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ABSTRACT
Motion of point vortices are investigated in terms of a.

Hamiltonian dynamical system. The integrability of the

system is surveyed using the Liouville theorem..- As aresult,

threevorticesin an unbounded regionare integrable, while

the existence of boundaries or external flows diminish the

number of the first integrals, and we may expect chaotic

behaviors for fewer vortices.
1. INTRODUCTION

The sfudy of vortex motion plays an eséentia] ro]e in
understanding the complex but fundamenta] aspects of f1u1ds. espec1a]1y
the mechanism of turbulence. Among others. the motion of point vort1ces
not only gives crucialt insight of vortex motion both qua11tat1ve1y and
quantitatively, but also arouse our interest in its structure as a
dynamical system, because of the fact that the motion is derived under
the Hamiltonian formalism.

In recent active studies of so-called chaos, number of works have
been done on the integrability of the motion of point vortices since

Novikov1) shed 1ight on the stochasticity of them. Originally, the

stochasticity of point vortices was conjectured by Onsager in 19492).
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but his argument was based’ on many .vortices. Novikov's approach was new
because he took notice of a few vortices, which is closely related to
the integrability of the Hamiltonian df the motion. Extending Novikov's
idea, Aref3)'4) presented the criterion of the integrability in terms of
the competition between the freedom of the system, i.e. the number of
vortices, and thelnﬁmbermof‘the fifst~integrals. such as energy, the
center of vorticity and the moment of inertia for the unbounded case.
Thus when vortices are in an infinite region and there is no external
flow, the threshould number of the integrable case should be three
according to the Liouville theorem. (see § 2) |

While when‘Qohtices»are in a fénite région or in some extérna]
- flow, fewer than f0urf;re\é2pected t6 be cﬁaotic as predicted by Nbvikoy
because-the boundaries‘of the eXferna1iflows reduce the Symmetry’of the
system, resulting in  the loss of some first integra1§.

In this article, we first present the Hamiltonian formalism of the
motion of point vortices and the first integrals owing to the symmetry
of the system, then discuss the case when a boundary or an external
flow exist. We also comment on the nonexistence of hidden integrals of

the system,

2. FORMULATION

The motion of N point vortices in an unbounded region is governed

by the following equations,s)v
dz. 1 N, . T
g, T -y — X (=1,2,...W
at 2mL x21 z. -z | | ’

(2.1)



where Z; and Tj are the position of j-th vorte* in the complex Z-plane
and its strength, respectively. The prime on the summation denotes the
omission of the singular terms j=k, and the bar on the variables means

the complex conjugate.

Equation (2.1) is obtainable by the following Hami]tonian.G)

1 r. 1 -z

H=—Z_.”zzrij°g Zi‘j]‘ (2.2)
(ix3)

If we define the poisson bracket as

"y 1, 3f 3g 3f 3g ' 2.3)

(£, g1 = )L (3E2a _ 239, (2.
j=1 F axjoyJ Byj xJ ,

where X o and yj are conjugate variables, we can describe the equations

of motion as

x. = { x., H} y. = {y., H} (2.4)

’

We should notice that the Poissor bracket is a little different from the
usual use by the factor 1/1*j. It is because the strengths of vortices
can be negative, otherwise we can replace the variables with those
factored byywﬁﬁﬂso that the Poisson bracket remains the same. For the
later use, we also give the expression of the equations of motion iin

terms of complex variables,

(2.5)
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It is easily verified that the Hamiltonian, eq.(2.2) has the

following quantities as the first integrals, i.e., they commute with the

Hamiltonian in terms of the Poisson bracket,

1) Moment of Inertia,

j=1 il . (2.6)
- 14

which is due to the rotational symmetry of the system about the origin,

2) Components of the Center of Vorticity,*

. v. 2.7
J J ( )
which is due to the translational symmetry of the system.

The check of the integrability of the Hamiltonian is based on fhe
following powerful theorem by Liouvi'l]e,7)'8)

" Theorem (Liouville)

A Hamiltonian in N degrees of freedom can be solved by

quadratures if N independent integrals in involution exist.

It is shown that among above first integrals, I and G* (also T and Gy )

are in involution, i.e.

{1,611 =0 (or

x { 1, GY } = 0 ), (2.8)
but G, and Gy are not;
N .
U6 G F = jzlrj . (2.9) .
N
* This definition is different from the usual one by the factor 1/ jzij
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In order that the integrals are to be in involution, we should notice
that

2 2 - o
{ H, G, * Gy } 0 o (27192

which leads us to the conclusion that the equation 6f motion is
perfectly integrab]e:fof at Teast three vortices in an unbounded.region.
Equation (2.9) shows , however, " that G, and Gy will commute if the total
strength vanishes, which suggests the possibility of the integrable cése
of four vortices.s) .

