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o Ai)stract

‘Lef ?i = (fil‘,,,..f\ir)‘v,f i.—A_i',,,,,s'," be r-dimensional vé‘ctwor:s',' "whelre vfi‘lk,' "fh_
are polynomials in K[xl,,,;;‘x;] with K a fi;.ld, AI:et:'TZ = (T;,.',,,T"’s) 'beb a madule
over K[xi,_:_;in.] :géﬁeraﬁted bs"v _f’1 Ts 1e an element T of T is of the form
T = Ei:l‘hi—f'i’,.with:hi’ € K[xl.;;.,kn]. This p‘abel-'f de‘velogbsv a ."théc;rywof Grdbner

basis of the module T. As an'apvplication of the Grobner basis theory for T,' we
construct an efficienﬁ method for soiving a systém of linear eduatibné ylfli +

s + ysfsi =.f0i, i=],....,r, where unknowns Yo wnr ¥, are in K[xl,,,..xn].
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§1. Introduction

In discussing polynomial ideals and related problems, the Gr8bner bases are very
useful ideal bases [1]. For example, reff [2] lists many problems which can be
solved by using G!r6bner bases within reasonable corhputation steps. In this paper,
we show that a sifnple generalization ‘of the Grobner basis for poiynomial ideal
allows us to solve the following system of linear equations efficiently: |

Yifyy i N0y = f
e e e N (1)
ylfh_ +oeee + oy f o= fm_,
where fij € K[xl.._.;'xn]. i=0,....s. j=l.....r, and the ‘solutions Vi e ¥, are
in K[x,,...x 1. |

R ysfs = f fi € K{Xl....,x

In the case of a single equation yl»f 0.

1

n

i=(,....s, an efficient method was found which we call the Gr&bner basis method,
because the method is closely related to the calculation of é Grb’bnér basis of the
ideal (f1""'fs)' see [2,3]. VUsing this Grdbner basis method, we can solve the
above system (1) iteratively by solving‘ bﬁe eduation and substitutiﬁg the unknowns
by the result in yet unsolved equations_ (sﬁccesvs»iveb subsfitution method). |

Howéver, as fprt a systerri of linear equations, wé' know the famous formula by
Cramer for the solutiqns in K(xl,,.,.xn). Recently, one of the authors derived a
determinant form formula for the solutions in K(x...x, ,)[x,]. éee [4]. In
these formula#, all the equations of t_he system are treated equally and the linear .
sysfem is solved efficiently.

In this paper, we derive an efficient resolution method for the solutions in
K[xl,_,.,xn], by treating all the equations of (1) ‘simu'ltaneously. Here, by an
efficient method we mean a more efficient method than the successive substitution
using the Grobner basis. The new method is an analogue of the GrObner basis method
for a single equation, andv it is obtained by extending the Grobner basis theory to
a module over K[x,,..x 1.

In §2, we define ‘basic concepts, The Grdbner basis theory is extended to a
module in §3, where we use a similar formulation of Grébner basis as in our
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previous paper [5] because of its apparent simplicity. In §4, we describe an
efficient resolution method for the linear system (1). A simple example and

discussion are given in §5.

§9. Definitions of monoideal and order
Let 220 be the set of nonnegative integers, and Eg the Cartesian product of
EG' with n a positive integer. An elcment'A of Z; is written as (al,,.,,an) and

we define |A| = P T S We write (0.....0) as 0. Let K[xl,...,xn] be the

ring of polynomials in n variables x., ..., X, with coefficients in a field K. We

1’
abbreviate K[xl,'._.,xn] to K[x]. We express f in K[x] as f = %} anA, where A =

A . L. a, o «
1x%2
(al,,,,,an), a, ¢ K, and x is an abbreviation of I FL We call a«, +

A de. degx®) = |Al.

eer + «  the degree of a term x

Let (Eg)t be the set of r—dimensional vectors with their components in Eno. We
‘denote an element of (Z;)r as A = (A;....A)). Similarly, by (K[x1)" we mean the
set of r—dimensional vectors with their components in K[x]. An element of (K[x])"
is denoted as T = (fl,_,,,fr), where fi e K[x], i=1,....,r. In partigular, we write
(0.....0) as 0.

