DIFFERENTIABLE SINGULAR COHOMOLOGY

RELATED TO FOLIATION

H. Suzuki 鈴木 浩夫

Dept. of Math., Hokkaido Univ.

Introduction

Let (M,F) be a C^{∞} -foliation of codimension q on a paracompact Hausdorff manifold of dimension n. T(M) be the tangent bundle of M and $F = T(\mathcal{F})$ the subbundle of T(M) consisting of tangent vectors of leaves of \mathcal{F} . Let V denote the normal bundle of \mathcal{F} with respect to a Riemannian metric on M. Then we have the splitting of T(M) into a Whitney sum:

$$T(M) = F \oplus V$$

and the dual splitting of cotangent bundle,

$$T^*(M) = V^* \oplus F^*.$$

On a local foliation chart, (x,u): $U \rightarrow R^p \times R^q$ one chooses differential forms

$$\theta_{j} = dx_{j} + \sum_{\alpha=1}^{q} a_{j\alpha} du_{\alpha}$$
 $1 \leq j \leq p$,

$$v_{\alpha} = \partial/\partial u_{\alpha} - \sum_{j=1}^{p} a_{j\alpha} \partial/\partial x_{j}$$
 $1 \le i \le q$

such that $\{\theta_1,\cdots,\theta_p,du_1,\cdots,du_q\}$, $\{\partial/\partial x_1,\cdots,\partial/\partial x_p,v_1,\cdots,v_q\}$ are dual bases of $T_m^*(M)$ and $T_m(M)$, $m\in U$.

Let $A^{r,s}$ be the vector space of differential forms which are locally

$$\sum a_{i_1 \cdots i_r j_1 \cdots j_s} du_{i_1 \cdots du_{i_r} \theta_{j_1} \cdots \theta_{j_s}}$$

Let A(M) denote the vector space of C^{∞} -differential forms on M.

Then we have

$$A(M) = \bigoplus A^{r,s}$$
.

The exterior derivative of an $w \in A^{r,s}$ is of the form

$$dw = d_1 w + d_2 w + d_{\tau} w$$

where $d_1 \omega \in A^{r+2,s-1}$, $d_2 \omega = A^{r+1,s}$ and $d_{\mathcal{F}} \omega \in A^{r,s+1}$ are uniquely determined.

From the relation $d^2 = 0$, it follows that

$$d_1^2 = 0, d_{\mathcal{F}}^2 = 0, \cdots$$

In particular $d_{\mathcal{F}} \colon A^{r,s} \to A^{r,s+1}$ defines a cohomology vector space $H_{\mathcal{F}DR}^{r,s}(M)$ with transverse degree r and leaf degree s.

Let $C_{\mathcal{F}}^{\infty}$ denote the sheaf of germs of real valued C^{∞} -functions on M constant along leaves of \mathcal{F} and $\check{H}^{S}(M; C_{\mathcal{F}}^{\infty})$, the Čech cohomology vector space of M with the coefficient sheaf $C_{\mathcal{F}}^{\infty}$. We have already a de Rham type isomorphism

$$H_{\mathcal{F}DR}^{0,s}(M) \stackrel{\cong}{\to} H^{s}(M;C_{\mathcal{F}}^{\infty}),$$

as a part of the Dolbealt isomorphism for foliation. (Cf., e.g., [V, Théorèm 3,2], [S, Theorem 4.2].)

In the present paper, we establish a singular cohomology version of this isomorphism. Let $C_*^{\mathcal{F}}(M;R)$ be the chain complex with the coefficient group R generated by differentiable singular simplexes in leaves of \mathcal{F} . Then we introduce a differentiable singular cochain complex $C_{\mathcal{F}}^*(M,R)$ for $C_*^{\mathcal{F}}(M;R)$. (See Section 2 below.)