If there exists a boundary or an external flow, some of the first
integrals are lost, and the threshould nﬁmbér of the integrable case
.becomes lower. For such examples, we will mention in the following
sections, the case of two vortices in a semicircle as.a boundary, and in
a rotating uniform shear as an external flow..With the fofmer, the
moment of inertia is no longer conservative because the rotational
symmetry is broken, and we may expect a chaotic behavﬁor; While W1€h the
latter, the Hamiltonian is decoupled into two parts, each of which
depends only on the coordinates of the center of vorticity; and that of
the relaive motion, -respectively, which imp]ies'that this case is

integrable.

3. MOTION OF VORTICES IN A SEMICIRCLE

When vortices are in a circular region, we should cqnsider the
effects of the mirror images .to satisfy the boundary conditions. If we
assume the radius of the circle to be unity for the sake of simplicity,

the equations of motion of vortices become



70

z, T

N r N
dz,  __ 1|y k-] __ Xk |@Ga1,2,..W
dt 2mi k=1 7 _ k=122 _

j oK k3 (3.1)
whose second term in the right hand side corresponds to the mirror
1mages.9)"12)

We should replace the previous Hamiltonian to the new one,
’ N |z.— z
g = -_1 2r§10g__1_-_1_22rjrklog 3~ %l
4 m 3=l 1-z.z. 4 my=k Il—sz
33 Jk

In this case, only the moment of inertia survives for the first
integral. |

In order to investigate the motion of two vortices in a
semicircle, we locate two vortices in a circle at zq and zp, -and their
mirror images at ?1 and Eé as shown in Fig.L4'Thus this problem
constitute the restficted eight body problem. As far as the two vortices
in the semicirclie are concerned, the moment of inertia is no longer the
integral, because the rotétiqna] symmetry is lost.

9),10),12)

3-1 Simulation Hereafter we present the results of

the numerical simulation of the motioh of two vortices of equal but
opposite circulation in a semicircle,. denoted by their circulation I'q
(=1) and T, (=-1).

In undertaking the simulation, the firsf stép is to find some
particular solutions like, fixed points or periodic orbits.]1) We notice
that two equf]ibrium configurations exist. One of them is stable,
(rie07) = (Wm-#% . ©/4) and (rp.e) = (
(WF- 4% ,31/4), and the other is unstable, (rq, 61) = (0.75264*,1/2)

and (ro.0p) = (0.25578***, 1/2). From them, we choose the former and

(3.2)



apply perturbations to ro, i.e. by shifting ', along the Tine6 = 3n/4,
while I'q is left on the origina] fixed point as the iﬁitia] positions.
(see Fig.2)

As the scheme of the’calculation. Runge-Kutta method of the fourth
order is adopted, and the time step is adjusted to keep E = exp(-81H)
constant to the eight decimal places. We will show the trajectries of
two vortices in the semicircle for some initial positions. Besides, we
add the power-spectrum of one variable rqin the time series for each
cases as a direct evidence of regularity.

As long as the perturbatioﬁ is small, the trajectires are.e11iptic
and tWo dominant frequencieé are shown in the spectrum. (Fig. 3(a))
With much perturbation, the trajectries begin to exhibit complicated
features, though the total shape remains symmétric abouf theAy—axis. We
can observe tiny peaks besidés the two domfnant ones in the
spectrum.(Fig. 3(b)) These peaks gradually grow with the perturbation
until they suddenly seem continuous and the corresponding trajectries
become entangled. (Fig. 3(c) and 3(d))

With further shift of P2 to the origin, however, two regions that
have high density appear in the entangled trajectries, and the
corresponding spectra grow. (Fig.3(e)) At 1as£, two vortices are
separated into two regions, and the mixing is no longer seen, and two
distinctive spectra are observed. (Fig.3(f)) We observe that the
transition from the scattered state to the confined one océures very
sharply by the small change of the initial value of rp (about 107
percenf) At the 1imit, these regions shrink to narrow lines on which

vortices move 1in fhe same direction with a small oscillation. The outer
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vortex makes a close vortex pair with its mirror image, and gives little
effect on the motion of inner one whose trajectry is that of a single
vortex in the semicirc]e.11)(F1g.3(g))

The above-mentioned transition from regular state to another
regular one through chaotic one is specified by means of the value of
energy E = exp(-8mH). When E < 114, the f&rmer regular motion is
observed, and E > 383 corresponds to the 1;tter. Both states are
symmetric with respect t§ the y-axis. Wh;n 114 < E <383, irregular
motion is obtained,

Finally we comment a differént‘kind of motion frcm that are
mentioned above. When ohe vortex is put near the other, they make‘a
vorfex pair and go straight to the bdundary; wﬁere they separate and go
along the boundary in different directions unﬁi] théy.meet and form a
vortex pair again. The repetitioﬁ of this motion fills the whole
semicircle, and affords a billiard type prob]ém; (Fig. 4)