Let S = (Sl""'Sr) and T = (T Tr) be r-dimensional vectors of sets, i.e.,

1:.-.-:

10 e S, and Tl' Tr are sets. _In particular, we write (9,....4) as 9.
Then, union and intersection of S and T are defined as

SUT = (S;U T w. xS, UT)
SNT=(,NT. ...5,NT).

]

Furthermore, if A = ‘(A,....A]) is such that AjeS,, .., and A €S, then we
write A ¢S,
Definition 1 [monoideal].

n . . - n
A subset I, of Z, is a monoideal if I, + Z 3 =1 O

M*
Proposition 1. (For the proof, see [5].)
A monoideal I, ‘is finitely generated. That is, there exist a finite number of

elements A1' ... A_in [ .satisfying

s M
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CJ n
I, = =1 (A + Zp. O
Definition 2 [total-degree lexicographic order > in EE].‘H
For any elements A = {(«a « ) and B = (51,._.,Bn) of ZZE, we define A" > B

iff either |A|l > |B] or |A] = |B| and there is an integer i, 1 £i < n, such that

a = Bj for all j, 1<j<1i, and &, > B,. We define A & iff A]> B or A = B, ]

Example 1. In' ZJ, (0.0.4) B> (3.0.0) b (L0 b (1.2.0) > (LLD b (0.3.0)

b (0.2 > (01,2 B> (0.0.3 b (200, and so on,

Préposiiion 2. The order [> is Noetherian in/ desce’hding direction, i.e:.», any .
deécending chain Ai !>’ A2 |>>A3 > .. "is"’ always‘.f fihite.

_I_’_g_dg{. Let A be any él'ement of Zg with |A| = d. ’i‘hen.» the number of elements in
ZZE "’whichlyare'levss ’»th‘im A in the' oi’der-flr>”ﬂis ai most (d+1)*. O

Proposition 3. The order [> is consistent with addition of elements of ZE,-

Proof. Let A, B, C, D be any elements of ig satisfying A [>B and C g D. Then,
o‘b'vious:lky A+ C  |>> B +Z’D. O . Y o

N_QEE- The fol‘10wing fheory’ is‘ valid}for other défiriitions“'of order > so faf as
P’rops. 2 :and 3.'hold, In particular, thel' lexicographic order is important in many
pjrra‘cticalv calculations. |

Defi‘nition 3 [exponent set, leading exponent, head term].

Let f be a nonzero eiemeni of -Kr[x‘]. 'Exponent set of f,v-lerading expoﬁent of f,
and ‘head’ term ~of f, whichr ére abbreviated to ' exs(f), ‘ lex(f), and ht(f),
respectively, are defined as bfollows: |

exs(f) = {A ¢ Zgl A in f = Z anA, aA=f=0},
“ lex(f) e exs(f), lex(f) >|> any other element of exs(f),
ht(f) = a term a,x* of f, where A = lex(f).’
We define exs()) = ¢, lex(() = ¢, and ht(0) = (, and we consider fof' convenience
that ¢ < (0....0). O
Definition 4 [hi’ghest—orvde'r smallést—suffix'C(;mponent order > in (Zg)r].v
‘Let A= (Al""’Ar) and B = (Bl""’Br) bé any elements of (Zg)r. We reordrfv':r

the components of A and define A' = (A ,..;.Ai ) as follows: - {il"“'ir} =
- r

i ‘
{l....r} and A, BA, B --- BA , where £ < m for any (£.m) such that Aiz =
1 2 r

_'4__
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A . Similarly, we define B' = (Bj ....,Bj ) by reordering the components of B as
m 1 r

described above. Then, we define A |> B iff there is an integer k, 1 <k <r, such

that [Aiz = le' and i, =i, for all ¢, 1 g 27< k1 and [either Ai‘k > Bik or 'Ai'k = Bjk

— -—

with i, < j ]. We define A & B iff A > B or A = B. O

Note.. We called the above order: the -highéSt——order smallest—sufffx component -‘order.

because Ail and’Bjl are the vléading components in determining the order.

Example 2. In (Z)% ((1.L1), (0:2.0)) B ((2.0.0, (LLD) B ((0.2.0, (1.1,1))
> (€0.3,00, (0.2.1)) b ((2.0.0), (1,1,0)) b ((2.0,0), (0,0.1)).

