Masuda and Tsai constructed smooth

z action on homotopy complex projective spaces with
nonstandard Pontrjagin classes. Here m is an odd prime in
[MT] and an odd integer in [T]. The actions considered in
these references have isolated fixed points. The basic results

are

Theorem (Masuda-Tsai [MT], Tsai [T]): There are infinitely
many homotopy complex projective spaces with nonstandard

Pontrjagin classes which admit smooth cyclic symmetries.

Theorem [MT]: Every homotopy ¢P3 admits a Zp symmetry for
infinitely many primes p.
Masuda and I refined the technigque of [MT]. A corollary of

this work is:

Theorem [DM]: Let X_ be the homotopy complex projective

4
space with pl(X_4) = (4—4-24)1:2o This space X_4 admits a
smooth Z action for every prime m and for every integer
which is prime to 30.

These last three theorems are proved using elementary
number theory, equivariant transversality theory and equivariant
surgery theory.

One important difference between the study of Sl actions
and the study of Zm actions is that the Atiyah-Singer Index

and Signature Theorems are much stronger in the presence of an

Sl action. In our next results we add some homological



(dimension) assumptions. The result will be that a symmetry
again imposes very strong. restrictions on the algebraic
invariants of the manifold and that such an action almost has
to look like a linear action.
We now consider Zp actions where p is an odd prime.

Let X Dbe a closed manifold of dimension 2n whose cohomology

. . n+1 . 2
ring is Z[t]/(t ), where t 1is a generator of H"(X,%).

Such manifolds are called cochomology complex projective spaces.

We consider smooth and locally smooth actions of Zp whose

fixed point set F(X) contains a 2n-2 dimensional component
FO. We denote the inclusion of FO by 3Jj: FO —> X and we set
tO = j*t. A result of Bredon [Bl] is

Proposition (i) F(X) = FOJL point.

(ii) H*(FO,Z) contains the polynomial ring Z[to]/(t8)°
Let X Dbe as in the proposition. We say that the action
is algebraically standard if:

(1) p(x) = (1+t%)°*L

(ii) The inclusion Z[to]/(tg) — H*(FO,Z) is an
isomorphism after dividing out torsion.

(iii) p(Fy) = (1+t§)“ mod torsion.

(iv) c(v(FO,X)) =1 = to mod torsion.

(v) As a real representation Tth = an(FO,X) where pt

is the isolated fixed point and x € FO'

Here T denotes the tangent bundle, Vv the normal bundle,
c stands for Chern class and p for Pontrjagin class. The
meaning of all the expressions is clear in the smooth category.

If the action is locally smooth some care is required. Based on
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results of Kirby-Siebenmann [KS, p. 254] and Kneser [Kn] one can
show that FO has an equivariant vector bundle neighborhood in
X. 8o (iv) makes sense. One may have only rational Pontrjagin
classes but in our next theorem the dimension assumptions will
imply that these classes are in fact integral. The proof of the
next theorem is based on extensive computations. First one
applies the Atiyah Singer G Signature Theorem to translate the
problem into a number theoretical one. One obtains an equation
th

P(g) = 0 where ¢ 1is a primitive p° root of unity and P (£)

is a polynomial of degree < p-1l. The coefficients of P are

functions of p(FO), c(v(FO,X)) and the representations Tth
and vX(FO,X). Because 1 + & +...+ Ep_l is the minimal
polynomial it divides P(&), so all coefficients of P (&) must
be equal. From this one draws conclusions and shows:

Theorem [D] Let Z_, p odd prime, act on a closed manifold

X with the integral cohomology ring of cp”. Suppose that the
Zp fixed point set of X has a 2n-2 dimensional component.
(i) If the action is locally smooth and n = 1, 2, 3, the
action is algebraically standard.
(ii) If the action is smooth and n = 4, p = 5, the action
is algebraically standard.
(iii) If the action is smooth, n =5, and (a) p = 59 and
hl(p) = 1(2) (where hl is the relative class number
of Z[E] with £ = exp(2mi/p)) or (B) 7 = p = 53,

p # 31, then the action is algebraically standard.

Because of the low dimensional evidence we make this:
Conjecture: With the assumptions as in the previous theorem,
actions in the smooth category are algebraically standard for

all odd primes p and all n.




Do
s

Various modifications of this conjecture may be formulated.
For example, one can replace smooth actions by locally smooth
actions. Also, for any given dimension one can conjecture that
Zp actions are algebraically standard for almost all (or
infinitely many) primes p.

The concept of an action which is algebraically standard

also makes sense for ZZ action. In particular Masuda [M2] and
Petrie [P3] showed that a cohomology cp”  with 22 action as
above must have standard Pontrjagin class if n = 3 or n = 4.

So p(X) 1is (l+t2)4 or (l+t2)5 in these cases.
Actions of the tori (Sl)n and (Zp)n on manifolds X
cohomology equivalent to rp” (with appropriate coefficients)
have been studied by W. Y. Hsiang [Hs]. So one can ask whether
the existence of an effective torus action implies an algebraic
rigidity of the action. At least one hopes to show that the
Pontrjagin classes of X has to be standard. This has been
shown in many cases by Petrie [P4] and Masuda [M2]. Next we
discuss the assumptions and conclusions of our previous theorem.
Even for smooth actions of Zp one cannot expect a stronger
statement than stated in (ii) of the property 'algebraic standard’.
Here is one way to see this. Bredon [B2, Chapter I, Section 7 or
B3] constructed smooth Zp actions on 5-dimensional spheres with
lens spaces as fixed point set. Remove an open disk around a
fixed point and cross the resulting disk with a second disk on
which Zp acts trivially. Round corners and take the boundary
of this product. The result is a sphere :" with smooth Zp
action and a codimension 2 fixed point set. Here m can be any
integer greater or equal to 5. Choose m = 2n. Now take a

. . . . 2n
connected sum of an appropriate linear action on cp" with 3
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at a fixed point. The result is a smooth action which is

algebraically standard but H*(F.,Z) contains torsion.

0’ .
R. Schultz pointed out to me that there is little hope to
expect any further rigidity results without local smoothness of

the action. Based on results of Cappell-Shaneson [Ccs1l, CS2]

one can show:

Proposition Let X be a smooth homotopy tp" such that

48](pl(X)—(n+l)t2). For every odd prime ©p there exists an

1 such that the fixed point set is

action of Zp on EPn+
X 1 point.

Obviously such actions are not algebraically standard.
These actions are also not locally smooth.

One may ask whether the concept of being algebraically
standard depends on the fact that one has a fixed point set
which consists of a codimension 2 fixed point component and
a point. We might just suppose that the fixed point set
consists of two components. Then one has to modify the
definition of being algebraically standard in the obvious way.

In this more general setting we do not expeét any strong result.

In fact, M. Masuda and I showed

Theorem Let p be an odd prime. There exist infinitely many
homotopy complex projective spaces X with a smooth Zp action
such that p(X) is nonstandard and the fixed point set consists
of two components.
The examples constructed specifically are homotopy
2k+1

equivalent to (P and the fixed point set consists of

two copies of EPk;
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Finally, there is a non-smoothable manifold Ch homotopy

equivalent to EPz[Fleasik—Vogel [Kw] showed

Theorem The manifold Ch has a locally smoothable EE> action
for all primes p = 3 but not for p = 2.

For p = 3 the actions are constructed fairly explicitly.
For p = 2 one uses the Kirby Siebenmann obstruction and the

non-smoothability of Ch to éxclude an involution.
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