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An Algorithm for t he Normal Forms
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Tadashi Takahashi ( B I )
Department of Science, Gunma Technical College

Maebashi-shi, Gunma 371, Jsapan

In a_previoqs paper[8], we have given a recoénition principle
for a hypersurface isolated singularity of a certain type. In it,
a normal form of homogeneous polynomial was constructed by the
m§nomfals‘of the lowest degreé.' Howevef, the normal forms
constructed by the principle were not unique, .- So, in this paper,
we try to impose a condition to construct s uhique nbrma% form of
homogeneous polynomial,

We consider it natural that normal form should be easy to
write and remember; that is, the normel form should have the
fewest monomials, and each monomial should be simple. The normal

forms defined in this paper meet the above condition.



§ 1. Normal forms of singularities

In this section we review some theorems and definitions

about normal forms of singularities which are given in [1,2,3].

Definition 1.1, | A func;ion f :(C'?D) —> (G,D0) is sajd
to be quasihomogeneous of degree d with exponents 84,----,8n if
FLA 2484, 00, 1'“xﬁ) = 19 (xs, ", %) for all 1.

In terms of the function f=2Xcwx*, quasihomogeneity of degree 1

means that all exponents of non-zero terms lie on the hyperplane

F={ k: askst - +anka=1l 3},
We call the hyperplane I the diagonal,

Definition 1,2, A quasihomogeneous function f is said to be

Arnold non-degenerate if 0 is an isolated singular point,

Definition 1.3. We fix the set a bf exponenfs. Then we

say that a monomial x¥ hgs generalized :degree d if <a, Kd>=d.

Definition 1. 4. A polynomiallhas filtration d ifrall its
monomials are of degree d or higher; when the generalized degree

- p -
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of all monomialse is d , we call d the generalized degree of ‘the

polynomial; the degree of [ is + o

We denote the generalized degree of the polynomial by & (1),

The polynomials of filtration d form a linear space Ea . Let A
be the polynomial ring. The E« is an ideal in A
Definition 1.5, B polynomial f is said 16 be

semiquasihomogeneous of degree d with exponents a if f=fta+f’,

where fo is an Arnold non~degenerate quasihomogeneous polynomial.

of degree d with exponents a,and d(f°) strictly greater than

d

Definition 1.8, Let a4, ----- , 8 be &8 fixed collection of
p quaesihomogeneous types. We define the degree ofwx‘l to be
di1(K)=<a, K> in‘the i-th filtration. HevdeTSne the piecewise

degree of x% to be @(K)=minl ¢;(K).~~". de(K)T.

Definition 1.7. A power series has piecewise filtration'd

if all its monomials have piecewise degree d or higher.
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The equation & (K) defines a polyhedron T in the Vspac‘zje of
exponents K that ‘i"ggconuéx towards 0 . We denote { K | & (K)=d)
by dT . The sum of the terms of ’#he lowest piecewise degree in
s given power series is 'ca‘!“le’d'th\e principal part of the series.

A piécewise homogeneous fuhcti.kén‘ <;f degree ddi‘sk 5 polynomial whése

all monomiels have piecewise degree d

Definition 1.8.  The multiplicity 1 of the singular point
D of a function f :(C",0) — (C,0) is defined és‘th?e dimension
of'the local rihg

Qe=Cllke, -+, %nll/C BF / B%s,-~+-, 8F / 8%xn )

Definition 1.8. . A formal vector field v = 2 v/ 9% has
filtrat;i_on d if the directional derivative of v raises the
fittration which is not less than d: . Ly Ea CE 1 .sa .

We denote the set of all vector fields of filtration d by %a

Proposition 1.10. Suppose that d=20.  Then 1) the commutator
of vector fields on 4 a Lie algebra structures ; 2) the
commutator of elements Fas and 9uz-'lies in 5’4"“.:.:2 s‘o that

each S 4 is an ideal in Lie algebre o

7:; a -
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Definition 1,11, A piecewise homogeneous functions f of
degree d satisfies condition A if for every function g of
filtration d+38 >d in the ideal spanned by the derivatives of f
there is a decomposition g=( 8 fe/ 3 xi)Vvs + g ,where the vector
field v has filtration &, and the function g has filtration

greater than d+ §.