Let $H_{\mathcal{F}D}^{\mathbf{S}}(M;R)$ denote the cohomology vector space of $C_{\mathcal{F}D}^{*}(M;R)$ and $\Lambda\colon A^{0,\mathbf{S}}\to C_{\mathcal{F}D}^{\mathbf{S}}(M;R)$, the homomorphism defined by the integration

$$\int_{\sigma_{\mathbf{S}}^{\mathcal{F}}} \tilde{\mathbf{w}}$$

of $w \in A^{0,S}$ on a simplex $\sigma_s^{\mathcal{F}} \in C_s^{\mathcal{F}}(M;R)$.

MAIN THEOREM. A induces an isomorphism

$$\Lambda^*: H_{\mathcal{F}DR}^0(M) \stackrel{\cong}{=} H_{\mathcal{F}D}^s(M; R).$$

(See Section 3.)

This relation can be used to give Weil operators [HH, DEFINITION 1.6] a meaning as cohomology classes (cf. [S. Theorem 5.4]).

All manifolds, maps and foliations are assumed to be of class \boldsymbol{C}^{∞} and manifolds are without boundaries.

1. Differentiable singular chains in leaves

Let (M,\mathcal{F}) be the C^∞ -foliation of codimension q on the paracompact Hausdorff manifold of dimension n. Let $\sigma_S^\mathcal{F}$ be a C^∞ -singular s-simplex such that the image of $\sigma_S^\mathcal{F}$ is contained in a leaf of \mathcal{F} .

Let $C_{\bf S}^{\mathcal F}(M;R)$ denote the vector space over R with the basis $\{\sigma_{\bf S}^{\mathcal F}\}\,.$ Then we have obviously

$$\partial C_{\mathbf{s}}^{\mathcal{F}}(\mathbf{M};\mathbf{R}) \subset C_{\mathbf{s}-1}^{\mathcal{F}}(\mathbf{M};\mathbf{R})$$

for the boundary operator 3, and obtain a chain complex

$$C_{*}^{\mathcal{F}}(M;R): \cdots \stackrel{\partial}{\to} C_{s}^{\mathcal{F}}(M;R) \stackrel{\partial}{\to} C_{s-1}^{\mathcal{F}}(M;R) \stackrel{\partial}{\to} \cdots \stackrel{\partial}{\to} C_{0}^{\mathcal{F}}(M;R) \to 0,$$

$$C_{0}^{\mathcal{F}}(M;R) = \sum_{m \in M} R_{m} \qquad (R_{m} \cong R).$$

Let (M',\mathcal{F}') be a codimension q foliation on a manifold M' of dimension n'. Let $f\colon M\to M'$ be a C^∞ -map which is transverse to \mathcal{F}' and preserves leaves, i.e., for each leaf L of \mathcal{F} , there is a leaf L' of \mathcal{F}' such that $f(L)\subset L'$. One can see that \mathcal{F} coincides with the pullback $f^*\mathcal{F}'$ of \mathcal{F}' . f induces a chain map

Let f_0 , f_1 : $M \to M'$ be C^{∞} -maps transverse to \mathcal{F}' so that $f_0^*\mathcal{F}' = f_1^*\mathcal{F}' = \mathcal{F}.$ If there is a C^{∞} -map $H: M \times R \to M'$ transverse to \mathcal{F}' such that

$$f_{i}(m) = H(m,i)$$
 $i = 0, 1,$
 $H^* \mathcal{F}' = \pi^* \mathcal{F}$

 $f_{\#}: C_{*}^{\mathcal{F}}(M;R) \rightarrow C_{*}^{\mathcal{F}'}(M';R).$

where $\pi\colon M\times R\to M$ is the first factor projection, then f_0 , f_1 are called C^∞ -homotopic by leaf preserving map and denoted by f_0 , f_1 . H is called leaf preserving C^∞ -homotopy of f_0 and f_1 .

