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ABSTRACT
Periodically forced.oscillations in nerve membranes
are analysed numerically with the Hodgkin-Huxley
equations and experimentally with squid giant axoms.
It is clarified that chaotic oscillations in the
nerve membranes are -produced through dynamical
processes of stretching, folding and compressing.
Physiological implication of the nonlinear oscilla-.
tions is also discussed.

1. INTRODUCTION

~ The brain is a large-scale network of neurons; Tﬁebneurons > 
generate and propagate trains of nervous impuises éarrying. o
information in the brain. |

The functions of the neurons are realized by nonlinéﬁr

dynamics inherent in ﬁhe nerve;membrénes. The nonlineaf neufall
dynamics can produce various attractors and bifurcations
according to far-from-equilibrium conditions. Fof example,'
a stable limitkcycle representing a self—sustainéd oscillation, or
spontaneous repetitive eicitaticn in the nerve méﬁbranes bifur-

cates through a subcritical Hopf bifurcation point with chénging
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some parameters regulating the far-from-equilibrium conditions

1-5)

of the nerve membranes. In this study, response characteristics

of the nonlinear neural oscillator to periodic force are analysed

6)

numerically with the Hodgkin-Huxley equations ' and experimentally

with squid giant axonmns.

2. THE HODGKIN-HUXLEY EQUATIONS

The Hodgkin-Huxley equations (the H-H eqs.) can describe
various phenomena on nerve excitation in squid giant axons
phenomenologically.6) The H-H egs. are nonlinear ordinary
differential equations‘sith four variables‘ofwthe.ﬁembrene .
potential V,‘the sodium activatioﬁvﬁ;Jthe sodiuﬁ‘inectivation h

6)

and the potassium activarion n. The H-H eqs. and the values of

the parameters used in the numerical analisis are as follows:

dv/dt= I - 120m°h(V-115) - 40n”(V+12) - 0.24(V-10.613) )
dn/dt= 1-mK (V) - n(3 (V) _ @
dh/dt= (1-h)o( a™ - h(i (V) ” | | _ ®
dn/de= (L-n)ck .M - n@ W) o O]
I= 20 + Asin(27T.Ft) | (5)

where & . (V) s and (3 (V) s are functlons of the membrane poten-

tial V. 6)

The term I in eqs (1) & (5) corresponds to the
sinusoidal forcing stlmulatlon to the self-Sustalned neural osc1l-
lator. The amplltude A and the frequency F of the 31nu501da1 |
force in eq (5) are used as the blfurcatlon parameters in the-

follow1ng analy51s. The H—H eqs (l) (5) were numerlcally calcu—

lated w1th the Runge-Kutta method on AICOS 850 Computer at the

A
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Computer Center of Tokyo Denki Unoversity{ The behaviors of the
periodically forced neural oscillator were analysed by a kind of
-9)-

Poincaré mapping, or the stroboscopic plot.7 Namely, the

periodically forced oscillations were observed at a fixed phase

of the sinusoidal force.

3. NUMERICAL ANALYSIS ON THE HODGKIN-HUXLEY EQUATIONS
The periodically forced osc1llations in the H-H eqs. are
classified into three types, i.e. (1) synchronized oscillations,
(2) quasi—periodic oscillations and (3) chaotic oscillations.s-g)
Fig.l shows an example of a harmonically synchronized oscll—
latlon in the H-H eqs. In this oscillation, the forced oscllla-
tion is entrained to the 51nu801dal force' one nervous impulse is
produced during each one period of the force. As the period of
the forced oscillation equals to tﬁaflor‘the‘sinusoidal force,
each stroboscopic plor’io Fig.l-(o) is composed of e siogle point.
Mbreover,-different‘n/o-synchrooizedboscillarions’defined‘below
can be observed in the H—H'eqs.sig)
Definition A n/m?5§ochronized oscillatioo is a‘oeriodic oscil—
lation;such'that | | |
(1) the period of the’forced oscillatioo.just eqﬁals tom tiﬁes
the period’ofAthe‘sioosoidal force,> .’ o |
2)n nervous impulses are generated during m cycles of the
sinusoidal force,

where m and n are positive integers but not always relatively

prime.



The numher,n/m of a n/mfsynchrohi;ed oscillation is
physiologioally eaLled the average ﬁiting‘rate and_oorresponds.to
the rotation number of theﬁoscillation,;o): Regions of n/m-
synchronized oscillations are dtstributeo in thevshapes of Armnold
tonguesll) in the bifurcation parameter space‘A xiF..

Fig.2 shows an exaople of the second type of forced oscilla-
tion, or the qu351-per10d1c osc1llatlon in the H-H eqs. There
co-exist both the rhythm of the natural oscillation and the

-9)

forclng rhythm in the qu351-per10d1c osc:.llatlons.8 As the two

frequencles are relatlvely 1rratlonal a closed curve emerges

8- 9) on the stroboscoplc plot as shown in Fig.2-(b).

asymptotlcally

The stroboscoplc plots in Flg 2~ (b) show that the attractor of

the/qu351-perlod1c osclllatlon is in the form of a 2-dim torus.
Fig.3 shows an e#ample of the th1rd type of forced osc1lla-