Notes. We can define an order in- (ZZ’S)I from the order: > in E'g variously, and
the above defin%tion is only one choice’ among many possible. aefinitio‘rl-‘s. " For
example, we may define the nonzero smallest-suffix component to be the leading
component of A. When solving a system:of linear equations, however, the efficiency
of calculation depends crucially on choice of  the order. © The above definition is
the most appropriate choice for solving the: syste‘m ‘of "linear equations, We discuss

this point again in §5,

Proposition 4. The order [> in (22;;)r is Noetherian in descending direction, i.e.,
any descending chain A; P> A, > A, P "o+ is "always finite, -

Proof, Let A = (A,..,A) ‘be any element of (Z)" with max{[A,[....1A 1} = d
Then, the number of elements in (Z})" which are less than A in the order [> is at
most (d+1)"". O

Proposition 5. The order [> is consisteni with addition of elements of (Zg)f.
_I_’_Z(_)_g_{.‘ Let A, B, C, D be any elements of «(ZE)' satisfying: A"[> B and° C & D.
Then, obviously A + C > B + D. O

Definition 5 [head term, head position, and rest of T].

‘Let T = (fi“«"'fr) be an element of (K[x])". Put A, ="lex(f)), i=l,...,r, and
let A, be the highest-order smallest-suffix component Qf (Aj.WA), e, Ail in
Def. 4. Then, head term of T, head position of T, and rest of T, ‘which are
abbreviated to ht(F), hp(T), and rest(T), respectively, are defined as follows:

| ht(f) = ht(f)),

“hp(f) =k,



Crest(f) =T - (0....0, ht(f) ,0....0). O
k~th I‘omponent
It is obvious that lex(T) [> lex(rest(T)) if T # T. In the following, we say T is
higher order than g if lex(f) > lex(g). |
‘Example 3. Let T = ( xy"—l; x%y%, xy'-x ), then ht(f) = xy! and hp{) = 1.
Let § = ( xy'-y, x®y®-1, xy*-1 ), then ht(g) = x%y® and hp(@) = 2.
Definition 6 [exponent set, lead-ing exponent, and lex-monoideal of T1.

With the notatiqhs in Def. 5, exponent set of T, leading exponent of T, and
lex-monoideal of f, which are .r-dimensional vectofs and abbreviated to exs(f),
1ex(?), and Imo(T), respectively, are defined as follows:

exs(f) = (eXS(fl)'....,eXS(fr)),
lex(T') =(00 iex(fk) .0....0).,
mo(f) = (9....9, Iex§fk)+2'; $....9). O

k—-th component

§3. Grobner basis of a module over K[x.,....x_ ]

In this paper, by a module 'T‘ = (Tr""'?s) with ?i e (K[x1)", i=1,....,s, we mean
the set <h1?1 + oeee + hs?’sl hi.ﬁ K[x]. i,=1,..7,s},
Definition T [reducibility].

Let F = {?1'"“?;} be a subset of (K[{x])", and put E = }Z}llmo(?'i), An element .
h of (K[x])" is called reduciblle with resﬁect to F if exst) N E # @, and h is '
called irreducible w.r.t. F if exs(h) V E = ¢. O
Definition 8§ [reduciion].

With the notations in Def, 7, let h'e (K[x])r. The h' is called é reduction of
h w.r.t. F and written as h —F—v h' if one of the followings holds:

~(a) h' =h when N is irreducible w.r,t. F,

(b) h'=h - c-xATk when exs(h) N lmo(Tk) # @,

where ¢ and A are determined as follows: let ht(?‘k) =a, x™, hence the hp(Tk)—th
° k

= . . +
component of h contains a term proportional to x“\k and let the term be bM,AkxA A

- 6 -
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then ¢ ;-—\'-bA+Ak/aAk. In the case of (b), we call this reduction as genuine
(one-step) reduction w.r.t. Tk, O
Note. It is obvious that lex(h) Iex(F')f
Definition 9 [normal (form]. |
Suppose h in (K[x])T is 'ré'duced successively as T;»H' — TE’ and
if B is irreducible w.r.t. F then h is called a normal form of h w.r.t. F. We
denote the above reduction sequence by h — h O |
Example 4. Let F = (T, g}, where T and g are given in EXémple 3, and H = (xy4.
x%y3, xy%). Then, & can be reduced w.r.t. F as follows: ) |
Y — (¢ x2y3—x2y2, x) [feduction w.r.t. ?‘.]'