We assume that & type of queasihomogeneity @a=(as,----,8g) is
given, Let E'>a« stand for the idesl of Ea consisting of
polynomials of filtration strictly greater then d. We call the
factor ring A / Ea4 the ring of d-jets, and its elements d-jets,
A formal diffeomorphism g:(C",0) — (G,0) is given by 3
collection Bf‘n power serfés dithodt”constant terms ahd gives 9
ring isomorphiém g*: A — A by :the for.’mu,!a g‘f=f og ,where o

denotes the substitution of a series in a series.

Definition 1,12, A diffeomorphism ¢ hes filtretion d if,

for all 2, (9"-1)Ex CEs +a

We denote the set of all diffeomorphisms of filtration d by

Ga=Gas(a).



Proposition 1.18.  Let d20. ThenGa is a group under the

operation o,

Proposition 1.14. For g9 > p2 0, Ga is a normal subgroup

of GP

Let Goy>a be the subgroup consisting of the diffeomorphisms of

filtration greater than d,.

Definition 1.15. The group of d-jets of type @& is the
tactor group of the group of diffeomorphisms by Goa:

JaezJa(a)=Ge/ G54
There are natural factorizations Ile,a:Jde —> Jaq (> p=2 0).

Proposition 1.18. The group Joe i8 obtained from Je by

a chain of extenéibns with commutative factors.

Definition 1,17, A diffeomorphism g& Ge is said to be .
quasihomogeneous of type a if every space of quasihomogeneous

functions of degree d and tvpe a is mapped into itself by g¢.
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Let va be the space of quasihomogeneous functions of degree d
and type a,. Then go Vg4 C"V¢ . The set of all
quasihomogeneous diffeomorphisms of fixed t&pe forms a group. We
denote it by‘ H(= H.( a)) Qnd cail itbthe group of

quasihomogeneous diffeomorphisms,

Proposition 1,18, The group Je is naturally isomorphic to

the group H.

Proposition 1.189. Suppose thet d=§0. Then the group J a
of d-jets of diffeomorphisms acts as & group of linear

transformations on the space A/ Esa of d-jets of functions,

In this case of piecewise filtrations, the groub of
diffeomorphiéms of filtration d, thg group ofvd-jets of
diffeomorphisms and the correspoqding Lje alggbrgs are defined
just as in the case of quasihomogeneous filtrations, There is no
analogue in the case of piecguise tiltrations for the group of

quasihomogeneous diffeomorphisms,
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pefinition 1,20. Let feo be 8 piecewise homogeneous function,
guppose that fe has finite mujtiﬂficity‘ u.“ Let:é1, ----- ,es be
a basis of Qse. Then the basis eyq,----- ,ex is said to be

regular if, for each D, the elements of the basis of degree D are
independent modulo the sum of the ideal [=( 3 feo/ @ x) and the

space E>p of functions of filtrations greater than D,

Proposition 1,21, There alﬁays'existé a regular basfs;‘ih

fact, one consisting of monomials.

The number of elements in a regular monomial basis having
given piecewise homogeneous degree does not depend on.the choice
of a basis of the local ring. ~ A monomial in a regu}ar basis is
said to be diagonsl(superdiagonsal) if its degree is equal to

(greater than) the degree of the function fa.

Theorenm 1.22.» If the principal part fe of a function f
satisfies the condition A and heas finite multiplicity u«, then f
can be reduced by a diffeomorphism to the form fetcsest--:-tcses,
where “es,°cr-,es ‘8re the éuperdiagonel monomials in a regular

basis.



s 2. Newton polyhedre gnd the recognition principle

Let f(x) be an analytic function in én open neighbourhood U of
vC“ ( f(0)=0 ) end sssume that f(x) has an isolated singuler point
at 0. We can tekg a positive number €& so that the sphere
S(r)={ x€ C™ ; Ix N2=]x, i?+-----+‘lxn | 2=r2) cuts the
hypersurface Ve=f"*(0) transversely for eny 0 < r & ¢.

