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ABSTRACT .

The basic patterns in the cellular automata
have been phenomenologically classified into four
types; ‘

Type I- vanishing patterns

» I1 localized patterns
III chaotically propagating patterns
, IV long-lived irregular patterns
A new theoretical method to predict these types s
proposed by using the elementary cellular atutomata.
Furthermore, it -is discussed that the above
mentioned phenomenological classification is not
sufficient, and that the several elementary excita-
tions are playing important roles in the process of
pattern formation. For an example, a special group
of the cellular automata, which permits a certain
solitary wave solution, 1is studied and the variety
of the pattern formation will be discussed together
with the collision processes among elementary
excitations.

t. Introduction

Automaton systems defined on the cellular structure have been studied
extensively from the various kinds of interest in natural science4™6);
morphogenesis and self-production brocess, activity of tHeb central nervous
systems, artificial intelligence, and mathematical Tanguage theory, etc.

The cellular automaton (C.A.) is proposed as a simp]ifiéd model of the
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_ comp]ex huge‘systems,”but the g]gba] “behaviors of C.A. has not been
eiucidated'sti11 now except‘for some simple cases.3v8) - The difficulty in
understanding the 'g]obal chQracfers of C.A. seems to mainly come from the
essentja] discreteness of thé ;ystem; space and time as well as state are
discrete. As the‘resglfs,‘the differentiability and the metric structure of
C.A; is still ambiguous. The ordinary techniques developed in the smooth
systems sucH_as the perturbationa] approaches are not applied successfully.

One of the 1mportant problems in C,A. is tovunderstand the space-time
patterns. Recently, numerical studies have ‘mpde clear the variety of
patterns,1v2) and the statistical broperties have been analyzed by using the
ergodic-theoretical concepts; entropies, Lyapunov exponents, and dimensions,
etc. However, these .approaches are too rough to estimate the detail
behavior of each individual system as well as to predict the interrelation
among several rules which belong to a lineal family. .

In §3, we will study a special 1-dimentional family which admits a
certain solitary wave solution. The elementary excitations, such as
soliton, breather and kink, play important roles for the growth of complex
patterns. The transient behavior of each elementary excitation gives us a
siénificant information about the individual C.A. system. If the global
behaviorsrof C.A. are decomposed into the ;o]]ision processes among these
elementary excitatiéns. one can expect to classify the patterns in a unified
manner. As the detailed ana1ysis will be reported in another,paper.7) ~only
a few examples will be explained in this paper.

Another purpose of this paper is to propose a new algebraic  method to
predict the global behaviors of C.A. systems. Some theoretical approaches

have been proposed, but only a few systems with additive rules have been



analysed so far. It has been desired to develope a new systematic method to
attack the non—addifive cases. Our approach is based on the irreducible
decomposition of the local rule. Each local rule is wuniquely -decomposed
into the sum of the symmetric and asymmetric fundamental functions. As the
results, the rules with a special symmetric function are classified into a
common family. In this paper, only the basic idea of our method will be
explained by using the simpie C.A. systems with nearest neighborl inter-
actions. The further app1icat19n to the more complex systems will  be
reported in the forthcoming paper.g)

Let us consider the following systems,
Si¥1 = F(Sio1h Syt Sinh (1-1)

where S;t is the 1 or 0 state on the lattice site i at time t, and F is the
mapping function describing the time evolution. Denoting the.?unction R of

Z as follows,
R(Z) = Sj_qtez2 4+ S;tezl 4 554820 (1-2)

the mapping F is the two-valued function on the real number R. Under the
~ conditions that F is syﬁmetric. F(R(Z)) = F(ZZR(Z‘1)), and F(0) = 0, the
number of the admissible rule is 2% = 32. These admissible rules are

denoted by F(E(Z)) in the same way as ref.1, i.e.,

R(2) = (0, 4, 18, 22, 32, 36, 50, 54, 72, 76, 90, 94, -
104, 108, 122, 126, 128, 132,.146, 150, 160. 164,
178, 182, 200, 204, 218, 222, 232, 236, 250, 254).

(1-3)



In these 32 rules, there are four identical cases derived from the mirror
jmage relation. Two systems F and F' are called to be mirror image with

each other, if they are satisfying the next relation,

F(X, ¥, Z) = F'(X5, Y527 + 1 (mod.2) (1-4)
where A® = A + 1 (mod.2). It is clear that the space time patterns created
by F and F' are identical when the value of each site is exchanged. as 1 + 0
and 0 >~ 1. Denoting the mirror image relation by F ~ F', it is easy to see
that,

F(164) ~ F(218) , F(132) ~ F(222)

F(160) ~ F(250) , F(128) ~ F(254) . (1-5)

Therefore, the number of independent admissible rules is reduced to 28. The

global classification of these 28 rules are given in the next section.

