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Introduction. Let us consider the following boundary value problem

Max[u-y;Au - f] =0 in @
(P)
Bu = 0 ( on §Q
Here f and ¢ are given real function defined on a bounded open
N .
subset o CR (N >2), with boundary 3 of class C!. The operators
A,B appearing in (P))\ are linear partial differential operators defined,

respectively by

B = b.(x) — X € 930

(we adopt here and in the following the usual convention about summa-
tion over repeated indices i,j = 1...N).

We shall assume from now that

(1) a,.e€C”(g) a (x) £, > €2 XE Q
ij ij i% = i

for some 0<y<l, >0 and all ¢-= (g,... gN)e]R ,

(2) \bieC * Y agq) bi(X)ni(X) >8>0 Xeg Q.

* This paper was written during a visit to Japan, partially supported
by a C.N.R. NATO Senior Fellowship



Here ni(x), i = 1...N, are the components of the unit outward
normal vector at x € 3Q.

An equivalent formulation of (P) is to find u such that

A u <y, Auxsf (u-y)(Au-f) = 0 1in @
(P)
. Bu =0 on 3Q
If, for example, A = -4, bi = ni and f = O this problem amounts

to find the greatest subharmonic function lying below the obstacle
¥ and satisfying the Neumann condition on the boundary.

One motivation for the study of (P) comes from stochastic op-
timai control theory. It can be proved indeed, by a dynamic - 'program
ming approach, that (P) comprises the Bellman optimality conditions

for the optimal undiscounted stopping time problem for a non-degenerate

diffusion in & with reflecting boundary conditions. We shall not go in- '
to details about the stochastic interpretation of problem (P) and refer
instead to [1], [2], [3]. Let us only point out in this respect that
the relevant unknown in (P) is the contact region C = {x € Q|u(x)=9(x)}
The first time the reflected diffusion enters C can be shown indeed to
be an optimal one (see [1]).

The topics we shall discuss in connection with the unilateral

oblique derivative problem (P) are existence and uniqueness of solu-

tion in a suitable Sobolev space.

The results presented in the following sections 1 and 2 are con-
’tained in a joint paper with M.G. Garroni [5] (see also [41]).

Similar result for first order problems due to the collaboration

with J.L. Menaldi will be briefly accounted in § 3 (see [61 for details)

§ 1. Necessary conditions

Let us consider the particular case where A = - A b, = n, and

assume u is a solution of (P).
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Then, as an immediate consequence of the divergence theorem and

the boundary condition, one finds that necessarily
3) . s fdx >0

Moreover, since it may happen that u = o

, the following condi-
tion on ¢ necessarily holds
(4) 2 50 on 3aQ .

an —

These simple considerations suggest that similar necessary condi-
tions should be fulfilled in the general case.

The purpose of this section is to identify such conditions, the
main difficulty to this end being the lack of differentiability of coef-
ficients which does not allow integration by parts.

To overcome this difficulty, let us consider the linear boundary
value problem

Av +x2v =1f in @

(5)
Bv-= 0 on 3aQ

It is proved in [5] that for A >0 and for any f el (1 < g<
<——, v >¥§—1), (5) has a unique solution v € Wz’q(ﬂ) given by

- X

6) v _(x) = f+°°f9e G(x,y,t)f(y)dydt .

A 0

Here G is the solution of

26 a6 =s s in  ex]0,T |
It x-y i
G(x,y,0) = O - in  @x @

BG =0 “in - aex [O,T].

The existence of such a Green's function as well as various
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estimates on G are proved in [8].

Let us denote by ])‘ the resolvent operator of problem (5) as de-

, ! 1
fined by (6) and by ]% its adjoint acting on LY (q), (a- + %' =1).
1 N-1 ‘ . .
Theorem 1. Assume 1 < g <i———, .y >—=—— . Then, there exists a unique
-Y

me L4 (@) such that

(7) :
m>0 a.e. »fﬂmdx:l
Moreover, there exists § > 0 such that the following inequality

holds

. - 6t
(8) Il,fQG(x,y,t)f(y)dy - fﬂfmdx |Iq__<_k e I| £ ||Lq , ¥t >0
for some k' >0 and all f€ Lq(sz).

The proof of (7), (8) (see [5] for details) is based on the posi-
tivity of G and on general spectral theorems for order preserving
compact operators.