Let $H_S^{\mathcal{F}}(M;R)$ denote the s-dimensional homology vector space of $C_*^{\mathcal{F}}(M;R)$. The chain map $f_\#\colon C_*(M;R)\to C_*^{\mathcal{F}'}(M';R)$ induces the homomorphism of homology vector spaces, $f_*\colon H_*^{\mathcal{F}'}(M;R)\to H_*^{\mathcal{F}'}(M';R)$.

Since affine simplexes are differentiable ones and the homotopy H: $M\times R\to M'$ preserves leaves, prism operators are well defined in $C_*^{\mathcal{F}}(M;R)$ and one obtains,

PROPOSITION 1.1. If f_0 , f_1 : M \rightarrow M' are homotopic by leaf preserving map, then $f_{0\#}$ and $f_{1\#}$ are chain homotopic and hence we have

$$f_{0\#} = f_{1\#} \colon H_S^{\mathcal{F}}(M;R) \to H_S^{\mathcal{F}'}(M';R).$$

Again since affine simplexes are differentiable ones, as well as prism operator, one can construct subdivision operators

 $\operatorname{Sd}_{S}^{\mathcal{F}}\colon (\operatorname{C}_{S}^{\mathcal{F}}(M;R) \to \operatorname{C}_{S}^{\mathcal{F}}(M;R))$ which are chain maps and one obtains the chain homotopies $\Phi_{S}^{\mathcal{F}},\operatorname{Sd}\colon \operatorname{C}_{S}^{\mathcal{F}}(M;R) \to \operatorname{C}_{S+1}^{\mathcal{F}}(M;R)$ between the identity operator and $\operatorname{Sd}_{S}^{\mathcal{F}}$ by the usual manner (see, e.g., [G, p.65]).

An open set X \subset M has the restricted foliation of $\mathcal F$ denoted by the same symbol. $C_S^{\mathcal F}(X;\mathcal F)$ has an excision property as follows:

PROPOSITION 1.2. If X_1 and X_2 are open sets of M, then the natural inclusion map $1: C_*^{\mathcal{F}}(X_1; R) + C_*^{\mathcal{F}}(X_2; R) \to C_*^{\mathcal{F}}(X_1 \cup X_2; R)$ gives a chain homotopy equivalence.

Let $\lambda_k\colon X_1\cap X_2\to X_k$ and $\mu_k\colon X_k\to X_1\cup X_2$ be the natural inclusion maps for k=0, 1, which induce chain maps $\lambda_{k\#}\colon C_*^{\mathcal{F}}(X_1\cap X_2;R)\to C_*^{\mathcal{F}}(X_k;R) \text{ and } \mu_{k\#}\colon C_*^{\mathcal{F}}(X_k;R)\to C_*^{\mathcal{F}}(X_1\cup X_2;R).$ We define chain maps

$$\lambda \colon \ C_*^{\mathcal{F}}(X_1 \cap X_2; R) \to C_*^{\mathcal{F}}(X_1; R) \ \oplus \ C_*^{\mathcal{F}}(X_2; R) \,,$$

$$\mu \colon \ C_*^{\mathcal{F}}(X_1; R) \ \oplus \ C_*^{\mathcal{F}}(X_2; R) \to C_*^{\mathcal{F}}(X_1; R) \ + \ C_*^{\mathcal{F}}(X_2; R)$$

by $\lambda(c) = (\lambda_{1\#}c, -\lambda_{2\#}c)$ and $\mu(c_1, c_2) = \mu_{1\#}c_1 + \mu_{2\#}c_2$. One obtains a short exact sequence of chain complexes,

 $0 \to C_*^{\mathcal{F}}(X_1 \cap X_2; R) \overset{\lambda}{\to} C_*^{\mathcal{F}}(X_1; R) \oplus C_*^{\mathcal{F}}(X_2; R) \overset{\mu}{\to} C_*^{\mathcal{F}}(X_1; R) + C_*^{\mathcal{F}}(X_2; R) \to 0.$ Let λ_* and μ_* be homology homomorphisms induced by λ and μ_* respectively.