2. Algebraic structure of elementary cellular automata

The general theoretical approach to C.A. systems has not yet been
succeeded except for the linear or additive systems. The purpose of this
section is to provide a new algebraic method to study the global properties
of C.A. systems. The method proposed here is easily applicable to the more
complex C.A. systems. The fundamental idea is the irreducible decomposi-
tion of the local rule F.

Theorem |

If F(X, Y, Z) is a two-valued function of X,Y, and Z, then the function-
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is uniquely expressed by the following symmetric functions (fg., f1, and fZ);

and an asymmteric function p,

X+Y+12

fg =

f1 = XY + YZ + ZX |
(2-1)

fp = XYZ '

p=(X- Y)Y - I)Z -X)

In the cellular automata given by eq.(1-1), these fundamental functions are

changed as follows,

fo = Si-1 + S + Siy

F1 = 5421055 + 5454471 + S441°54
(2-2) -

f2 = Si-1°5i°Si41
P=(S5-Si-1)(S5 = Si+1) (mod.2) .

In fact, the arbitrary function F can be constructed by - the sum of these

fundamental functions,

F(0) =0
F(4) = p



F(32) = f1 +p

F(36) = p

F(50) = fg + f2 + p

F(54) = fg + fo + f1p

F(72) = f1 + fo + f1p

F(76) = f1 + fo + p

F(90) = fg + f1 + p

F(94) = fg + f1 + f1p

F(104) = f1. + fo

F(108) = f1 + fo + p + f1p

F(122) = fg+ f1 + p + f1p

F(126) = fg + f4

F(128) = fo v (2-3)
F(132) = fo + p + f1p

F(146) = fg + p + f1p

F(150) = fp

F(160) = fo + f1p

F(164) = fo + p

F(178) = fg + p

F(182) = fg + f1p

F(200) = f1 + fqp

F(204) = f1 + p

F(218) = fg + f1 + f2 + p v F(164)
F(222) = fg + f1 + fo + f1p v F(132)
F(232) = f4 t

F(236) = f1 + p + f1p

F(250) = fg + f1 + f2 + p + f1p v F(160)
F(254) = fg + f1 + fo ~ F(128)

In other words, the‘who1e admissible functions(of‘F are an additive ‘gfbups
of {0, fg. f1. 20 pr F1p). | | o
tAhong the e]eméﬁts of this groué, only one special element {fg} can
generate the propagatiﬁg wave in C.A, systems.  Therefore, the additive
sub-group {0, f1, f2, p, f1p} can not create the propagating patterns such

as type III,
Felo, f1, fo, p, f1p} > Type I or II (2-4)
Furthermore, the formation of the localized patterns (Type II) is determined

only by the element {p}, and as the results the Type I and II are separated

as,



Fe {0, fq, fp, fip} > Type I
(2-5)
Fe p+ {0, f1, f2, fip} > Type II .

The Type III patterns are realized in the rules with {fg}. Indeed, the
triangu]ar-11ke patterhs can propagate in the system with {fo} when the
collision of two triangular patterns does not occur. However, there are
three singular rules, fg + f1 + f1p, fg + f2 + p, and fg + p, which reveal
the triangular patterns only transiently. When many triangular patterns are
excited in the system, these three rules can not creat the Type III patterns
persistently, but are settled down in the Type II patterns after a 1long
transient time. In thé work done by Wolfram, it is stated thaf the Type 1V
patterns do not exist in the nearest neighbor 1nteracfion case, but our
classification imp]iés that the above mentioned singular rules are
considered to be the prototypes of the Type IV patterns. The reason why the
propagating nature in these 3 singular rules is abolished in a finite time
can be explained by fracing the non-propagating properties of the mirror

image function of {fo}. These points will be discussed in another paper.

3. Cellular automata with a certain solitary wave

The classification of the global patterns in C.A. is not completely
finished, but the more precise classification is necessary. For example, in
the Type IV case the propagating solitary wave patterns are often created,
and the global patterns are strongly correlated to the existence of such
soliton modes. In this section, we will discuss some typical behaviors
generated in the C.A. systems with a certain soliton so1ut{oh.

