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Let En(f) denote the best approximation of f&cC[0,2T], i.e.,
E (f) = inf £ - T ] ,

where | - | is the supremum norm and T,(x) are trigonometric polynomials
“of degree £ n. It was Bernstein [ 3] who first showed the close connec-
tion between absolute convergence of the Fourier series of f(x)€ Lip X
and En(f). In particular, he obtained the following theorem which shows
his result being best possible.

Theorem A. For any given sequencé €,.l0 such that

ii sn/yqf = %,

mn=1
we can find an f € C[0,2T ] whose Fourier series 1is not,absolutely con-

vergent at any point at all and yet satisfies the inequality E (£)< €4.

To prove this theorem, he invented the following lemma which may well

deserve an independent interest.

Lemma A. For any giyen,natural‘numbef N, we can find a trigonometric
polyncmial of the form

T, (x) = z: cos(nx + )
H N/2<n <N Ffa

such that uniformly in X,

TN(X) < /N .



To

Bernstein's original proof of this lemma is due to the theory of char-
acters, while Bari [1] applied Xuzmin's lemma instead and Kahane[4 Jused
Rudin-Shapiro thecrem. Actually Bernstein considered the sum

2
(1) S = E: e(a(gﬁ— + xn)), ( e(u) = exp(2MTiu))
A< n<B
wHere a > 0, 0<x<1 and A,B,N€ N are such that 1< A< BLN.

First we remark that if we apply Salem's lemma(Lemma 2 below)to S, then
we obtain

(2) S K (4a + l/'ina)V—Ef,

which holds uniformly in x,A,B.
On the one hand, from a different stand point, there is a problem of
finding the polynomials ’

(3) C () = 2 e 2,
n<N ’
with e = 1 and |z] = 1 such that
'"n,N
(4) VE < py(z) /N,

‘for all z. Parseval's formula shows

(5) Max  [py(2)|2{¥ .
|z2i=1 :

See e.g. Kahane[5] for recent results. The next example of (3) in the
literature seems to be the following one due to Hardy and Littlewocod[ecf.
7, p-1991: | | ‘

(6) o PN(Z) = z: é(cnlog n + xn), z = e(x)
n<N ' .

which satisfies PN(z)<«»JN uniformly in x. However, as far as I know,
it seems open whether it satisfies PN(z)3>{TT for all x. We notice that

in their example the coefficients Ch = e(cnlog n) are independent of N.

The main purpose of this note is to show that the size of (3) may be
sometimes smaller than\/ﬁ-. We shall show it effectively by constructing

examples.
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First we prove

Theorem 1. For any given N> 1, we can find a sequence ch,.N € € with
3

Icn,Nl = 1 (1< n<N) such that

(7) > cpy 2 < N4
ns N ,

for all ze€ € with |z| =1, where « depends on z.

Proof. Consider the sum

n<N

(8) Sy = Z e'(xn - 2sym),

where 0<x<1 and s> 1 will be suitably chosen(as a function of N)later.
If we put f(t) = xt - 2s4% (1<t<N), then

SSHE < F1(8) < 1 - sAE < 1 - s .
Therefore, if 4s< t < N , then
lev(e)] < 1 - saN,

because then -(1 - s/yN) < -s/{T.
Now we shall apply the f‘ollowingr known lemma due to van der Corput[cf.2].
Lemma 1. If f(t) is monotone and satisfies

lercey < 1-¢8 , (0<e<)

throughout (a, b), then

b
Z e(f(n)) = J( e(f(t))dt + 0(1/8),

a<n<b a

where the constant implied by O is absolute.

If we insert & = s/A/N 1in the above lemma, then we obtain



N
5 Z: e(xn - 2syn) = ‘yu 5 el(xt - 2syE)dt + O(YN/s).

Us“<n<N s

‘Thus we have

N

(9) Sy = Zj 5 e(xn - 2syn) +“f_ e(xt-2svt)dt + O(YN/s).

l1<n<ls s
We appeal to the known lemma below to estimate the first sum in (9).

Lemma 2 (Salem[ef. 7, p.226]). If £''(t) > 0 is monotone, then

, . , , b
) ’ 1 L 7] ) "
e(f(n)) = 0(Max ——— ) + O(\f(yf (t) + £"(t))dt),
ag?gb a<t<hb \ff_"(t) ‘ 2 ~

where the implied bonstants by O's are absolute.

Now for f(t) = xt - 2syt  we have f”(t)v=‘—%~ £73/2 . Hence by Lemma 2
we have
ys°
(10) S e(f(n)) = O(Max , —=- £37%y 4 O(I Jse-3 Man
5 l<t<ls® Vs 1 .
lsrlsus_
Ms2

+ J st73724t) = 0(s) + O(s) + 0(s) = O(s).
1

Next we shall estimate the integral

N
I =j e(xt - 2syt)dt.

N
» Uszv
If we put t = u2, then
VN
IN = 2 J‘ u-e(xu2 - 2su)du
2s
VN AN
= éi. df (e(xug—Zsu))'du + g%— e(xu2—2su)du
1x 2s 2s

&



(s

YN
= f e(xu2 - 2su)du + 0(1l/x).
2s |

Lemma 3 [cf.6 & 7]. If f"(t).z r>0 throughout (a, b), then

)

where &  is: absolute.

b C e .
e(f(t))dt « 1INT ,

From this lemma we have -

_ YN

(11) - f e(xu® - 2su)du = O(INWE).
2s

Thus we obtain from (9)-(11)

S,, = 0(s) +'d(§;x'3/2) + 0(YN/s) + 0(1/x).

N
Finally, by choosing_ s = -——;~ Nl/u, we get
1/4
SN = 9_(1\1 ; ),

where the implied constant by O depends on x. [

If the coefficients Ch N< are independent of N, then the situation in

general becomes more difficult and we then have the following result.

Theorem 2. For any given € > 0, there exist a natural number NO =

NO(G) and a sequence c, = cn(‘ﬁ) € € with .lcn‘ =1 (1<n<N) such

that for all N2N, and z with |z =1,
Z ¢z =« Nz,\/5 *
n £52 '
n<N. . .

Proof. We only indicate the outline of the proof since it is similar

to that of Theorem 1. In this case we consider the sum

e



Sy = }Z e(xn - n%/c),
n;gN
where O<x<1 and 0<c<1l. If we put f(t)=xt - t°/c (2<t< N), then

we have by Lemma 1 .
N

z: e(f(n)) = JF e(f(t))dt + o(Nl‘C),

2<nsN’ 2

Next we apply a known lemma [7, p.62] in order to estimate the above
integral, say I(N). Then after simple calculation, we have for
N » 2(2/0) /(1)

I(N) - I(N/z),=-O(N1'3°/5),

where 0 depends on ¢ and x. Hence substituting in N successively

and adding them all, we get I(N) = O(Nl'3¢/5)-

Therefore we finally obtain

oNe/5 *®y (¢ =1-58/3).
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