Fixing such ean &, we can teke & >0 such that Vnp = f"*(»n) is
non-singular in D( &) and is transverse to S{ &) for BC| » | £ &
where D(e) ={ x€ C" ; x S ¢}, Then we have a so-cslled
Milnor fibration f : x — S where S={n€E C; 0K »n | & 81}
and X =f;‘(S) i)g . This fibration does not depend on the
choice of £ and & up to a fibre preserving diffeomorphism,

The fibre is (n-2)-connected and its (n-1)-th Betti number is the

Milnor number 7 of f(x) ( Milnor[§] ).

Definition 2.1. ( see L& and Ramanujam [5] ) Let NC
R T R be the sets of ali'nonnegatiue integers, all nonnegative
real numbers, and all real numbers respectively. Let K T NX pe

a subset, Newton polyvhedron of a set K is defined by the
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convex hull in R." of the set.FLJ ~Cn + R.¥)
a B neK

Newton boundary of a set K is defined by’zhe union of all bompact
faces of Newton polyhedron of K. =~ Newton polyhedron is denoted
by T +CK) and Newton boundary by T ( K) .

Let f= Z anX", 8n € C. Let us write supp. .f={nEN*|anx=x0].
neE N ' ”

Definition 2.2. "~ ( see L& and Ramanujam [5] ) Newton
polyhedfon of awseriés f (or Neuton’boﬁnhary) if defined by Newton
polyhedropk(Neutqn_bpuﬁdafy) of the supp ff,\i Ngwﬁoﬁ polyhedron
(Newton boundary) of the series f is denoted by I'.(f) (and I (f)

respectively).

Definition 2.3. (sée Oka [71 )  The principal part of a’
series f is defined by the polynomial fe=  ZLa anx" . For
ne ()

any closed face ACT (f) we shall denote by f4 the polynomial

E:‘ anx" . We say that f is non-dégéﬁerate on 4 it thé
neE 4
equation 3 ta / 9%s= 09 ta / Fa=""---- =9 fa / 3xn=0 has

no solution in (C*)", When f is non-degenerate on every face

4 of T'(f) , we say that f has a non-degenerate principal part.

- :]':‘0 _
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Example 2.4. We consider the following equation

f(X,y,2)=x2+2xy+y2+y3+z*,

Then f(x,y,2z) is degenerate,. We submit the following analytic
transformation: x=x’'-vy,. Then f(x',y,2) is non-degenerate,

(see Fig.1.)

3 3
P
A\ '

2 ‘ 2 , o
Ffix,y,2)) C{f(x',v,2))
Fig. 1.

Theorem 2.5, (0ka [T1) Suppose that f(x) has an

isolated
singularity at 0 and f hes &8 non-degenerate principal part,

Then
the Milnor fibration at 0

is determined by the Newton boundary
mf).

Corollary 2.6, (Kouchnirenco [41) The topological type

of singularity and the multiplicity x« are independent of the

particular choice of’f for a fixed rof).
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Moreover, the author [8] proved that there exist a following

canonical method as one of the methods to find the topological

types of isolated singularities on hypersurfaces.

Lemma 2.7. Let f be a polynomial with an isolated

singularity at 0. Let fe be a degenerate principal part of f.

We assume that the piecewise degree (or the generalized degree) is

equal 10 one, Then f may be non-degenerate after the following

finite manipulations:

(1)

(2)

(3)

We choose the monomials with the lowest degree (in usual
sense) of the principal part fo of f. And we go to the next

manipulation (2).

We transform the monomials with the lowest degree to the
normal form by a suitable linear transformation. If the new
principal part is non-degenerate after this manipulation, then
the manipulations are completed, [f the new principal part

is also degenerate , then we go to the next manipulation (3).

We consider the monomials which have the degrees greater
than the lowest degree (in usual sense). We choose the

monomials which are the elements of the new principal part
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With the lowest degree in the above monomials.  And we try tgo

deléte the ‘mon(;mials by suif.able analyt‘ic transformations,

If the monomials are deleted af.ter‘ ‘the su'itrable‘ analytic
transfor’mtvat_ihqns _andx)th‘e hew p‘rincipal" part is non-degenerate,
the»n the‘ ma_nipu_lati%ons ‘a{rg‘ co.mvpl_eted.‘ Otherwg‘\se’ we go to.

the nextmanipulation (4).