Let us cohsider the following systems with the interactions among the



five neighboring sites,

it = F(Sy,0t Sigt Sit) | =)
and assume that the local rule F admit the simple soliton solution
oo OTETTO e Or oo 0??6?0 ee. The mapping F is the two-valued function
defined on the 20 coordinates under the conditions ‘that the rule is
symmetric., The number of the admissible rule is 213 if the equilibrium
condition F(0, 0, 0) = 0 is satisfied. As the systematic survey will be
published in another paper,'here‘on1y a few cases listed in Table I will be
discussed.

Example 1

The collision process of two solitons becomes,

—
*+ 010110011010 =- > ee ( oo
(3-2)

—_— e — —
*» 0101700011010 ¢+ =+ 011010 +« 0107110 - .

From the random initial condition of {510}, some solitons are created, but
the number of soliton is decreased by the even phase collision.

Example 2

G

es 011010010110 *= > =+ 010110 *++ 011010 =e
(3-3)

— € vqu\
«+ 0110100010110 *+ > ++ 01070 *+ (Breather)
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Ex.2

mapping F
Ex.1

(*-coordinates determine a pure soliton)
#*
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0,0,0,0,0
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In this case, there is a typical localized pattern with peridd' 4;
oo 01070 oo > oo 0100010 ce 3w 017101710 s + oo 017071170 oo > oo 01010--. 
This kind of Tocalized pattern is called breather for short. The collisions

between soliton and the breather becomes,

«+ 07101000001010 «+ + «+ 01010 «+

—_—

—_— AAAA |
++.0710700001010 - + .+¢ 010170 ¢+ 071010 o= ,
(3-4)

++ 071010001070 e+ + =+ 010110 =+
—_— o~ T —
*+- 011010010710 s« - =+ +¢- 010710 s+ 017010 oo
After long peribd, the breathers dominate the final stage.
Example 3
++ 011070010110 «- > ¢+ 0707110 ¢« 011070 o-
‘ (3-5)

—— e G—czady,

++ 0110100010110 ++ ++ 0101010 «+  (kink)

Only two coordinates are different.from the case of example 2, but the finaj
stage is dominated by the kink or some solitons. The collisions between

soliton and kink becomes,
s 0110100101017 > ee 070710 «+« 0170710101
| | | (3-6)

———

—
++» 0110100010101 > ++ 0110101

/e
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In the case of Ex.5, the dilute gases of soliton behaves quasi-
periodically (Ex.5-2), but the soliton-turbulence is realized
in the dense gases (Ex.5-1). '
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Examp]e 4

_— — —_— _ —

«+ 010110011010 »« >+« 0711070017010 *++ 0107110010710 =«

— —_

«e 0707100017070 +» = =+« 011010 +++ 010110 «-

The number of soliton is increased by the even phase collision, and ' finally
the soliton-turbulence state is realized.

Example 5

Two solitons afe é1ways conserved after the odd and even phase
col]isioné, but the n-soliton collisions (n > 3)21nduce the multip]icatioh
of soliton. As the results, the soliton-turbulence state is realized after
a long time. . In this case, there may exist the breather pattern and the
nucleus which emit the soliton-chain persistently. However, they are (Qery
unstable and easily destroyed by the collision with solitons.

The results of the simulation are i11ustfated in Figure 1, wheré the
state s = 1 are shown by the black sbot in the white regioﬁ (s = 0). The
system size is 200, and the periodic boundary condition is adobted. |

In this sectioﬁ, welhave not discussed'the‘collision'ﬁrocesses of many
solitons. These problems will be reported elesewhere together with the

statistical analysis of the soliton-turbulence.

4. Discussions

The variety of the global patterns created in C.A. systems are not
exhausted at all by fhe 4 typical pafterns obtained from the phenomenol-
ogical classification. As discussed in §3, it is possfb]e' to exist many

elementary excitations in the system, and the complex pattékns can be

[ 2



created by the collisions of those Vexcitations (soliton, breather, and
kink). Furthermore, there often exist some compound excitations;

(A)-Giant':breather which emits the solitons periodically,

(B) Giant soliton which emits the simple breathers periodically.

Our studies shown in-§3 are the first step necessary for elucidating the
roles of the elementary excitations.

The research of the complex behaviors in C.A. is: an interesting:
statistical mechanical subject. The global properties of  C.A. must be
understood theoretically from each deterministic rule. The basic 1dea
proposed in §2 can be applied straightforwardly to the more complex C.A.
systems; for example the tota]istic‘ fu]es . treated in ref. 2 have been

successfully analysed by the same method.
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