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Abstruct

In this note we prove that a solenoidal group
automorphism is persistent if and only if
topologically stable. ‘

§ 0. Introduction.

In [3] Lewowicz introduced the notion of persisfency for a
homeomorphism of a compact connected Riemannian manifold. Then he
showed that every pseudo-Anosov map is persistent and by using this
notion, that is structurally stable under some conditions.

In this note we define as in [3] a persistency for a homeomorphism
of a compact metric space, and study a topological property of a
persistent homeomorphism.

The following is proved.

Theoremn. Let X be a solenoidal group, and let ¢ : X =+ X be

a group automorphism. Then the following (1) and (2) are equivalent;
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@) (X, 0) is persistent,

(2) X, o) is topologically stable.

In [1] Aoki provea that (X, 0) is topologically stablé if and
only if (X, 0) has the:pséudo—orbit tracing property. Further,
there exist solenoidal automorphisms with the pseudo-orbit tracing
property such that one of the following éonditioﬁs holds:

(a)/ (X, 0) 1is not expansive,

(b) (X, o) is mnot dénéely periodic.

Since every finite-dimensional torus is a solenoidal group, we

have the following corollary.

Corollary. Let T' be the r-dimensional torus, and let G be
a group automorphism of T~ Then the following conditions are

mutually equivalent;

(i) 0 1is persistent,

(id) O is topologically stable,

Gii) O has the pseudo-orbit tracing‘property,
(iv) 0 1is expansive, |

(v) 0 is hyperbolic,

(vi) 0 is structurally stable.

The statement is true for a group automorphism of Ifi where R is

the r-dimensional vector space (cf. [4]).

§ 1. Definitions and Examples.




Let £ : X > X be a homeomorphism of a compact metric space
X, d). We denote by ;%’(X):‘thorsetroﬁ all homeomorphisms Qf; X
with metric d(f, g) = max{d(f(x), g(x)) :'x e X} (f, g e F(X)).
We say that an f-invariant subset KC X 1is persistent if for each
£ > Q there is _515 0 with the‘pgoperty that for every g € é%”(X)l
with d(f, g) < ¢ and for every x € K, there is y € X such that
d(fn(x); gn(y)) <e for every n € Z. When K =X we say that f
is persistent. We remark that this notion is independent of the

metric for X. We call £ to be topologically stable if for each

€ >0 there is O > 0 with the property that for every g € # (X)
with d(f, g) <6 thore is a contiouoqs map h : X+ X such that
foh ; h og and d(h, id) <e. If X .is a compact manifold and

£ >0 bis small enough, then d(h, id) < € implies that h maps X
onto itself. Therefore it is;easy to see that every topologically
stable homeomorphism of a compact manifold is persistent. In general

case there is an example that is not true.

Example 1. The finite set X, = {0, 1} is fixed with the

discrete topology for i € Z. Consider X = Hi=—::Xi’ equipped with

the product topology, and the shift homeomorphism o : X + X defined

by (o(x))j = X, for all j e Z. Let d be the metric on X

j+1
defined by d(x, y) = 27" if n is the largest natural number with

Xj = yj for all |j| < n, and d(x, y) =1 if Xq # Yo- It is well
known that o is topologically stable. Now we show that ¢ is not

persistent. Put € = 1/4 and fix any & > 0. Then there is n > 0

such that 1/2n < 8. Define g e F(X) by (g(x))j = % if j < -n

(€N
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A

if "-n = j:
2n+l1
D

, e ¥ o :
X' = (...9 O’ 0’ 1’ 0’ 0’ 1’ 0’ ]') O’ 1’ 0! 0, 1, O’ 0’ ...) e X‘

or j >, (g(x)); = x5 n, and (g(x))_ = x__.

Obviously, d(g,.0) < 6 and g y for all zy € X. Consider

Then for all y € X with d(x', y) <€, it is easy to see that

d(02n+1(x'), g2n+l(y)).z €. Therefore 0 is not persistent.

Let (X, d) and f .be as above. Given § > 0, a sequence

{Xj}j=2 (- sa <b s is called a 6-pseudo-—orbit of f if

d(f(xj), Xj+1)'< § for asjsb-1. Given € > 0, a sequence -

{Xj}j=Z is said to-be €-traced by a point y in X if

d(fj(Y), xj) <eg for a s jsb. Wesay that f has the pseudo-

orbit tracing property (POTP) if for each € > 0 there is" § > 0- such

that every 0-pseudo-orbit of f. can be e€-traced by some point in X.
We say that ‘X 1is solenoidal if X is a compact connected
finite~dimensional metric abelian group. -
Finally, we give two examples of persistent homeomorphisms of

compact totally disconnected metric spaces.