COROLLARY 1.3. If X_1 and X_2 are open sets of M, then we have the Mayer-Vietoris exact sequence of $H_*^{\mathcal{T}}$:

where ∂_{*} is the connecting homomorphism.

2. Differentiable singular cochains restricted leaves

Let $\Delta^{\mathbf{S}}$ be the standard s-simplex and $\mathbf{D}^{\mathbf{Q}}(\epsilon) \subset \mathbf{R}^{\mathbf{Q}}$ be an open ϵ -ball around the origin for sufficiently small number $\epsilon > 0$ and $\hat{\sigma}_{\mathbf{S}}^{\mathcal{F}} \colon \mathbf{D}^{\mathbf{Q}}(\epsilon) \times \Delta^{\mathbf{S}} \to \mathbf{M}$ any differentiable map such that $\hat{\sigma}_{\mathbf{S}}^{\mathcal{F}}(\mathbf{x}) = \hat{\sigma}_{\mathbf{S}}^{\mathcal{F}} \mid_{\mathbf{X} \times \mathbf{A}^{\mathbf{S}}} \in \mathbf{C}_{\mathbf{S}}^{\mathcal{F}}(\mathbf{M};\mathbf{R}),$

$$s (x) \times \Delta^s s (x)$$

for each $x \in D^q(\epsilon)$. An s-cochain ξ for $C_s^{\mathcal{F}}(M;R)$ is called $\frac{differentiable}{differentiable} \ \, \text{with } \mathcal{F} \ \, \text{if the value } \xi(\hat{\sigma}_s^{\mathcal{F}}\{x\}) \ \, \text{is differentiable}$ with respect to x and $\hat{\sigma}_s^{\mathcal{F}}$ is called an ϵ -thickening of $\sigma_s^{\mathcal{F}}$ if $\sigma_s^{\mathcal{F}}$ = $\hat{\sigma}_s^{\mathcal{F}}(0)$.

Let δ denote the usual coboundary operator for cochains of $C_S^{\mathcal{F}}(M;R)$. We denote the set of differentiable cochains of $C_S^{\mathcal{F}}(M;R)$ by $C_{\mathcal{F}D}^S(M;R)$. This is a vector subspace of the scochain vector space $C_{\mathcal{F}}^S(M;R)$.

Let $e_i \colon \Delta^{s-1} \to \Delta^s$, $i = 0, \cdots, s$ be the standard face map and $\hat{\sigma}_s^{\mathcal{F}}$, a differentiable ϵ -thickening of $\sigma_s^{\mathcal{F}}$. Then the map $\widehat{\partial_i \sigma_s^{\mathcal{F}}} \colon D^q(\epsilon) \times \Delta^{q-1} \to M$ defined by

$$\widehat{\partial_i \sigma_s^{\mathcal{F}}} = \widehat{\sigma_s^{\mathcal{F}}} \cdot (i d_D q_{(\varepsilon)} \times e_i)$$

is obviously a C^{∞} ε -thickening of $\partial_i \sigma_s^{\mathcal{F}}$. So, if $\xi \in C^{s-1}_{\mathcal{F}D}(M; \mathbb{R})$ and $\varepsilon > 0$ is sufficiently small, then $\xi(\widehat{\partial_i \sigma_s^{\mathcal{F}}}\{x\})$ is differentiable with respect to $x \in D^q(\varepsilon)$ for $i = 0, \dots, s$.