— ~(—xy4+y+1, (‘—~x2y2+1, —xy4-!;x+1) [redu#tion w.T.t, 2]

—— (v, 1, D [reduction w.T.t. T];\
The last térm (v, 1, 1) is irreducible w.r.t. F, and it is a normal form of H.
Proposition §. Let F = {Tl,...,?s} be a subset of (K[x])". Given any elefnent'ﬁ of
(K[x])r, we can reduce h to"a“norma‘l' ’form E W.r.t,, JF by a finite sequence of
reductions,
Proof. We use inductifm on lex(R). When B = (0.....0), hence lex(R) = (&.....8).

h is already a normal form. Assume that the proposition .is valid for‘any _g' such

that lex(g) < lex(R). Put h = K, + rest(h), and let

|

(A): h p:hl e F*hk =K

-—

be a genuine reduction chain of h w.r.t. F, ie., B # Hl # oot B o# oo
From definition of reduction, we g.‘et a descending chain
(B): lex(B) = lex(},) B lex(E) B lex(®, & ---

in (Zp)". |

(Case 1). In the case that there exists an integer k such that lex(h) > lex(Fk).
By induction assumption, the reduction chain (C): Yi’k -—F——> Tfkﬂ T -+« is finite.
Hence, chain (A) is also‘firvnite.' |

(Case 2). In the case that lex(ffk) = lex(h) for any k.: Sihce'the head term of h,
or HO’ is not reduced in chain (A), we get a cdfresbonding génuine reduction chain
(D): rest(h) — rest(ﬁ'l) — .. Since lex(ﬁ’v)‘ > lex(rest(h)), the cﬁain (D)

- 7 -
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is finite by induction assumption., Hence, the reduction chain (A) is also finite,
O
Definition 10 [Grébner basis].

Let T = ('f'l,,,,,_fs) be a module in (K[x])". A subset G = {El,...,'é't} of

(K[x])r is called a Grdbner basis of T if the following conditions are satisfied:

1 @...g) =T,

(2) for any element T of T. T -G—H 7. O

Definition 11 [ S-polynomial].

" Let T and g be elements of (K[x1)T and put ht(T) = anA and ht(g) = beB. The
S-polynomiallof T and 2, td be abbreviated to Sp(T,E). is defined by
. uf - (a,/by)vE if hp(f) = hp(@).
Sp(f.g) =< . ‘
0 otherwise,
where u and v are monomials satisfying LCM(XA.XB) = ux? = wa. with LCM the least

common multiple. O

Note. That sp(f.g) =T ﬁv’hén.hp(?) # hp(g) is essential ih the GrObner basis theory
of T, and it-is quite reasonable from the vi‘éwpoi‘ntv‘of general' reduction theory.k
Theorem 1. Let G = {El,..,,gt} be a Grdbner basis of a module T in (K[x])r; and R
an element of (K[x])". Let B, and H, be normal forms of ¥ w.r.t. G, then h, = h,.
Proof. ~ Leﬁ E = iL;llmo(—g'i). By definition of normal! form, we have exs(Ei) MNE =

—

¢, i=1,2. On the other hand, lt-:x(E1 - Ez) ¢ E because El —_B:z € ‘_I*. Hence, if El -
Ez # 0 then we have a contradiction, [J | |

’I‘heorerr; 2. LetT = (El_g}) be a module in (K[x])" and put G = {El.....-é:}. I
Sp(gi.gj) - 0 for any pairb (Ei,_g"j), i, lgi,jgt, then G is a Grobner
basis of T. |

Proof., Put E = U lmo(_g'i) and let T be any element of T with lex(T) = A. We havé

i=]1
only to show T —E——H T.-If A cE then T can be reduced directly and we can feplace
T by T, lex(f") « A, so we have ohly to consider the case of A & E.
Since T &1, there exist hl’ s ht in K[x] satisfying

f = hlg1 + -+ + hg,.