Let us point out here that, for more regular f, (8) describes the
decay as t—3»+ o of ‘the solution of the initial-boundary value problem
for A,B, generalizing well-known results. |

Another remark 1is that m satisfies formally the homogeneous aa—

joint problem

A*m = 0 in @
B*m = 0 on aQ
m >0 :‘Q mdx = 1

and m € C2(Q), provided the coefficients aij’ bi are smooth enough. In
the model case considered at the beginning of this section, m = 1.

The function m defined by (7) turns out to be the correct one in

¥



order to find necessary conditions for the solvability of (P). Suppose,

for simplicity, that v =0. Then we have

- 2, _
Lemma 1. Assume f € LY(g) (1 <-q < 111 . Y >T)' 1f ue Ww’q) is a
. -y .
solution of (P), then necessarily

(9) :‘Q fmdx >0

Outline of the proof. Let u be a solution of (P). Then, the following

inequality holds

(10) -f <Au <f in @

(see [5] for the proof and [7] for general discussion-of Lewy-Stampac-
~chia type inequalities).

Hence

Au in Q

il
(e}

Bu =0 on 3@

for some geLq(Q), -f < g <fin 9.

Equivalently, u satisfies
(11) u = ])\(g + au) for any A >0.

Multiply both sides of (11) by m and integrate over g to find
that
A

1
S umdx = J g]*mdx + ASf_uJ*mdx = — fﬂgmdx + S umdx
Q Q A Q A Q

that is
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dx = 0
fggmx

Since f >g, this yields (9).

§ 2. Existence and uniqueness of solutions of (P)

The main result of this section is that the necessary condition
(9) turns out to be also a sufficient one for the solvability of (P).

The following theorem can be regarded as a Fredholm alternative
type result for the nonliner boundary value problem (P).

We assume again for simplicity ¢ = 0 (the general case can be
easily reduced to this by changing the unknown).
Theorem 2. Assume fELq(ﬂ) (1 <q <—1%7 Y>N—§l); Then,
(a) If r’gfmdx >0 then (P) has unique solution ue Wz’q(a)
(b) If fomdx = 0 then there exists a maximum function u (in the al-

most everywhere partial ordering) such that

Au = f , u <0 in @

Bu = 0 on 3N

Outline of the proof.

The first step is to consider for A> 0 the following problem

Max[u; Au_+ au_-f]=0 1in @
A A A

(P))\

Bu = 0 on 3Q

Problem (P))\ has a unique solution u € W:l(sz) and

(12) u, = Sufp{vquz(ﬂ) : v<0; Av + av <f in @, Bv <0 on 30}



(13) -f ¢ Au + Au <f,

Au}\+>\ruv=g—f in @
Bu>\=0 on 3Q

for some g )\é L9 ), 0<g X/§f+. Hence,

(14) u, =17J,(g, - f).
Multiply both sides of (14) by Am and integrate over £ to obtain
taking (7) into account, that

Afnulmdx = £ gy - f)mdx = /fﬂ(g - f )mdx.

A

This yields
(15) -C,II £ qu <X igg)\mdx < 0,

for some constant C: independent of A.
Let us consider then the function wy defined by

w = u_ -Fu_mdx ,
A A Q A

and observe that w}\ satisfies
Aw+xw=gx—f-—XC in @

A A A

(16) Bw)\ =0 on 3%

+ w mdx = 0,
Q A

where C, = £ u}\mdx. The same argument as above shows that h;\ =

=g, - f - aC, satisfies
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4 h mdx = 0O
-9 A

From (8) it follows that

q q + o — )t ' q
17y |l W IILq = || Jl(h }\) IILq_<_ 5, e IQG(x,y,t)hA(y)dy HLq dt <
q q
kKl h_|l*q
q s
Thanks to (15), || h)\ HLq is uniformly bounded and therefore

(17) yields

Il v, HLq < C, C independent of i.

This and the equation (16) givé finally

(18) Il w_|l

\ W2,q < C, C independent of a.

Let us proceed now to the proof of statement (a), sending the in-
terested reader to [5] for case (b).

The idea is to show that if ;‘9 fmdx > 0, then CA is uniformly
bounded. This, together with estimate (18) will imply the wuniform
boundedness of || u )‘II W2,q.