Example 2. Let X be the Cantor set in [0, 1] : i. e. X  is

-2
+37%, + e (g

the set of the numbers x € [0, 1] with x = 3‘_1 i

21
=0 or 2 for iz l). ‘For r z 1, we call the set: X/ [3774,

3—r(i+1)] (0s1is 3r-1) a Cantor subinterval with rank r if

XN (371, 377(i+1)) # ¢ (see [5]). ~ We demote by I(i, r) (i =1,
2, 3, see 2r), the i-th Cantor subinterval with .rank r from the

left. We show that if f'e #(X) is an isometry, then - f is
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persistent. To do this, for any € >0, fix r > 0 with 37T <eg.
Choose 0 < & < 37" such that if d(f, g) <& (g € (X)), then
d(f—l, g'l) < 3%,  For every x € X and every j € Z, define

ij e {1, 2, 3, see |, 2r}' by fj(x) € I(ij, r). | Obviously,’

g(x) G‘I(il, r). Since f 4is an isometry, d(fZ(X), fg(x)) < 37F

and so fg(x) G-I(iz, r). On the other hand, we have that

d(fg(x), gz(x)) <37F (since d(f, g) < §), and so gz(x) € I(iz, r):
i. e. -d(fz(x), gz(x)) <3 T <e, . Continuing in this fashion, we can
see that d(fn(x); gn(x)) < g, for all n 2z 0. A similar way shows

that d(fn(x), gn(x)) < g for all n 0.  Thus f is persistent.

Example 3. Let (X, d) be a compact totally disconnected
metric group, and let 0 : X ~» X be a‘group automorphism.  The group
operation is written by multiplicative form. We show that if (X, O)‘
has zero-topological entropy, then (X, 0) is persistent. It is
known that every group automorphism of X has the POTP (see
Application 2 of [2]). Since (X, 0) ‘has zero-topological entropy,
X contains a sequence X =.XOD XID X2 ) se+ . of completely
O-invariant normal subgroups such that () Xn is trivial and for every
nz0, X/Xk is a finite group (cf. Lemma 14 of [2]). For each

€ > 0, there is k > 0 such that diam(Xk) < €/5.  Since X/ka is

2kh.xk (b, €X)

finite, there is an integer £, > 0 such that” X = Lji=1 i

k
and h. X N thk =¢ for 1 si#js8 . Thus we have that

A

d(h X, hX) = inf{d(a, b) : a € hX , b€ thk} >0 if 1 si# j

Rk (since each hixk is open and closed in X). Let us put dk

\
o

min{€/9, min{d(hiXk, thk) : 1 si#3s Qk}}. Choose fé = é(dk)
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as in the definition of the POTP of ¢ and fix f € F(X) with

d(o, £) < 6. Then for every x € X, {fn(x)}n=_: is a S-pseudo-orbit
of 0. Since 0 has the POTP, there is a point y € X such that |
d(on(y), (%)) < (Sk for ne€ Z. ~Putting n =0 gives d(x, y)

< Gk and so xy_1 € Xk (the metric d is translation invariant).

Hence, we get that d(d™(x), o"(y)) < €/ for n € Z since G(Xk) =

Xk' Therefore we have that
d(£M(x), 0"(x)) s d(£(x), d"(y)) + d(d"(y), 0" (X)) <€

for all ne€ Z, and so 0 : X + X is\‘persistent.

§ 2. Proof of Theorem.

Hereafter X is an r-dimensional solenoidal group with the
invariant metric d and O is a group automorphism of X. We write
the group operation by additive form. First of all we prepare lemmas

that we need. The following lemmas 1 and 2 are known (see § 1, [11).

Lemma 1.  There exist vthe‘r-—dvimensional vector space ]Rr, a
group automorphism Y : R > ]Rr‘, a group homomorphism ¢ : R+ X and a
totally disconnected subgroup of X such that

(1) Voey=0ou,

() X =U®R)+F ‘and YR) =X,
@) VTR NFY =z,
(iv) there is ‘a closed neighbourhood U of 0 in R' so that

Y:U~>X is an -into homeomorphism, $(U) N F = {0} and ¢(U) +F is



a closed neighbourhood of O in X (we shall write U(U) ® F such a

neighbourhoodv Y(U) + F).

We call (]Rr, Y)‘ the lifting system of (X, o).

Lemma 2. Leti F be as in Lemma 1. Then F contains
subgroupé F+, F an(i H such that

(1) o(H) = H,

(i)  F Dot D-.eDn__o"(FH) = {0},

({i) F Do lF DeesDd nn=°go‘“(F') = {0},

@iv). GF—/F" and FJr/ Of+ are finite,

(v F=F eF oH.
The following lemma is well known.