8- =9 The waveform

tion, or the chaotlc‘osolllatlon in the H-H egs.
of the chaotio oseiliation is apparently non—perlodlo and the
stroboscopic plots depiot strahge attractors. The stroboscopic
plots in Figs.B-(b)&(c) cleerly show that a part of‘a tubular
attractotAis pihched, stretched, folded amd comptessed during

one oeriod of the force. fhese dynamical processes, which make
the forced oscillation chaotic, are similar to those obseroed in
the forced nohlinear osoillator such as the forced Van oer Pol

system.lz_lB)
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Fig.l A harmonically synchronized oscillation in the H-H egs. (A=
AO.O}LA/cmZ& F=lO0.0Hz). (;)The Waveform§ of the sinusoidal forge
I(above) and the membrane potential V (below). (b) The stroboscopic
plots on the plane V(the membrane pbtential) x m(the sodium acti-
vation) at each 30° phase of the sinusoidal force. The number in
each stroboscopic plot shows the corresponding phase(®) of the:"

sinusoidal force. '
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Fig.2 A quasi-periodic oscillatiom in the H-H eqs.(A=lO.0}LA/cm2&
F=400.0Hz).> (a)The waveforms of the sinusoidal force(above) and
the membrane potential(below). (b)The stroboscopic plots on

the plane V x m at each 30° phase of the sinusoidal force.
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Fig.3 A chaotic oscillation in the H~H eqs.(A=40.0}iA/cm2& F=300.0
Hz). (a)The waveforms of the sinusoidal force(above) and the mem~
brane potential(below). (b)The stroboscopic plots on the plane

V x m at each 30° phase of the sinusoidal force. (c)The strobo-
scopic plots on the plame V x dV/dt at each 30° degree of the

sinusoidal force.

4. EXPERTMENTAL ANALYSIS ON SQUID GIANT AXONS

The characteristics of the nonlinear forced oscillations in
the H-H eqs. can be experimentally verified with giant axons of

14) The stroboscopic plots on

‘'squid (Doryteuthis bleekeri).g’
the nonlinear forced oscillations in squid giant axons were
displayed on the 2-dim plane V(the membrane potential) x dv/dt(its

time differential).



Fig.4, Fig.5 and Fig.6 correspond to a 4/5-synchronized

2

oscillation, a quasi-periodic oscillation and a chaotic oscilla-

tion in squid giant axons, respectively.

The stroboscopic plots

in Fig.6 show that the dynamical processes producing the chaotic

oscillation are composed of stretching, folding and compressing.

The structures of the attractors in the space V x dV/dt x'S™ will

be reported in detail elsewhere.

dV/dt

15)
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Fig.4 fhe stroboscopic plots of a 4/5-synchronized oscillation in

squid giant axons.

The number in each stroboscopic plot shows the

corresponding phase(®°) of the sinusoidal force.
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Fig.5 The stroboscopic plots of a quasi—periodic oscillation in

squid giant axons.
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Fig.6 The stroboscopic plots of a chaotic oscillation in squid
giant axomns.
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5. ~DISCUSSION

Thé peripdically forced oscillations in both the H-H axons
and squid giaﬁt axons have been classified into (1) the synchro-
nized oscillations, (2) the quasi-periodic oscillatioms and (3)
the chaotic oscillations by examining the & -limiting éets of
the stroboscopic mapping, or the stroboscopic plots. Fig.7 shows
the projection of the chaotic trajectory of the H-H eqs. onto
the plane V x m. Fig.7 implies that the orbital imnstability of
the chaotic oscillation results from the continuous type of

16)

threshold separétrix in the neural dynamics.

The routes from the synchronized oscillatiomns to the chaotic

oscillations in the nerve membranes are successive period-doubling

8-9)

bifurcations and intermittency. Further, there exist the

routes from the quasi-periodic oscillations to the chaotic oscil-

lations via collase of the 2-dim torus in the nerve membranes.g’ls)

Flg 7 The projection of the chaotlc trajectory of the H-H eqs.
onto the planme V x m (A=40. O}AA/cm & F=300.0Hz).
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When the bifurcation parameters were changed in the global

ranges, alternating periodic-chaotic sequences were observed both

17)

in the H-H eqs. and in squid giant axonms. For example, the

following sequence was obtained in the H-H eqs. when the bifurca-

tion parameter F was changed from fN(the natural frequency) to

18) .
ek

where n/m and C correspond to a n/m-synchronized oscillation and -

2f 1> :-- n/(o+l) --- = 3/4=C—=>2/3>C+>5/8C>3/5>C>1/2
a chaotic oscillation, respectively. The average firing rate, or
the rotation number of the synchronized oscillations are distri-

8.19-
buted according to the Farey series of rational numbers. »19-22)

The average firing rate of the cﬁaotic oscillation is an inter-
mediate value between those of the neighboring synchronized
oscillations in the regions of the alternating periodic-c¢haotic
sequences because the waveform of the chaotic oscillation is mainly
a mixed pattern of those of the two Synchronized oscillations.
Then, the neural oscillatqf caﬁ_réspond smoothly to a change of
stimulating frequency by using the chaotic mode in the semse of
the average firing raté; Moreover, the forced neural oscillator
can generate abundant temporal paﬁterns of graded impulses.l The
axons, which are active transmissidn lings of nervous impulses,
transform the patterns of impulse t:ainé during the propagation.

Fig.8 shows an example of the propagating impulse train in the

H-H axon. It is a future problem to clarify the information
processing in a kind of non von Neumann computer of the nerve

membranes.

(2
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Fig.8 The transformatlon of the impulse train during the propa-v\

gation in the H-H axons.

The H-H partial differential egs. w1th

1l-dim dlffu51on »3) were numerically calculated for the axon with

the length of 10. Ocm and with the radius of 0.025cm.

pattern of the chaotic oscillation in Flg 8-(a) is 1nput at one

of the axon. The boundary condition at the other end was fxxed at

the resting state. Flg 8-(b) shows the correspondlng temporal

pattern after the propagatlon of 8.0cm.

ES

The temporal
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