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Matrices which are knot module matrices

Adrian PIzER (KIR¥ K 72)

Everyone knows the Alexander matrix of a classical knot
group is equivalent to its conjugate transpose. However the
question of how qlose is the connection between this 'hermitién
symmetry' and the property of being the Alexander matrix of a
class;cal'knot group seems to haVe received little attention
prior to the authorfs paper [P1], where we gave explicit answers
to this question on both the module and presentation matrix level
(see [Pf,RemarkAZ,and Theorem 4]). In fact}‘the connection is
so close that we thought it wouldkbe wqrth while to give an
explicit;éxample of a hermitian matrix which does not occuf as
the Alexéndér matrix of a classical knot group; this waé the

;

4motivation for the present paper.

Our results rest on a generalization of theorem 4 in
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[P1] which gives a characterization of those Z<t>-matrices which?
present the middle dimensional homology module of a simple odd

dimensional knot (Theorem A). Améng thé applications given is an
example oﬁ a hermitian matrix H whigh does not present such a

'knot module' (Corollary 3).

Preliminaries

Let k¢ 5%2 be a tame V_dinensional knot in the V+2-
diménsional sphere SVGZ. The covering tranélatiohigroupiAﬁf(X)
of the universal abelian cover ¥ is infinite cyclic, Aut(%) =
'<t>,"and the»action of t can be uéed to‘give the hbmoiogy groups
Hi(i)‘a Z<t>-module structure; Let By= { HfV@1/2j(i) § ﬁ'is
the universal abelian cover of a simple V-dimensional knot"
complement}. |

Then

Theorem 1 Suppose \)1 and \72 are odd numbers and%:Vzmch‘

‘Then %\75 %\)2_.
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2599; (Xearton[X]) Let‘V be an odd number, and H(V¥1/2)(g) be any‘
-~ element of 38\;. Choose & =+1 so that £ =Vmod4. Then there

exists a square Z-matrix V with det(V-&V')=+1 such that

CHpe1/2) X)) = Plev-evt) -

' Here @nitV—QV') is the Z<t>-module with presentation matrix

tv-ev'.

pefinition A matrixz such as V above is called a Seifert

matrix. When V is a Seifert matrizx, THXtV—aV') is called a
(type €) knot module, and any matrix N with 9Pyl Z2<t>-isomorphic

to ?TL(tV—zv') is called a (type &) knot module matrix.

2. The main theorem

Let N’be an;(nxn) Z<t>-matrix which satisfies
A(t) = detN’; c0+c1t+...+cdtd, coCa#0, andAA(1)=i1..

Let .R;Z[1/c0,1/cd] denote the smallest subring of the
rational numbers Q in which cjy and cgq aré units, N' be the
Acoéjugateitranspose of N, and [\ = Z[t,t'i,(1—t)”1j be the ring of
integral ﬁolynomials in t, t~', and (1-t)"1..

Our main theorem is
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Theorem A N presents a (type £)-knot moduls if ané only iﬂ

there is an (n+e)x(n+e)./&:unimodular matrix C such that ’ '%

i

Here I is the (exe) identity matrix, and
e = E d, if €=1, or €= -1 and n is even

d+1, if ©$=-1, and n is odd.

Proof. The case £ =1 is just Theorem 4 of Pizer([P1]. Moreoverf
generalizing this theorem to the case & = -1 requires only slight

alterations to the method'given in [P1]; so we omit a procff

ik

(Note that replacing 'skew-symmetric t-isometry' by 'symmetric t-.
isometry' in Theorem 3 and (4.1) of [P1] gives a characterizatioﬁ

of (type -1) knot modules.)

Example 1 ([P11]) %‘= 1, N = tv-V', V a dxd Seifert matrix.
Put z = (1-t)“1Q Then direct calculation shows Z = -tz = (1-2).
In particular the identity Z = -tz shows
((tv-v' ) 0\) ( zI O , -Z+ZEV' 0
- 0 I 0 I 0 I
= zZI 0 (tv-v")' 0
0 I 0 I
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. zI O :
gence C = ( ) , the block sum of zI and I, satisfies the
0 I .

condition of Theorem A.