Lemma 3. Let h : R'+ R' be a continuous map, and let € > 0
be any real number. If Hh(v)‘ - V”]RI‘ < € forall ve Rr, then h
is a surjéction; Here. H°H]Rr denotes a usual norm of R’

Proof. Assuming that R'\ h(R') # ¢, we derive a |
contradiction. | If we take bu e R'\ h(]Rr), then u & h(IRr). Hence
we may assume that O é h(]Rr). For, put h'(v) = h(v+u) - u for
ve R, Then h': R+ R’ is a”‘continuoﬁs map such that O ¢ h'(R")
and ||h'(v) - vH]Rr < e for ve R. Let Ht(v) ={(l-t)v + ﬁh(v)
for 0=t =1 and v e ]Rr. Then Ht : ]Rr—f R' is a hoxﬁotopy from

h to id]Rr. Define

FED ) = B g o) | g



for m>0,0st s1 . and v e R with Ht(mV) # 0, then for a
1]
sufficiently large m' > O, Fgm ),; S¥”1;+ Srfl (0=t 1) is a

)

homotopy from Fgm' to idSr—l (since ||h(v) - V*Lmr < € for

v eﬁRr); Since degfee is homotopy iﬁvariént, we Havé that

deg(F§m')) = 1. On the other hand, since h(0) # 0, if we choose « .

m" > 0 small enough, then Fgm")(Sr—l)EE Sr_l and so deg(F§m")) = 0.
. (") ‘

This is cohtfadictory to the fact that F1 is homoﬁdbic to Fim").
Now we give a proof of Theorem. It was showed in [1] that
(X, 0) is topologically stable if and only if the lifting system
(}f; Y) of (X, 0) is hyperbolic (see Theorems 1 and 2 of [1]).
Hence, to see that (1) » (2), assuming that (If; Y) is not
hyperbolic, we pfove that (X, O) is not pérsistehf.
As usual R =E° @ E° @ E" where ES, E© and EY  are the
subspaces corresponding to the eigenvalues of Y with modulus less

than one, equal to one and greater than one respectively. Let s

and be some norms on E° and EY respectively. Since
E€ # {0}, by using Jordan's normal form in the real field for (ES, v),
we get a finite direct sum EC = E°O @ e+s @ E°k of the subspaces E€i

satisfying the following conditions; for 0 s i = k, the dimension of

Ei is 1 or 2, and

Yol | o
YEC = Yl o:n Ik
0 Y,
where Y, : ESi » E°T is an isometry under some norm I'IC of Efi

i
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: Cs C - . ~ o .
and each Ii : E°1 » E"i-1 'is either a zero map or a map corresponding

to the identity matrix. Define a norm l-]c of E~ by
|v|C = max{lv'ilCi : O‘é iskl (v= W s e 4 vk € $i=gEfi),
Clearly"
Hvll = max{‘vsls, |v¢|c, ivu|u} (v = v° }‘vc + vu’e R")

is equivalent to the usual norm of R If B(a) = {v e R : |Iv]] s a}
for a >0, then there is ay > 0 such that w(B(al)) ® F is a closed
neighbourhood of 0 in X *(by Lemma 1 (iv)).b For =x = X) + X, with

x| € w(B(al)) and X, eAF, put
p(x) = max{ay, max([[V7 xl, dCxys OO}

for X by

and define a metric d1
p(x, y) if x -y € ¥(B(a,)) @ F
dy(x, ¥) = !
al otherwise.

The metric d1 is compatible with the original topology of X and in
particular d,(¥(v), 0) = |v]] for v e B(a)). For a € (0, o), we

define F(a) = {x € F : dl(x, 0) s a}. Since

v 1n, .+ 1n, -
F'= N _j0(F)e N __j0(F)eH

is an opén subgroup of F ’(by Lemma 2), there is B > 0 (B < @;/9)
such that F(B) C F'. Here we may assume that the number B is
chosen so that B(B) C r]n=_iyn(B(a1)). Put E = E0 and E' = E°L

© *++ © E°k @ E° ® E'.  For any ve R‘R=EeE', let v = (vl, Vos ®
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e Vr) be: the representation by components with respect to the
fundamental vector of . R'=EeE'. Put € ='B/8 and fix any 6§ > O
(8§ <€). Let ¢ : R'+> R' be the time-one map for the vector field

(¥) given by

WA

i isr,

* v =g coe | :