With the problem of the vortexichaog in a circular cylinder, Aref
has presented a case of three vortice§13); and Hardin and Mason, a case
of four vortices.14) Our result is meaningful bécause we realize chaos
with a Tower freedom. We use a semicircular reg%on as a prototype, but
we can expect the same result with other sHapes of regions Tike a
rectangule, etc. As the first evidence of chaos, we adopted in this
paper the trajectory of vortices and the power spectrum of the radius
position of one vortex. |

More details of the vortex chaos for example, the case of two

identical vortices in a semicircle will be argued somewhere by means of

other tools like the Poincare map or the Lyapnov exponents that
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characterize the chaotic behaviors in other ways.

4, MOTION IN A FLOW

As we mentioned in the introduction, existence of an external flow
also diminishes the symmetry of the system. As long as the flow is
incomﬁressib]e,\however, a streamfunction can be introduced, and
1nc1udéd in the Hamiltonian. Let us denote the streamfunction to
(x,y), then two cdmponents of the velocity of the external flow are

given by

9 :
v, = TV | v ="\‘§;{"l’, (4.1)

' Yy
Thus, the equations of motion of vortices arevwritten as

) . o i
.= — H + T.-—-— 1. v, = —-—=—H -~ T. )
5% dy. v Jdyyd FJyJ 3 3xj¢3,(4‘2)

where

‘P- = q)(X]’yJ)

3 .(4.3)

’

and HV denotes eq.(2.2);the interaction Hamiltonian among vortices.

Introducing a new Hamiltonian
H = H_+H ' , (4.4)
Wheré
Y ’

N -
j=1

we obtain the same equation of motion as eq.(2.4). In the next:

subsection, we will mention the case of rotating uniform shear flow as
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an example.

4-1. Rotating Uniform Shear Flow Hereafter we use the complex
variables Zj and zj instead of X5 and Yje If ¢ is given as a quadratié

form in z and z ;

2

v = — ( Az + Az -2Qz2z) (4.6)

where A is the pure shear rate and - is the angular velocity of the
rotational motion, then the streamline is hyperbolic, parallel straight
lines, and ellipse according to |Al>q, IAl=0 and]|Al<q |,
respectively. }
We obtain the equafion of motion of the centér of vorticity by
summing up eq.(4.2) and'(4.3) with respect to j as
4, = i Gz‘— 2 G,) | (4.7)
dt ~

where

N .
G, = ) T. z. (4.8)
Making use of eq.(4.7), the complex velocity w is given by
= 21 9 . -
w = 155 Vv =1i(Az - Q 2) (4.9)

Thus, the orbit of G, is perfectly in accordance with the streamline of
the external flow.

Then we consider the relative motion Sf two vortices. Here we
define a new.variable zp =Z9'= Zp. There are two cases according as’

the sum of .two strengths is zero or not.



1)Tq +Tp = 0 : vortex pair.

Dividing eq.(4.8) by rq, we have

zp = (A zp - @z (4.10)

Thus the relative motion is governed by the same equation as eq.(4.8),
i.e. the orbit in the zR—p1ane should be hyperbola, parallel straight
lines, and ellipse according to the same conditions with the case of the
center of vorticity.

2)T1+Tp=1T%0

Introducing the true center of vorticity

z2g = G, /T | | (4.11)

we can separate the Hamiltonian into two parts, i.e. HG which depends

only on zg, and Hp only on zp;

where
Hy = T ¥lzg,2y) (4.13)
and
ryT, | B T _
He =71 Yzprzp) = 34 109 2g2p (4.14)

Thus the motion of zg is obtainable as the trajectry of 'HG = const.,

while zp moves on the 1line of HR = const., jie.

R? =

T - p2 I 2 _ = 3 o2
ZRZR : R0 exp[ T (A zp 2 Q ZRZR + A ZRJ

(4.15)

2 _ -
RS = exp [ / Tyl



This motion is classified by the three parameters A, @, and T .

5 DISCUSSION

We have so far investigated the motion of vortices in a boundary
or an external flow from the viewpoint of a dynamical system. As a
result, the existence of a boundary or an external flow breaks the
symmetry of the system, which leads to the reduction of the number of
the first integrals.

One important and subtle problem sti11 remains in this subject.
That is about an existence or a nonexistence of hidden integrals
accoring to hidden symmetries of the4systém. With this problem,
Zig11n15). and Koiler and Ca]ba]ho16) havevproven the non-integrability
of four point vortices in an unbounded region. 0ur‘résu1ts are entirely
consistent with theirs, and we can draw conclusions about the

nonexistence of the hidden integrals.
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