Therefore we have

$$\delta \xi(\hat{\sigma}_{s}\{x\}) = \xi(\partial \hat{\sigma}_{s}^{\mathcal{F}}\{x\})$$

$$= \sum_{i=0}^{s} (-1)^{i} \xi(\partial_{i}(\hat{\sigma}_{s}^{\mathcal{F}}\{x\}))$$

$$= \sum_{i=0}^{s} (-1)^{i} \xi(\hat{\partial}_{i}\sigma_{s}^{\mathcal{F}}\{x\}).$$

The last formula shows $\delta \xi (\hat{\sigma}_S^{\mathcal{F}} \{x\})$ is differentiable with respect to $x \in D^Q(\epsilon)$, and so we have $\delta \xi \in C^S_{\mathcal{F}D}(M;R)$. Thus one obtains,

LEMMA 2.1. $C_{\mathcal{F}D}^*(M;R) = \{C_{\mathcal{F}D}^s(M;R),\delta\}$ is a cochain complex.

 $C_{\mathcal{F}D}^*(M;R)$ is called the <u>differentiable singular cochain</u> complex for the foliation (M,\mathcal{F}) . In the rest of this section we introduce cochain maps induced by transverse C^{∞} -maps for foliations, cochain homotopies induced by leaf preserving C^{∞} -homotopies between transverse C^{∞} -maps and cochain homotopies between cochain subdivision operators. These are obtained by checking that the images satisfy differentiability condition for ϵ -thickenings of differentiable singular simplexes contained in leaves.

Let (M,\mathcal{F}) and (M',\mathcal{F}') be C^{∞} -foliations of the same codimension q and f: $M \to M'$ a C^{∞} -map transverse to \mathcal{F}' such that $f^*\mathcal{F}' = \mathcal{F}$.

LEMMA 2.2. f induces a cochain map $f^{\#}$: $C_{\mathcal{F},D}^{*}(M';R) \rightarrow C_{\mathcal{F}D}^{*}(M;R)$.

Let f_0 , f_1 : $M \to M'$ be C^{∞} -maps transverse to \mathcal{F} , so that $f_0^*\mathcal{F}' = f_1^*\mathcal{F}' = \mathcal{F}.$ Assume that $f_0 \in \mathcal{F}, \mathcal{F}, \mathcal{F}$ for a leaf preserving C^{∞} -homotopy H: $M \times R \to M'$.

LEMMA 2.3. If we have $f_0 \not\in \mathcal{F}$, f_1 , then $f_0^{\#}$, $f_1^{\#}$: $G_{\mathcal{F}}^{*}$, $g_1^{\#}$ $G_{\mathcal{F}}^{*}$, $g_2^{\#}$ $G_{\mathcal{F}}^{*}$, $g_2^{\#}$, $g_2^{$

Let $\operatorname{Sd}^{\mathcal{F}} = \{\operatorname{Sd}_{S}^{\mathcal{F}}\}: \operatorname{C}_{*}^{\mathcal{F}}(M;R) \to \operatorname{C}_{*}^{\mathcal{F}}(M;R)$ be the subdivision operator and $\Phi^{\mathcal{F}},\operatorname{Sd} = \{\Phi_{S}^{\mathcal{F}},\operatorname{Sd}\}: \operatorname{C}_{*}^{\mathcal{F}}(M;R) \to \operatorname{C}_{*+1}^{\mathcal{F}}(M;R)$ the chain homotopy operator between the identity operator and $\operatorname{Sd}^{\mathcal{F}}$. We define cochain map $\operatorname{Sd}_{\mathcal{F}} = \{\operatorname{Sd}_{\mathcal{F}}^{S}\}: \operatorname{C}_{\mathcal{F}}^{*}(M;R) \to \operatorname{C}_{\mathcal{F}}^{*}(M;R)$ by the formula,