Let

lim aC =L <0
A —
A=+0
lim w)\=w in W () - weak
A 0

(these limits exist thanks to (15) and (18)) and assume by contradic-

tion that



it is not difficult to show that some subsequential W

u of u)L solves (P).
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Then, it is easy to check that for sufficiently small x, w _ sat-
isfies
Aw_ + xw_ =f - 2C_ . in
A A A :
Bw_ =0 on 3Q
A
Letting A + 0 in the above we obtain
Aw = f - L in @
Bw =0 on 3Q
This implies
£ fmdx = L < 0,
which contradicts the assumption %Qfmdx > 0.
Hence ,C)‘ and, consequently, || u I|W2,q is bounded. At this point

- weak limit .

. ,
To prove the uniqueness, let u be another solution of (P). It is

N
immediate that u satisfies

N N " .
u <0 Au + au < f in @

N
Bu =0 on 9%

for any A > 0. This, together with (12), yields

N
u < u:
- A

and, taking the limit as A + 0,

(19) d < u.
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On the other hand, from (P) it follows that
Alu - W(u - W) <0 in @
Taking (19) into account this gives
w)

A(u in Q

B(u - u) = 0 on 3 .
for some g <0. But then, necessarily fﬂgmdx = 0, so that g = 0. Then
V) n,
u—uzx])‘(u—u) for any a1>0
Multiplying by m and integrating on @ we find
, v
S (u - u)mdx = rS (u - u)mdx.
Q Q
, 4"
Hence, fﬁ(u - u)mdx = 0 and, by (19), u - u = O.
Remark 1. Theorem 2 extends previous results of A. Bensoussan - ].L.
Lions [9], M. Robin [3].
§ 3. Some remarks on the deterministic- optimal stopping time problem

Let us denote by yx(°) the solution of the ordinary differential

equation
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N . .
Here g = (gl...gN) : R » R is assumed to satisfy the follow-
ing conditions '
lg(x) - g(x")] <Lix-x'| ; Jgx)| < M
(20) ‘

(g(x) - g(x"))*(x = x') < - y|]x - x"|?
for all x,x' in ]RN and some positive constants L,M,y.

It is well known that (20) imply that g has a unique stationary
point x_, and that

__'Y’t .
|yX(t) - yx,(’F)l <e |x - x Vvt > 0.

The optimal stopping time problem is to find, for any initial po-

sition x, a time e)*( > 0 such that
](x,e;) = Inf J(x,8).

Here above

0 - X - A6
J(x,8) = fuf(yx(t))e dt + q;(yx(e)) e
with A>0, f and ¢ are given functions such that
(21) [£(x) - f(x")] <Clx - x'| [f(x)] < D
lh(x) - (x")] < Clx - x'| lp(x)] < D

for all x,x'€ ]RN and positive constants C,D.
It is proved in [6] that, under the assumptions made, the value

function V}\ of the optimal stopping problem, defined by

V (x) = Inf J(x,8), r>0
A
6 >0

is the wunique bounded Lipschitz continuous solution of the Bellman

equation

/1



N aVv N
Y
(P) Max [V-y;- J g. —+ AV = £]1=0 in R,
A i=1 1 BXi

in the viscosity sense (see [2]). Moreover, r
IV (x)] <C, |V (x) -V (x)] <Clx - x'|
A - A A -

with C independent on x >0.
The behaviour of V)\ as A ~+0 is described by the.following theo-
N
rem. Let us recall that we denote by X, the unique point in R  such
that g(x,) = 0. |
Theorem 3. Let us assume (20), (21). If f(x,) > 0, then V)\ » V local-

ly uniformly in R N and V is a viscosity solution .of

=

\ ‘ N
g. SN -f]1=0 in R
1 93X,
1 i

Max [V - ¢; -

“' ~

1

On the other hand, if f(x,) <0, then V)\ does not converge but
N
V)\ - V)‘(x ) - ¥ locally uniformly in R and V is a viscosity solu-

]

tion of

- 1 s = f - f(x,).

We refer to [6 ] for the proof and to ([10] for further results in

this direction.
Final Remark

The asymptotic behaviour as i -+ 0" of the solutions of problems
(P) \ and (P) \ is formally identical and in both cases it depends on

the average value of f with respect to some measure.

For problem (P) N this is the measure du = mdx with m given by

/2
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Lemma 1, while for (P) N the same role is played by the Dirac measure

8 concentrated at the unique stationary point of g.
x

o
Both these measures can be interpreted as invariant measures for

a Gl a'hd 9 respectivel as
ij 9ax.9x, g; axi’ P Yo

1.
generators on suitable defined domairs.

the semigroups having -
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