E;cémnle 2 2= -1, N = tv+V', V a- dXd Seifert matrix. As

Trotter[T1, p.178] notes, d is even.

Let E = @ 4/ (O 1) , the block sum of d/2 copies of(? 2)) .

o
@]

- "The following corollary follows eadsily from Theorem A.

 Corollary 1 ~ Suppose X is a square (nxn) Z<t>-matrix such that

détx(1)‘=11. For any natural number k, if X = (—t)ki', then X

is a (type'T) knot module matrix, while if X = t(Zk‘HX', and n
H

is even, then X is a (type -1) knot module matrix.

. : k
| 3 X1 0
Proof If X = (—t)kX', take C = ( ) and apply Theorem A.
’ 0 I : '
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221{—11 -0
When X =4t(2k‘1)§', and n is even, take C = ( ), and

apply Theorem A.

Remark That X = X' ihplies X is a (type 1) knot module matfi£

was proved by Rolfsen[R2] using surgical methods.

We shall have need of the following results. Let (™1,
denote the /\-equivalence class of N 'under the equivalence
ralation ofmFox[F,p.199]. Trotter[T2,T3] (and indepentently,

the author) have shown

Lemma 1 There is a finite procedure for transforming N via A-
elementary transformations into a matrix of the form 2zI-B, where

B is an R-unimodular dxd Z-matrix.

That the Z<t>-module presented by N satisfies the conditions
required for Trotter's algorithm to be valid follows from
Zy1)=11; see CroWell[C, Theorem 1.3]1, and [T1, p.179].

Theorem B - [N], = [2zI-B], presents a (type €) knot module

if and oiiy if there is a dxd' Z-matrix U such that

1. (zI-3)U = e((zT-3)0)',

2. U is R-unimodular, and U'1Bk(I—B)k is a Z-matrix, for some K.
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of See {P1,Theorem 4]. When £=1, 1 is established in the
proof
remarks after ecuation(6) and equation(4), and 2 is just

assertion (4.3). The case %= -1 is left to thes reader.

We can now establish

Corollary 2 There are type 1 knot modules which are not type -1

knot modules, and vice versa.
Proof The proof is by example.

Let Ny =  [tp+t+1+E  4t-1 o
: - My = tNg and the Alexander

4-t 1+t

polynomial A(t) = detd; of H; is A(t) = t?+6t3-15t246t+1. nNote
that £M1) = -1. Hence by Corollary 1, N4 is a (type —1) knot

module matrix. ﬁe claim , howev=ar, that N4 is not a (type 1)
knot module matrizx:. (ﬁote that the second elzamentary ideél is
(5,1+t)z<t>, whenée N4 is not cyclic, that is, equivalent to
Z§At).) Direct calculation shows N1 ~ tI4—A1, where I4 is the

4 X4 identity matrix, and

0 0 -1 0
A = 1 0 15 4
O 1 7 —5 "1 .
0 0 -5 -1
Writing By = (I4-Aq)70, [tI,-Aq], = [2I-Bjl, . Hence if N

Presents a (type 1) knot module, by Theorem B there is a 2Z-



142

unimodular skew-symmetric U such that 340 = U(I-Bq"). (cy=cy=1,
so R=Z) But it is easy to see that 34U = U(I-B4') if and only it

AqU = U(ATW'1. We are thus lead to considering the equality

¢ 0 -1 0 0 p g «r 0 p g r -5 0 -1 5
1 0 15 4 -p 0 s t -p 0 s t 1 0 0 0
0 1 -5 -1 -g -s 0 u i -g -s 0 u 0 '1 0 ¢
0 0 -5 -1 —r‘-t -u 0/ -r -t -u 0 4 -1 0 -1