(4) We consider th_e'mon;omials which are the elements of the new

principal part and have the degrees greater than theé lowest

degree after the last manipulation. And we submit the

similar menipulation, We repeat this manipulation.

Proof. Let € be a ring of germs of smooth functions at 0
e Cn, ‘We denote the maximal ideal of this ring by #® .  Let:

f=Zanx", x"E m"\‘"" and  x"EBL, Then (g*-1)xnE Fonot 2
, (g*-1)x"EJ > 2t for any  gE Gy (A>0). “From
Definition 2.3., when we submit these manipulations we may obtain
the non-degenerate Newton polyhedron after the finite

manipulations, Then the proof of Lemma 2. 7. is completed,

Let f be a non-degenerate polynomial with a singularity at 0.



Let fe be a (non-degenerate) pricipal part of f. We assume that
the piecewisevdegrée (ér the génerslized degréé) of fe is equal to
one. Let d be the Iowest‘degfee ;f the monomials of f whi&h do
not contain the superdiagbnal m@nomials and have the piecewise
degree (or the generalized degrees).gfeéter than one. Then f is
transformed into the following form by the suitable analytiﬁ
transformations (or the suitable elements of the groUb of

diffeomorphisms of filtration d ):

fe’ +f'+0181+' .. '+Crer\
where es,----,er are the superdiagonal monomials of f, f’€ E>a

and fe’+cie1+~-f-+crep is the normal form,

In the same.way as in-Lemma 2.7.,we try to delete the monomials
of M (this d is the lowest degree of Lemma 2.7.(1)) in turn,
Then we can delete all the
monomials which are not
"the superdiagonal monomials
and are elements of dTI
(d21) by Theorem 1,22..

When f is a quasihomogeneous

function, we can use Ja

(d=210). (see Fig. 2.)
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Example (Takahashi, Hatanabg and Higughi (91) 2.8. Let
P?® be a three-dimensional complex projective space with’a
coordinate [x,y,z,u].‘ Then g following equation has a Ps
(Ts,s.s) singularity st [0,0,0,1] and R1ilsingularity at

(1,-1,0,01.

F=B0(x3+y2+23+3xyz2)w-3x*-5x%2+6x2y2-24x%2yz2+6%x222-24xy%z+9xy2®-8xz¥

-8y*-5y%z+6y222-8yz?

§ 3. Textures
Definition 3.1.. By an na X :vvow-o Xnm texture in © one
means a multi-indexed family of elements of G . We abbreviate

the notation for this texture by writing it (8i4....1m),

fa=1l, -, mg, - Lim=l, 0, Nm . We cell the element 8is....:1m
the isc - -im-component of the texture. We say that ( na, - ,nm)

is the size of the texture. .

A texture (ai1:2) may be viewed as an ns Xnz matrix,

Defihitibn 3.2. ﬁﬂe define additfon of textubes"only when

- ] 5 -
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they have the same size. | 1 B=(a¢1....5m) and é=(b;1....1m) are
texfures of‘the same size, we déf%ne A+B to be the fexture Qhose
ii-":im'ﬁomponéht is 811----im+b11---;im . We d;fine the
mnultiplication of a texture A by an element ¢ € C to be the
texture (Ca8i4....5m) , Whose is - -im-component is cafi....im

We have a zero texture in which 8;1.-..1m=D for all ii--=jm

We shall write it 0.

We see that the textures ( of & given size ngX-veeeo- XNm )

with components in a fieldC form a vector space over C which we

may denote by TeXnaix.:.xnm( C) . We shall define the product of
textures,
Definition 3. 3. Let A=(8¢s....5m), ia=l, "<, ns, -+ ,im=1,
*,hm ,be an ng X oo Xnm texture, Let B=( bimsa---5u), im=1,: -
v Nm , Jli‘-"l,"'“gn'i, s o = o ,.jk=1,"",n’k, be an nMXn'1 .....
Xn'y texture. We define the product AB to be the ng X------
Xnhm-1 X0 g+ Xn"w texture whose is-*im-1ji--ju-COmponent is
nm
Z 811----1m'b1m41---dk
im= 4
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Multiplication of textures is therefore a generalization of
the product of matrices. If A,B,C are textures such that AB is
defined and BC is defined, then so is (AB)C and A(BC) and we can

easily see (AB)C=8(BC).

