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A Remark on Finite Groups Having a Split BN-nair

of Rank One with Characteristic Two

RAK b %

Michioe Suzuki’

1. Introduction A BN-pair of rank one in a group G 1is a pair
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of subgroups (B, N) of G which satisfy the following two conditions:

(BN 1)  The subgroup H defined by
H=B/ /N
is a normal subgroup of index 2 in N ;

(BN 2) 'The group G is the union of B and BNB .

In order to define a split BN-pair, we need to introduce further

notations. By (BN 1), there is an element t of N such that

HCED

t?€ H and N = {H, t>

A BN-pair (B, N) is said to be split if the followiﬂg additional

condition is satisfied:

(BN 3) There is a normal subgroup U of B such that B is a split

extension of U by H and such that we have
B tut = {1},
If the split BN-pair (B, N) of a finite group- G satisfies a
further condition: |

(BN 4)  The subgroup U contains a Sylow 2-subgroup of G ,

then G is called a group with a split BN-pair of rank one with .

characteristic two.
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The class of finite groups having spiit BN-pairs of rank one was
studied during the 1960's. The complete determination of the simple
groups which belong to this class was achieved in Suzuki [70] for the
characteristic two case and in Hering-Kantor=-Seitz [3 ] and Shult [ 5 ]
for the other cases, and this was Ehé first step in the eventual clas-~
sification of simple groups of finite order. (For more information,
consult Suzuki [ 8] where a complete list of references can be found.)

In studying the structure of a finite group G with a split BN=-pair
of rank one and characteristic two, one of the most important ideas is
the concept of the associated prime number ?C(G) for G . (3ee
suzuki L7137, %10.) The number QC(G) is defined as the order of the
product of two involutions which are uniquely determined (up to conju-
gation) by the properties of the group G . It is not at all obvious
why this order should be a prime number. In [ 7], the proof of the
fact that ;K,(G) is indeed a prime number depends, among other things,
on the classification of the Zassenhaus groups of characteristic two
(cf. Suzuki [6 1) and is indirect.

The purpose of this paper is to prove, by a direct method, that
the integer )C(G) is prime. In order to make this paper reasonably
self-contained, we have added a few elementary discussions on the struc=-
ture of G and on the definition of X((G) . It is hoped that the
method of this paper, or some ramification of it, might simplify the
long arqument of [ 7] which leads to the determination of the struc-

ture of G ,
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2. Preliminaries Let G be a finite group having a split BN-pair

of rank one with characteristic two. We will use the notation intro-
duced in §1 throughout this paper. Thus, we have

H=B /"N N, N=HLt)» , and B =UH = HU [>'U.

It is clear that BNB = BtB in (BN 2) . 3o, we have

G B \U BtB.,

Therefore; as a permutation group on the cosets of B ,' G is doubly
transitive. The normal subgroup’ U of B in (BN 3) acts reqularly
on the cosets different from B . (Thus, the group G is really an
{L)-group as defined in §8 of [7]1.) The above representation of G
as a permutation group is quite useful. For example, B 1is the only
coset fixed by an arbitrary nonidentity element of U . This fact leads
to the following proposition (Suzuki [7], Lemma 10(ii)).

(a) If u 4is any nonidentity. element of U , then its centralizer

CG(u) is contained in B .

In the condition (BN 3) , the conjugate subgroup tUt-i does not
depend on the particular choice of t as long as we choose t &€ N - H.
By (BN 3) and (BN 4) , the group H is isomorphic to B/U and, hence,
“has o@d order. It follows that the element ¢ <can be chosen to be an
involution. = We will henceforth assume that we have done so. Thus, we
have t2 =1 . Since H < N‘, the element t induces an automorphism

of order 2 in the group H of odd order. A simple counting argument

proves the following lemma (Gorenstein-Herstein £23>7.
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(B) There are exactly H : CH(t)l elements of H that satisfy

X =X « Any such element x can be written in the form
-1t
x=Y Y
with v € H.
We have tH = Ht . So,

BtB BtHU = BtU = UHtU .

(c) Every element x € G = B can be expressed uniquely in the
form

x = fgth (f, h € U, g € H) .

The uniqueness of the expression comes from the condition that we
have B N tUt'-‘l = {11}». The above expression for x is called the

canonical form of the element x of G - B .

By the condition (BN4) , the group U contains an involution.
For any invelution u of U , the conjugate tut-1 is in G - B (by
(BN 3)). So, let
tut™! = £gth

. . s -1
be its canonical form. Since u = u sy we get

£=h"' and gt =gqg7t.
By (B) , we can write g = k-lkt for some k & H . Then, for the
involution s = k' uk™* , we have
-1

tst = r Ttr
where r = khk-1 € U . Thus, we have proved the following proposition

( 7], Lemma 16).
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(D) Let u be any involution of U . Then, there is a conjugate

s of u éuch that
for some r & U.