For i=1,....,t, put
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AL ht(h) = by x™,

Aj+B;

ht(gi) = aAix |

hence ht(higi) = a, bpx Let D be the highest order element of
i Bi s , o

{lex(h,g,) | i=1....t, h, # 0}. Without loss of generality, we assume D = lex(hlgl)

= cee = lex(htgr), and D > lex(hiEi) for all i> 7. Then, putting h, = by x

h!, we decompose f as
1 .

. .
—°(1) - Zb x g, —*(2) Eh + Z higi'

i=1 j=T+]

We see D > lex(h;gi), i=1,...,t. If r = 1 then D A ¢ E, contradicting to the

T = ?(1) f(2)

-f*(l)

assumption A £ E. Hence, * > | and we can rewrite as

(1) _ AwB1T _ JBoz -
f = (aAleI) (x gl/aAl X gz/aAz)

(xB2%_a. - xP3g
+ (aAszz + aAIbBl) (x gz/aAz - X gs/aA3)
-+ ’, . ° ° °

+ {a 4+ eev 4+ a, b )e(xD “1gt 2,

) _ B‘r—- .
At—'leT—l .Al B X gt/aAf)

-1
. Br
+ (a, by + + aAle]) (x"fg ra, ).
We first note that the last term of this expression is §. To see this, we consider
nt(FY), which is

T

Aj+Bj Aj+By
a, b, x = {(a, b a X
_ é:l A; By ( Ay 7By + . + Ag )
If this expression is not zero then A = lex\f) = (0,,.,0,‘ A1+B1 ,0..,0),

contradicting to the assumption A géE, We next consider the j-—th term, j = r-—-1, of
the above r.h.s. expression Recallmg the definition m‘ S—-polynomial, we see [the
j-th term] = u~Sp(g . ﬂ) with u a monomial, By the ass_umptlon of theorem,

—y

) —— T. Hence, we find T — T.

The T® is of the same form as T, so we can ’éontinue the above reduction,
reaching T —-E—-» ser = ', lex(T™) « ]ex(—g'i), i=1,...,t. That is T — T.
D Sy
Note, vThe S—-polynomials Sp(gi,gj) with hp(?i) #* hp(gj) are unnecessary in the
above proof, which shows the approbriateness of Def. 11.

An important ;;roblem in the Grébner baéis theory is how to construct the GroObner
bas&s, and Buchberger [1] found a 51mp1e procedure for the case of polynomial

ideals_ Buchbergers procedure, with a slight medification, applies to our case,

..‘9_



too,

Procedure BUCHBERGER

input: a module T = (_f'l,....?.s)‘in (K[x]‘)r.
output: a GrSbner basis G =‘{_g'1,....§'t} of T.
G = (=T, ... g;:=T .}
P := {(Ei,g“p]ig}zj € G, i#] hp(g) = ho(g)}:
while P # ¢ do begin_
. P = a pair (Ei,—g'j) in P;
P:=P - ){pij}: ’
g = a normal fofm of Sp(?i,Ej) w.rt. G;
if E#U then begin
P:=PU(ED| @) =@, T, ¢ G

G =G U (&)

M

~end; ’

end.

In the process of the above procedure, the size of G is increasing one by one,

so we denote the G eXplicitly by GO’ G Gz, .... Where G0 = F and Gi =

1'

G U {_g__'i),‘ i21, with v_é_’i the i-th generated S-polynomial in normal form.
- — — ‘ -—v s+i —

Writing g = g,,;, s0 G = (g....8,,;), we put E; = \Jlmo(g)).

Theorem 3. The procedure BUCHRERGER terminates in finite steps, and it gives us a

Grdbner basis of the module T.

Proof. We denote Ei ‘as (Eil""'Eir)' where Eij. 1 £ji£r, are monoideals in Z;,

For every j, 1=j=r, Elj [t Ezj C e ;'Eij C --- is an ascending chain of

monoideals, so it must be a finite chain (see [5].). Therefore, there exists an

H ‘ ‘ . Y C = B _._— v 00 | ‘ =

integer kj. such that -'El.i - Ezj = = Ekj_j Ekj 1j . Let ‘ k ‘
E. C [ RO o = I = eee ; X h

max{kl,__,,kr}, then 1 E)2 : E)k Ek+1 , and every element of the

module T is reducible w.r.t. Gk_ This means that procedure BUCHBERGER terminates.