 $(\mathrm{Sd}_{\mathcal{F}}^{\mathbf{S}}\xi)(\sigma_{\mathcal{F}}^{\mathbf{S}}) = \xi(\mathrm{Sd}_{\mathbf{S}}^{\mathcal{F}}\sigma_{\mathbf{S}}^{\mathcal{F}}), \ \xi \in C_{\mathcal{F}}^{\mathbf{S}}(M;R), \ \sigma_{\mathbf{S}}^{\mathcal{F}} \in C_{\mathbf{S}}^{\mathcal{F}}(M;R)$ and also define a homomorphism

$$\begin{split} \Phi_{\mathcal{F},\,\mathrm{Sd}} &= \{\Phi_{\mathcal{F},\,\mathrm{Sd}}^{\mathbf{S}}\} \colon \ C_{\mathcal{F}}^{\mathbf{*}}(\mathsf{M};\mathrm{R}) \to C_{\mathcal{F}}^{\mathbf{*}-1}(\mathsf{M};\mathrm{R}) \ \text{by the formula,} \\ & (\Phi_{\mathcal{F},\,\mathrm{Sd}}^{\mathbf{S}}) \, (\sigma_{\mathbf{s}-1}^{\mathcal{F}}) \, = \, \xi \, (\Phi_{\mathbf{s}-1}^{\mathcal{F},\,\mathrm{Sd}} \sigma_{\mathbf{s}-1}^{\mathcal{F}}) \, , \ \xi \in \, C_{\mathcal{F}}^{\mathbf{S}}(\mathsf{M};\mathrm{R}) \, , \\ & \sigma_{\mathbf{s}-1}^{\mathcal{F}} \, \in \, C_{\mathbf{s}-1}^{\mathbf{(M};\mathrm{R})} \, . \end{split}$$

LEMMA 2.4. $\operatorname{Sd}_{\mathcal{F}}$ is a cochain map $\operatorname{C}^*_{\mathcal{F}D}(M;R) \to \operatorname{C}^*_{\mathcal{F}D}(M;R)$ and $\Phi_{\mathcal{F},\operatorname{Sd}}$ is a cochain homotopy $\operatorname{C}^*_{\mathcal{F}D}(M;R) \to \operatorname{C}^{*-1}_{\mathcal{F}D}(M;R)$ between the identity map and $\operatorname{Sd}_{\mathcal{F}}$.

3. Differentiable singular cohomology for foliation

The cohomology vector space $H_{\mathcal{F}_D}^*(M;R) = \bigoplus_{s \geq 0} H_{\mathcal{F}_D}^s(M;R)$ of the differentiable singular cochain complex $C_{\mathcal{F}_D}^*(M;R)$ in LEMMA 2.1 is called the differentiable singular cohomology for the foliation (M,\mathcal{F}) .

Let (M', \mathcal{F}') be another foliation and $f: M \to M'$, a C^{∞} -map transverse to \mathcal{F}' such that $f^*\mathcal{F}' = \mathcal{F}$. By LEMMA 2.2, f induces a homomorphism of differentiable singular cohomology vector spaces:

$$f^*: H_{\mathcal{I}, D}^*(M'; R) \rightarrow H_{\mathcal{I}D}^*(M; R).$$

Let f_0 , f_i : $M' \to M$ be C^{∞} -maps transverse to \mathcal{F}' so that $f_0^*\mathcal{F}'$ $= f_1^*\mathcal{F}' = \mathcal{F}. \text{ Assume that } f_0 \mathcal{F}' = f_1. \text{ Then by LEMMA 2.3, we}$ have

$$\mathbf{f}_0^* = \mathbf{f}_1^* \colon \ \mathbf{H}_{\mathcal{F},D}^*(\mathsf{M}';\mathbf{R}) \rightarrow \mathbf{H}_{\mathcal{F}D}^*(\mathsf{M};\mathbf{R}) \,.$$

If X_1 and X_2 are open sets of M, then the natural inclusion map $\iota\colon C_*^{\mathcal{F}}(X_1;R)+C_*^{\mathcal{F}}(X_2;R)\to C_*^{\mathcal{F}}(X_1\sqcup X_2;R)$ induces a cochain map

$$1^{\#}: C^{*}_{\mathcal{F}_{D}}(X_{1} \cup X_{2}; R) \rightarrow C^{*}_{\mathcal{F}_{D}}(X_{1}; R) + C^{*}_{\mathcal{F}_{D}}(X_{2}; R).$$

By making use of a chain homotopy equivalence of PROPOSITION 1.2 and LEMMA 2.4, one obtains,

LEMMA 3.1. 1 is a cochain homotopy equivalence.