An identity of the above form. is called a structure identity for G
- [7:}, p.522). An iﬁpdrtant property‘ﬁf the structure identit& is the
following. - o B
(E) Let s be an involution such éhét‘the pair (s; t) satisfies
the above structure identity for G . 1f (s1 ’ tl) is4a pair'of.invo-

lutions such that

H. -1 ‘
151%1 = F1 €154

s, €U, t,€ N, and t

for some r, € U , then there is an element k of H such that

k k » k
t1 f_t, . ;1 =s , and Ty =ro.

Proof Since {t> and <t1) are S_-subgroups of N , they are.

2
conjugate in N . _So, there is an element k of H such that ti = tk.

We replaée the original structure identity for G. by its conjugate and

- we assume that t, = t . Then, for u=t rl-']'r'!:-1 , we have u-lsiu =5 .
.This implies thaf the element Sy fixes the coset uB. . Hence, we get
u € B « On the che;_hand, the definition.of .u shows that u 1is
an element of tUt’? . So, it follows from (BN 3) that u =1 . Thus,
we have s, = s and r,=r . 0
In fact,we have proved the.stronger property that,weihavens1 = sk
(and r :k_)‘wpeneﬁg;, t1 = tk;., Thus, for a fixed involution t of

1=

N , there is a unique involution s of U which satisfies tst = r tsr
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for some r &€ U .
From now on, let (s, t) be the pair of involutions which
satisfies the structure identity for G given in (D) .

(F) If S, is any involution of U , then s, is conjugate to

s by an element of H ; i.e. there is an element k of H such that
s =S -

Proof By (D) , some conjugate of sy satisfies the structure
identity. So, we have s, = sk for some k € H by (E) . 0

(G) ’ﬁe have CH(S) = CH(t) . |
Proof Proposition (E) implies that CH(t) - CH(s) « Converse-
ly, if k € CH(s) , then we have tkst = tskt . Thus,

t -1 -1

ko~ ter e e~ tekt o 2

ktx ekt L

The uniqueness of‘the canonical form implies that we have kt =K .
So, Cyls) C c(e) . O
(H) If k 4is a nonidentity element of H such that Kkt = k™t ’

then we have CG(k) . H.

1 and ku = uk for some element

Proof Suppose kt =k
u & G-B, Let u = fgth be the canonical form of the element u .
Then, we have
kfgth = fgthk .

The canonical form of the left side is kfk-1

kgth , while that of the
right side 15, fgktthk « The unigueness of the‘canonical form implies"
that

kg = gkt = gk’1,,ﬁor g-lkg*='k-1 .

Since g and k are elements of the group H which has odd.order, we



must have k = 1 . Thus, if kt =kt # 1 , then vCG(k) - B,
Therefore,

-1 t

CG(k)_‘ Celk™ ™) C B .

Hence, we have CG(k)-C: B M Bt =H . []

(1) The involution s of U 1lies in the center of U.

Proof If s is the unique involution of U , then clearly s
is contained in the center of U, If U contains more thanrone invo=-
lution, U COntaips exactly |H : CH(S)’ involutions by (F) . It
follows from (G) and (B) that there is a nonidentity element k of
H satisfying kt = k-1 . We can choose k to be an element of prime
order. The conjugation by such an element k induces an automorphism
of U of prime order which is fixed point free., So, by a theorem of
Thompson [ 9}, U is nilpotent. Thus, some involution belongs to the

center of U . Then, by (F), all involutions of U are in the center.

3. Definition of X, (G) and the statement of the theorem Let

(s, t) Dbe the pair of involutions which satisfies the structure
identity for G . Let QC(G). be the order of the element st which is
the product of the involutions s and t .

Theorem The integer )C(G) is a prime number,

We will prove that for any positive integer n ?C(G) s the
n-th power (st)® of st is'conjugate to st ., If this is proved,

the theorem clearly follows.
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4, Proof of the Theorem We will prove that for any positive integer
n < }((G) y there is an element u of U such that

(st)® = v Hstyu .
n n

First, we remark that the elehent u o if it exists at‘all? is the
unique element of U which satisfies (st)? = un-l(st)un . This is
seen by noting that the right side is, as written, the canonical form
of (st)™ and by recalling the uniqueness of that form.

In order to.prove'the‘existence of an element u we\proteed by
induction on n . If n = 1 , the statement is obvious. Consider the
case when n = 2 ., UWe have the structure identity tst = r-itr . Hence,
we get

-1

stst =~(st)2 = sr “tr = r-l(st)r

-

because s is in the center Z(U) of U by (I) . Thﬁs, we have

‘u2=r.

Suppose that n = 2m is even. ' Then, we have

umf?<st)um = (st)™

by%the inductive‘hypothesis. Taking the conjugate of the above equation

by the element r , we get
r-lum-l(st)umr'%‘r_i(St)mr = (e Hst)n)™ = (5022 .

4 y2m -1, 1,
=ur , we have (st)™ = u, Sstiu, .

2m -2

Thus, with u
Finally, assume that n = 2m + 1 is odd. By the inductive hypoth-
esis, we have (with u = uZm)
(s£)?™ = u"(st)u .