%) v, =0 x(vl) X(vr)vi for 1
where 'x : R>R is a function of class C . such that 0O < x(t) <1
7y < |t] < 2B/3), x(t) =1 (|t] <B/y) and x(t) =0 (/3 s |t]),
‘and &' > 0 is a real number chosen such that || ¢(v) - v]| <8 for
veR. Let d be a map from w(B(al)) & F onto itself defined by

V) + £ if £ ¢F
d(x) =

V(OW) + £ if £ e F'

for x =Y(v) + f € w(B(al)) ® F. We shall denote again by § the
extension on X as $(x) = x for x é,m(B(al))‘e F. Define a map
g:X~>X by g(x)=0¢o00(x) (xe€X). (Obviously,-dl(o, g) < §- and
g € F(X). Consider x' = ¢(u) where u = (8/4, 0, 0, ss¢ , 0) €

EeE' = R'. Then ve get

4,0, 0) = 4 (@), 0) = [Vl = B/

for all n.z 0., For any

yve We(x') ={z € X:: dl(z, x')ké E}k w(B(Ej) ® F(E) % x',

there are w € B(¢) and f € F(¢) such that y = ¢(w + u) + £, It is

clear that B/B < ”nE(w‘+ Wl < 3B/8, where- m_ : R+ E denotes a

E ¢

projection along complementary subspace E'. Hence there is the
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smallest integer ‘1 2.0 such that 38/8 < [ (oy)™ 0w + w)l| < a, or
dl(o“O(f),,O) > 38/g (6"0(f) € F) holds. Since. wB(ai) is-an"
isometry, we can‘eagi}y obtain that :dl(gno(y), 0) > 38/8, and so
dl(ono(x'), gno(y)) > B/8 = €. Therefore (X, o) is not persistent.

To see that (2) » (1), we show that if (If; Y) is hyperbolic,
then (X, 0) iS'topolbgically stable and a,continuoﬁs map h: X>X
is onto. To get the conclusion, it is enough to check that a
continuous map h constructed in the proof of the statement (B) - (A)
of [1] (see pp. 133-135 and .Correction) is onto. This is sketched
as follows (see [1] for details).’

There is a 1-to-1 group homomorphism w* ::Rr/Kerq,+leRr). In
[1],:R?/Ker¢, is denoted by the symbol V1 ® V2‘ Remark that Ker
c zt by Lemma 1 Cﬁi). Let 30 .denote the metric induced on Vl ® V2
by the metric- dO of 'R'. - We note that do ié equivalent to the
Euclidean metric on' TR' (see [1, p. 123]). Let ¥ : VieV, vy oV,
denote the map induced by Y.  Obviously, W* oY =0 o w*.‘ Since Y
is hyperbolic, Y is tbpologically stable (see [1, pp. 131-132] or [4]).
For any € > 0 (very small), iet 8§ > 0 be the number with the
property of topological stability. Take and fix any f € F#(X) with
dl(f’ o) <.6. Then there is a seqﬁence tfn}n=§ C #(X) such that
fn(wﬁRr))= wCRr) (n 2 0), dl(fn, g) < § for n  large enough and
£ > f (p + ). Fix an integer n such that dl(fn, 0) < §, and put
f () = w*—lyo f o ¢*(v) for velV Je’V ; Then ¥ : V. oV, »

n n 1 2 n 1 2

V, @ Vz“ is a homeomorphism and ao(fﬁ(v), Y(v)) <8 for v e Vi eV,.

So there is a continuous map f_ : V, @ V, > V.-@ V, such that
n 1 2 1 2 :

ﬁn o fﬁ =Y o En and"ao(ﬁn(v), v) <e (v'€ V1 @ V2)‘ ‘.Since the
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natural projection: p : Iﬁr+ V1 $)V2 is a covering projection, there
is a lifting Hn : RF»> RY of Hn such that do(ﬁn(v), v) < e for
v € R. Hence by Lemma 3, En maps “R" onto itself, and so

1'e“v2‘ (since hﬁ»° p=2pe hh)' .= Put

B(V,eVy) =V
~ %

h =9¢ o hn oY 1 Then for an arbltrarlly large n, we get that

h e f =0eh on WRD), ¢ (), x) <& (x € WRD),

hn(WCRr))= w(RF), and 1%1 1s_un1formly continuous (see [1,

Correction]). Thus, hh is extended to -a surjeCtiVe continuous map of

X since W(]Rr) =X by Lemma 1 (ii). We shall denote it by the same
symbol. Since {hn} converges uniformly to some continuous map h
of X (see;[l, Correction]), it follows that h o f =0 o h on X,

dl(h’ id) £ € and h(X) = X. The proof is complete.
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