The general solution is

0 P p+4u u
S = -p 0 p+3u | -5p-16u
-p-4u -p-3u 0 u
-u S5p+16u -u 0
which has determinant detS = [(5p+16u)(p+4u)+u(2p+3u)]2. Hence"

detS is a unit in Z if and only if (5p+15u)(p+4u)+u(2p+3u) =

2+38pu+67u2 = +1. Making the change of variables p = 4p'+u';

Sp
u=-p', we see the gquadratic form [5,38,67] is equivalent to
{-5,2,5}. But [5,38,67] has'discriminant 382—20.67 =W1O4,_and«
all reduced forms with this discriminant occur in the two chains
(1,170,-11,(-1,10,11 ana (5,2,-51,[-5,8,21},(2,8,-51,[-5,2,51,
[5,8,-21,(-2,3,5]. (see the adlgorithm in Dickson[D,p.1031]). But.

Theorem 86 of [D] states that the absolute value of the lower



pound for numbers represented by 592+38pu+67u2 for integers p and
u, not both zero, is the lower bound of the [ai], where

[aiﬂHJai+11 constitute the chain of reduced forms equivalent to

(5,38,671. The lower bound is_therefore egqual to two. Thus

5p2+389u+67u2 = +1 has no integral solutions . a contradictioh to

the Z—unimoddlarity of U. Eence N4 does not present a type 1

knot module matrix. |

It can be shown‘that any sguare Z<t>-matrix W with
determinant Al(t) = ct2+(1—2c)t+c is a type 1 ?not module matrix.
(see Pizer[P2]) On the other hénd, the Aleﬁ%nder matrix of the

trefoil knot, Ny = t2—t+1, is not a type. -1 knot module matrix.

Indeed, (t2-t+1) - <t' 1‘) = tI,-A;, where A, = (o -1). By
-1 t-1 101

the above, N;presents aftype -1 knot module if and only if there

is a Z-unimodular symmetric U such that A U = U(AZ')‘1. We are

thus led to considering the equality

LG - LA

' ‘ -2c ¢
which has the general solution U = ( . However
' : : c =2c
32 = Gety = +1 has no solutions in integers.. Hence N, does not

Present .a type -1 knot module.
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Corollary 3 [M] = [ﬁT] does not imply I is a knot moduléﬁ

matrix.

Proof Let N be the matrix

tI4-Aq 0
N = ! '

; 0 tIz—AZ

where A4 and A, are the matrices defined above.\tI4—A1 is a type,

-1, but not a tywe 1, knot module matrix. tIz-AZ is aitype 1,

but not a tyne -1, knot module matrizx. Because each block is

equivalent to its conjugate transpocse , [¥] ='[§']. . Writing B;.

= (I—Ai)'1, i=1,2, wesee N~ M = (zI4—B1 0 j . Now suppose
v 0 ZIZ—BZ

that N is a type § knot module matrix. Then by Theorem B, there

is a 6 A6 Z-unimodular matrix U such that MU ;éﬁﬁ@;

Partition U into a 4 X4 matrix Ug, -4 X2 matrix Uy, 2 X4

matrix Uz, and 2 %2 matrix Uy, U = (01 UZ) . Then MU = &U'H'
implies
(ZI4-B1)U1 = 261'(214—B1)‘ 7 000(1)
(zI5-B,)U, = 3?34'(212-32)' e (2)
(214-31 )U2 = 863'(212‘52)' --.-(3‘)
Equating the coefficients of z in (3) shows Uy, = - 8U3K

10
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Ecuating the constant terms in (3) thus implies

B1U2 = Uz(I—Bz') ...(4)

Equation (4) is a linear eguation in the elements of U,, and

direct calculation shows the only solution is U, = 0. Hence Uz =
0, and U =(U1 0 , the block sum of U4y and Uy. But U is
- QU 4 - ' .

z-unimodglar, hence Uy and Uy must be Z-unimodular. Bquations
(1) and (2) together with Theorem B therefore imply zI4-B4 and

zI,-35 are both type ¢ knot module matrices, a contradiction.
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