We can write (st)” = (st)zmst =,st(st)2m. So, we get
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(1) (st)? = u" lstust = stu"Tstu .

The element s is an involution in 2Z(U) , so the terms between the two
t's in the middle and last expressions of (1) are inverse of each other:
-1 =1-1_ =1
(us) =S U =1u 'S .
Since n < }:(G) , we have (st)™ #£ 1 . Thus, us # 1 and t(us)t
is an element of G -~ B , Let

(2) t(us)t = £gth

be the canonical form. Since we have

- -l - -1 -
tu i)t = tus) e = [e(us)e™T ]
the equation (1) gives us
- wl, =1, =1
u 1sfgth = sh 1tg 1f u .

So, the uniqueness of the canonical form implies

ulse = sn”? ’ g-i = gt , and h = £,

Thus, we have
sh™lgth = h™lsgth

where g € H and gt = g-1 » The last equality follows from the

(3) | (st)”

#

fact that s & 2Z(U) .
We need to show that g = 1 . Byj(B) , We can write g = I—iit .

Then, gt = 1-1tl and (3) implies (by cancelling one s from the left)
ps6)® = w7l len . |

The left side is also a conjugate of At H
t(st)™ = (st) Te(st)™

because (st)™T = ts . Therefore, we get
(st) ™e(st)™ = n™ i e L

This will give us the information that a certain element commutes with
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the involution t . It is more convenient to replace the middle t by

t = rtst et ’

which is obtained from the structure identity. We get

- -l - - - -]
(4) (st) e 1(st)m = h 1[ 1rtst 1r 1Ih .
Set
(5) (st) et = h™ g trkw

Then, the equation (4) is equivalent to saying that
w e CG(s) .
By (A), (I), and (G), we have

CG(s) = CB(s) = CH(s)U = CH(t)U o

So,we can write
w = kv (x € c(t) , v € u) .
It follows from the inductive hypothesis that
(st)™ = u -1(st)u .
m m
Then, the defining equation (5) of w gives us

u "lesu rt = i reky
m m

We have shown that ur=u = u . Thus, we get
tsut = umh'iz“Irtkv .
The canonical form of this element is

(6) tsut = umh-11_1r1-1~1k~tv

where umh-if-irf e U, I-tk € H,and v & U. Since s & 2z(u) ,
the left side of (6) coincides with the left side of (2). The unique-
ness of the canonical form implies, iq@articular, that
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B : - 1
On the other hand, the element f was defined by g = [ [t . So, the

equation (7) gives us

[t=k.

But, k €& CH'(t) and hence f = kt = k » This proves that’
g = [—lk = 1 .
Therefore, the equation (3) can now be written as

n

(st£)™ = h™i(st)n .

This completes the inductive proof of the provosition.

5. Remarks For each odd prime number p , £her%§s 8 group G with
a split BN-pair of rank one and characteristic two such that QC(G) = Ds
Let G be the linear group L(Fp) of linear transformations

x! = ax '+ b
where a # 0 and a, b are elements of the finite‘fieid of p elements.
This group G has a split BN=pair (B, N) of rank one and character-
istic two where

B

U={x'=ax (a#O)},

N

{t> , t: x'=1-x, and
H=1{1}.
-Similar groups can be constructed over any finite near-fields of odd
characteristic. See [7], §5.
Let G  be, as before, a finite group having a split BN=pair of
rank one with characteristic two, and let p = )C(G) « The proof of
§4 shows that the subgroup U contains a cyclic group of ordef p-1.

In fact, the set of elements Ujs Uyy eeey up_1 forms a subgroup which
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is isomorphic to the group of automorphisms of the cyclic group <:st:>
of order p . We have

u1 = 1, u, = r , and up_1 =S .

If the group U contains only one inveolution, then G 1s essen-
tially a linear group over a near-field. S3ee L71, Theorem 1 . So,
the interesting case is when G 1is simple and U contains more than
one involution, In this case, U is nilpotent (cf., the proof of (I)).
It can be proved by using'character theory that the group U is
indeed a 2—groﬁp. Then, the associated prime number p = 3((G) is a
Fermat prime because p - 1 1is a power of 2 .

If the group U is abelian, it is not hard to show that G is the
‘special linearbgroup SL(2,F) - over a finite field F of characteristic
two. If U is nonabelian, the property (F) together with the sol—.
vability of the group H of odd order (cf. Feit-Thompson [1] ) imposes
a strong restriction on the 2~<group U . This class of 2-groups was in-
vestigated by G. Higman [4] « Among others, Higman proved that. the ex-
ponent of U is at most 4., Since U must contain.a c¢yclic group of
order p - 1 , we must have QC(G) =p=3 or 5.

It still requires a long argument to get the final conclusion that
G is either the 3-dimensional unitary group of characteristic two or
the Suzuki group depending on whether QC(G) = 3 or QC(G) = 5, But,
the above briefvaiscussion explains the role of Higman's theorem on the
special class of Z-groués inkthe classification of ;imple groups having

a split BN-—pair of rank one.
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