Let $X_k \subset M$ k = 1, 2 be open sets and let $\lambda_k \colon X_1 \cap X_2 \to X_k$ and $\mu_k \colon X_k \to X_1 \cup X_2$ be the natural inclusion maps. They induce cochain maps $\lambda_k^\# \colon C_{\mathcal{F}D}^*(X_k;R) \to C_{\mathcal{F}D}^*(X_1 \cap X_2;R)$ and $\mu_k^\# \colon C_{\mathcal{F}D}^*(X_1 \cup X_2;R)$ $\to C_{\mathcal{F}D}^*(X_k;R)$.

We define cochain maps

$$\lambda^{\#}\colon \operatorname{C}^*_{\mathcal{F}D}(X_1;R) \oplus \operatorname{C}^*_{\mathcal{F}D}(X_2;R) \to \operatorname{C}^*_{\mathcal{F}D}(X_1 \cap X_2;R),$$

 $\mu^{\#}\colon \ C_{\mathcal{F}D}^{*}(X_{1};R) + C_{\mathcal{F}D}^{*}(X_{2};R) \to C_{\mathcal{F}D}^{*}(X_{1};R) \oplus C_{\mathcal{F}D}^{*}(X;R)$ by $\lambda^{\#}(\xi_{1},\ \xi_{2}) = \lambda_{1}^{\#}(\xi_{1}) - \lambda_{2}^{\#}(\xi_{2})$ and $\mu^{\#}(\xi) = (\mu_{1}^{\#}(\xi),\ \mu_{2}^{\#}(\xi))$. One obtains a short exact sequence of cochain complexes

$$0 \rightarrow C_{\mathcal{F}D}^{*}(X_{1};R) + C_{\mathcal{F}D}^{*}(X_{2};R) \xrightarrow{\mu^{\#}} C_{\mathcal{F}D}^{*}(X_{1};R) \oplus C_{\mathcal{F}D}^{*}(X_{2};R)$$
$$\xrightarrow{\lambda^{\#}} C_{\mathcal{F}D}^{*}(X_{1} \cap X_{2};R) \rightarrow 0.$$

Let λ^{*} and μ^{*} be cohomology homomorphism induced by $\lambda^{\#}$ and $\mu^{\#}$ respectively. By LEMMA 3.1, we obtain,

THEOREM 3.2. If X_1 and X_2 are open sets of M, then we have the Mayer-Vietoris exact sequence of $H_{\mathcal{F}D}^*$:

where δ^* is the connecting homomorphism.

We call codimension q foliation (M, \mathcal{F}) \mathcal{F} -contractible if there exists a q-dimensional submanifold N transverse to \mathcal{F} and a map $f \colon M \to N \subset M$ transverse to \mathcal{F} which is C^{∞} -homotopic to the identity map id_M by leaf preserving map, i.e., $f_{\mathcal{F}} \stackrel{\sim}{\to} \mathcal{F}$ id_M .

Let $\mathcal{U} = \{U_{\alpha}\}$ be an open cover of M. If an intersection of finite open sets of \mathcal{U} is \mathcal{F} -contractible, then we call \mathcal{U} an \mathcal{F} -simple cover of (M,\mathcal{F}) . If (M,\mathcal{F}) is a foliation on a paracompact Hausdorff manifold, then by [S, Lemma 4.1], every open cover \mathcal{U} of M admits a refinement $\mathcal{U}' = \{U_{\hat{1}}'\}$ which is \mathcal{F} -simple.