Hence, Theorem 2 tells us that the proc'vedux"e gives us a Grdbner basis of 1. O

—_ 1.0 '_
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§4. Polynomial solutions of a system of linear equations
Let us consider the system (1) given in §1. We ‘rewrite (1) as

v T | PRRSRS o T —‘—' ‘ k v ’ v
ylf1 + + y 1 ‘fo' | (1"

where f. = (fu""'fir)' i=0,...,s. -

Before solving (1'), we consider the following homogeneoué equations:

2,8, t -+ zg8 =10, ' (2)

where G = {El....,gt} is a GrObner basis of the module I = (f1"°"fs)'

— pran — — — .
Let g; and g; satisfy‘hp(gi) = hp(gj), and put ht(gi) = a .xA‘
. . v 1

A and ht(gj) =

bB)(Bj with a, ,b, e K. Then, since G is a Gr8bner basis, we have
i i Bj - .

SD(Ei,gj) = 0.

This reduction relation can be rewritten as

o _ t
w8 - (a,/Pg )V, = x§1 LA
where u, and v, are monomials satisfying LCM(x* xBl) = uiiji = viixBj and
Wik satisfies lex(wiikgk) <} lex(uijgi) = lex(vijgj)_
Proposition 7. With the above notations, let
S _ o o y
z = (Wi“,... LAY R T wij.j+(aAi/ij) Vi '",'wii-‘)'A (3)

% s the lowest order solution of

where we assume i< j. Then, (z).....2) =
(2) satisfy”ing |
lex(zigi) = Iex(szj) > lex(zkgk) for all k-—#i,j;
Proof. It is obvious vbecause ;s and Vi are monom}ais of the lowest orders
satisfying lex(uijEi) = lex(vijEj). a
Theorem 4. With tﬁe above notations,‘{(zl,,,;,zt) = ‘Z(m| ﬁ.p@’i:) = hp(}-;'j), i<ijy
constitutés the set of. generatvors.ofhytlf‘le polynomialrs‘ohiti.ons of (2).
Proof. Let z = hl with h, e K(x], i=1,...t. be any solution of (2) and put
T =hg +--+hg,. o

We show, by subtracting multiples of the special solutions {Z(m}, we can reduce

T to ﬁ',
We use the same notations a,. Ai' bB-' Bi, D, and 7t which were used in the
1 1 .

proof of Theorem 2. We decompose T as

- 14 -
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T = ‘f-'(l) + T(Z),

: T : T ’ t
> _ Biw  »(2) _ e -
= .Z bgx g, T = h'g, +_2 hg,.
i=} : : i=t+1
We see D > leX(h;Ei), i=1,...,tz. If £ = 1 then T can never be equal to 0. Hence,

i=]

r > 1 and we can rewrite T as
(1) _ BT _ JBo—
f = (aAleI) (x gl/aAl X vgz/ka‘Az) |
J(xB2% - xBig
+ (aAzbBz + aAlel) (x gz‘/aAz X gs/aAs) »
-+ ° o . : . .

(BT-1g _ ¢Brg
+ + aAlbsl) {x gt_l/aAr._1 X gt/’aAt)

+ (a b
( Ar_l Br-l
(xBtF
+ (3, bg + ocee + aAleI) (x"Tg ra, ).
We first note that the last term of this expression is [ because X' ,3a;Pp, is the
. . i= i By

coefficient of ht(f). We next consider the j—th term, j< r-1, of the above r.h.s,
expression, Recalling the definition of S-polynomial, we see [the j-th term] =
' £(.3+1)

, u-Sp(Ej,§j+1) with u a monomial, Hence, '"'by‘ subtracting u-Z , we can replace

which 1is less order than Sp(Ej,EjH), That is,

£ —
the term by u’2k=1wi.i+l.kgk

subtracting multiples of special solutions E(j‘jﬂ),

j=1....7-1, we can reduce T
to T' such that llex('f_') > lex(f')_ Continuing this subtraction, we obtain T - [
because of Prop. 7. O | | |
Note, The above theorem is valid if some of the Zys ..h . Z, ar€ ZETO, For
example, consider the case g, # 0, 8y = =8, =0 In this case, hp(gl) =
1 and hp(g,) > 1. k=2...t, so Sp(g.&) = (0, ..) for any i and j, 1Sijst

= ( for every pair (i,j) such that hp(Ei) = hp(Ej)., and z, = Q.