Moreover, by taking sufficiently small neighborhood of foliation chart as U'_i, one can assume \bar{U}_i' is compact. One constructs, by induction, an increasing sequence $\{V_j\}$ of open sets in M such that \bar{V}_j is compact, $\bar{V}_j \subset V_{j+1}$ and $\bigcup_j V_j = M$.

The integral operator $\Lambda: A^{0,s} \to C^{s}_{fD}(M;R)$ defined by

$$\Lambda(\mathbf{w})(\sigma_{\mathbf{s}}^{\mathcal{F}}) = \int_{\sigma_{\mathbf{s}}^{\mathcal{F}}} \mathbf{w}, \ \mathbf{w} \in A^{0,\mathbf{s}}, \ \sigma_{\mathbf{s}}^{\mathcal{F}} \in C_{\mathbf{s}}^{\mathcal{F}}(M; \mathbf{R})$$

is a cochain map [S, Lemma 5.2] and defines a natural homomorphism,

$$\Lambda^*$$
: $H_{\mathcal{F}DR}^{0,s}(M) \rightarrow H_{\mathcal{F}D}^{s}(M;R)$.

If U $_i^* \, \subseteq \, M$ is on $\mathcal{F}\text{--contractible}$ open set, there exists a

q-dimensional submanifold N \subset U; transverse to ${\mathcal F}$ and by LEMMA 2.3,

$$H_{\mathcal{F}D}^{\mathbf{S}}(U_{\mathbf{i}};\mathbf{R}) = \begin{cases} C^{\infty}(\mathbf{N}) & \mathbf{s} = 0 \\ 0 & \mathbf{s} > 0 \end{cases}$$

where $C^{\infty}(N)$ is the vector space of C^{∞} -function on N. By [S, Corollary 3.2], Λ^{*} gives the isomorphism $H_{\mathcal{F}DR}^{S}(U_{i}^{*}) \cong H_{\mathcal{F}D}^{S}(U_{i}^{*};R)$.

By making use of the Mayer-Vietoris sequence of $H_{\mathcal{F}D}^*$ obtained in THEOREM 3.2, that of $H_{\mathcal{F}DR}^*$ and the five lemma, we have,

LEMMA 3.3. For each j, Λ^* is an isomorphism of vector spaces: $H_{\mathcal{F}DR}^{0,s}(V_j) \stackrel{\cong}{\to} H_{\mathcal{F}D}^{s}(V_j;R)$.

PROOF OF THE MAIN THEOREM. Both sequences $\{H_{\mathcal{F}DR}^{0,s}(V_j)\}$ and $\{H_{\mathcal{F}D}^{s}(V_j;R)\}$ satisfy the Mittag-Leffler condition since $\overline{V}_j\subset V_{j+1}$ is compact. Therefore, the isomorphism Λ^* of LEMMA 3.3 gives, by the arguments [M1, §§A.3-A.4] and [M2, Appendix §3], the isomorphism

$$H_{\mathcal{F}DR}^{0,s}(M) \stackrel{\cong}{\to} H_{\mathcal{F}D}^{s}(M;R)$$
.

REFERENCES

- [G] M.J.Greenberg, Lectures on Algebraic Topology, Benjamin,
 New York, 1976.
- [HH] J.Heitsch and S.Hurder, Secondary class, Weil operators and the geometry of foliations, Journal of Differential Geometry 20 (1984), 291-309.
- [M1] W.S.Massey, Homology and Cohomology Theory, Dekker,
 New York, 1978.
- [M2] ______, Singular Homology Theory, Springer, New York,
- [S] H.Suzuki, An interpretation of the Weil operator X(y₁),
 Research Notes in Mathematics 131, Differential Geometry,
 L.A.Cordero (Ed.), Pitman, London 1985, 228-244.
- [V] I.Vaisman, Variétés Riemanniennes feuilletées, Czech.

 Math.J. 21(1971), 46-75.