Hence, w,.
ij,1
Now, let us consider the system (1'). Assume that {El,...,Et} is a GrBbner
basis of T = (?'1,_..,?;), constructed by the procedure BUCHBERGER. Then, tracing
the construction procedure, we can construct polynomials Q; ¢ Kix], i=l.....t,
i=1,...,s, such that
. s ,
g = 2,04, i=l..t p | W
Conversely, tracing the reduction Ti T»—» U, we can construct polynomials p.lj g
Klx], i=l,....s, j=l,....t, such that
f, = ,; P&y i=lo.s. (5)
Using (5), we can transform the system (1') with ?0 =0 to (2), where
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Z Y =Lt (6)
Conversely, formula (4) allows us to calculate the solution (y}_....,ys) of (1"
from the solution (z ..2,) of (2) by the formula,

Z a2z, i=lo.s. | | - Q)

Thus, we obtam the followmg algorlthm

Algorithm SOLVE

Input: linear system lel 4+ eee 4+ ys'f's =T, T. ¢ (K[x])n.b
Qutput: generators of the solutions Y i=1,...,s, in K[x].

Step 1 1, By using procedure BUCHBERGL’.R

—

calculate a Grobner ba51s of module I = (f 1,.,,.?5),

and let the ‘oasxs obtamed be G = {gl.....-g;}:

Step 2. By reducing ?’0 w.r.t. G,

calculate polynomials sz), j=1,...,t, such that

_ 2 W”g’, + ., T,. is irreducible w.r.t. G;

b -0 -0
If fo # 0 then return ¢ (no solution)
else let 30 = (zw) (0)) {particular solutmn)

1 e

Step 3. Calculate a set of polynomials {qji} satisfying (4);

Step 4. For every pair (Ei,Ej) in G such that hp(Ei) = hp@'j).

calculate the generator E(m by the formula (3);

Then, transform these generators and particular solution 2(0)

by the formula (7). and return the results.

§5. Example and discussion

In this section, we use Nf to denote the normal form w.r.t, {?1,?’2}'3”“-}
for simplicity, Furthermore, the hoad terms are indicated by underlines.
Example 5. In (Qlx,y1)% let T = (TI,?:;,?;&‘),with Tl = .(_}53_1; ‘y2_'1), J"f*z = (xy-2,
x*-y), and Ty = (y2+x. xy-1). o | |

We calculate a Gr‘Sbner basis ofk the module T given m "ExampleIS. By using
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procedure BUCHBERGER, we get

T, = Ni(sp(f,.T,) = (xy2-yi-xy-y?-x-2y, yl+xP-ayP-x+y).

T, = Ni(sp(,.F,)) - |
= (Sroxyteyiraxydoy i axy ooyt e axyyiox-2y-1, -2yP+ax?-3yP-x+3y+1),

T, = NE(Sp(T,F,)) = (P+axy’-yS+oxyryPeaxtdy-1, -2v'+x+y),
Nf(sp(f . T = T, o
Nf(sp(T.Tg) = T.

Nf(sp(fg.fg) = T.

Since other pairs do not possess corrﬁnon head position, we'get {TI’TZ""“?G} as a
Grébner basis of (Tl'-f_tzj's).' |

The above computation is done witﬁ the higv}‘lest—order smallest—suffix component
order. In order tdlsee how the effiéiency of the resolution method depends on the
choice of order, we consider another definirtion- of order [>. It is easy to find
that solving (1) with the order defined below Ais equival.ent to solv'ing (1) by the
successive substitution merthod, where each single equatién‘ is solved by the Grdbner
basis method.

Definition 4' [nonzero smallest-suffix component order [> in (228)'].

ol

Let A = (Al,....Ar‘) and B = (Bl,.....Br) be any elements of (Zg)r. We define
> B iff there -exists a;n vinteger k such that 'Aii = B, for all i, 1<i<k, and A, >
B,. We define A LBifE pBorA=E O
Example 6. In mg)‘{ ((1.1.1), (0.0.0)) P ((’0.3.‘0). (1.L.0)) |>'((o.3,0), (0,1.1))
> (00D, 0.LD) B ((0.0.0. (LLO) > (8. (LLD) B> (4. (0.3.00).

Calculating a Grdbner basis of the module given in Example 5 with the nonzero

smallest-suffix component order, we obtain the following sequence,

—’1 = (53_1: yz'—l);

-f-.z = (xy-2, X3—Y),

T, = P xy-D),

T, = Nisp(@,.T,) = @xv. x4y’ +xy-y),

- = By 3 42,2, 2
IS Nf(Sp(f .f ) = (0, —x"y+y +xy +x"+xy-y“-x-1),
Ta = Nf(SP(TZ-?3)) = (=2y-1, y4—x2y+xy2+x2+xy-y2—2'),

_14_
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|

7 = Nf(Sp(?'z,T4)) = (=15, axyt-2xt+axly®-5yt+12x3+5x%y.

—9xy2+2y3—5x2—3xy+5y2—4x—l 0y+6)/4,

)

g = NSpE T = (0. Pxy’xPxPyrxy+2yiy-2),

=

s = NE(Sp(®,.F))

(0, —x2y4+xy4-—ys.-—x4+2x2y2~-,-xy3+x3—x2y—2xy,2—y3+x2+xy—y2+3y).
f,, = Ni(Sp(f .T.)
= (0, —y7—2xy5—2x2y3+2y5v~y4+x3+x2y~2xy2—2y3+2xy+2y2+x+2y~1). :

Nf(sp(f,Te) =T,

o
[

1 = NESp, ) = (0. xy +xPy?-5y°-4x*+5x7y-gxy rytex®

-3};2y—4xy2+9y3+X2°4xy‘-.3y2—3x+4y+9)/4,

)
I

12 = NESpELTN = (0, yorxtyPixy®+xPyxy?-oy’sxy-y-2)15/4,

Nf(Sp(Fy.Tg) = Ni(sp(,T,) = T.

=)

Nf(sp(f,.T¢)) = Ni(sp(f . T,)) =

Nf(Sp(T',.T'p)) = Nf(Sp(F.Tg)) = Nf(Sp(f,.T),))

=l

Nf(Sp(f.T,,)) = Ni(Sp(f.T},)) =
Nf(sp(T,.T,)) = T.
Nf(Sp(F.F)) = NE(Sp(F,.T () = Ni(Sp(F,.T ) = Ni(Sp(F T ,)) =T
NESP(T,T ) = NiSp(,T,)) = Nitso(@y T ) = T,
Nf(Sp(T 4.7, ) = Ni(sp(f . F ;) = T.
Nf(sp(f,,.T,,)) = T.
Since other pairs do not possess common head position, we get {?1,?2,...,?12} as a
Grb’bner basis of (TI,TZ.?a) with the order defined above,
Using the above Grébner bases, we can easily calculate the generators of the
bhomogeneous system of linear equations
v,F, + y,0, + v, T, =T,
With the highest-order -smallest—suffix component order, the solutions are
‘represénted by 6 generators., On rthe other hand, with the nonzero smallest—suffix
component order, 30 generators are necessary to represent the solutions., Hence,
for the above problem, the highest-order smallest-suffix component order is much
better than the order defined in Def. 4', from the viewpoint of notronly the
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computation speed but also - the smallness of the ﬁumber of generators,

Note that' solving (71); with the nonzero smallest-suffix component or‘der is
equivalent to solving (1) by the successive ~sub$titution method, Thus, the aﬁove
example indicates the superiority of our method to the successive substitution
method, This i; .quite f'easonable because, as for- a system of linear equations, the
more the number of equations is, the narrower the solution space becomes,
Therefore, generally speaking, we can solve the system more efficiently by treating
-all the equations simultaneously than solving each equation -successively.

Note.  The algorithm ‘described so far can be extended easily to calculate the
general solutions m ZE,le.‘...,Xn]. ‘In order to do so, we have only to define the

order [> by including the integer coefficients as described in [6].
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