Definition 3.4. An ni Xee-r--- Xnm texture is said to be

an n™ texture if ne=-:+<=pm=n.
We defined one more notion related to textures.

‘Definition 3.5.: - Let A=(8is....1m) be @n ngX---+ XnyX---:
Nk X o XNm textu}e,‘and let B=(bist:eogueveiioretm) @n ng X--X
Nnk=+* Xn; X+ Xnm texture such that
Dig e eikeretgeeim=8i2.:.ig---ik---im (jxk ,1Sj,k Sm)
is called ihe (j,k)-iranspose of‘ﬂ.and is also deﬁoted‘by redakog
A té;ture:A is ;afd to be symﬁeiric if *‘J'“’A=ﬂ for all j,k

such thet jxk ,1Sj,k Sn

A symmetric .texture is necessarily an n™ texture,

S 4, Multilinear Maps and Textures
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Let Vi,--‘---,Vp (p zv1),_w be’ vector sp.aces ove{r' K . and let

¢ :V:LX""XVP‘ —->w be‘a map. We say that ¢ is
multilinear"over yix""'XVp i f fovr every (Us, - -+, ue)
gVs X - - XVe the map @ (us, - -, Ui-1, AUt LU, Uives, """, Up)
e ua et B B ua e us) (R, BEK . ielieein)

Let A be ‘an n1><-'--~ Xnm texture. We :can &efine 8 mAap
o Kn1x‘.... X .K.‘n»m -;->1Kv whére Kn iksvin_,;'—dimensfional vector
(1S is m) by Tetting

¢,h(x1,..'..,'xm):....x;"_lxm‘Axi'xz....' - 'M;er‘e‘{XJ'=“(aim.i';'J‘j,

Bimet-y=i Zmesoy imetey .

Thus ®a maps sets of vectors into K. = Note that
Nm N1
crr o Km-sKm AKX e = Z Z 8i1....1imZ1 lizmim
. im=1 i1=1 »
Theorem 4.1.  Given & multilinear map & : K"tX----X K™

— K, there exists a unique texture A such that b= da,

i.e. such that ¢(x','.---,>x(m-)=-‘-'--x...-ix..;Axix;-*--- . The set of
mltilinesr maps of Kn%--.- K"™ into K is a vector sépace,

denote by Z CKrtX---oxX K™, K), and association A ¢a
Jives an isomorphism between TeXnax..-.xnm(K ) and

L (Krtx----X K™, K)



Proof. We first prove the first statement, concerning the
existence of a unique texture A such that o= da . Let

Et, -, EZ""'1 Be the standard unit vectors for K% (i=1,----,m),

ni
We can then write any X;E K"' as X;= :Z 2y sEq? Ci=1, -, m).
A J=1 B .
Then ¢(x1’ ',Xm)=¢(21 4 Eii'{' ..... +74 n1E1n1, ...............
v Zm s Emttr--e +Zm nm Em"™). By itse linearity, we find
Na Nm
d(Ke, -, Km)= e :E Z1 124°° " Zm im@( Egtt, .- L, Emt™).
i1=1 im=
Let ass,.... cim= @ ( Egtt, -0 , Ew!™) Then we see that
} Ny Nm
¢(X1,"°.xm)=z""2011----1«.21 182 2m 4im which is
ij.:l im"'I

precisely the expression we obtained for the product

vt Km-s1Xm AXaKa---- , where A ‘}s the texture (844,...., im).
Suppose that B is & texture such that ¢= @5 ; Then for all
vectors Xa,----,Xn we must have - -Hm-sKkmAXsiN2--= - -Kn-sdaBAiX2

Subtracting, we find -+ XKn-1¥m ( A= B ) XaXz--- =0 for

all XKay-o-, Xm, let C=A-B=(cta,....,1m) . Then
Cit,....,1m=0 for all is, <+, im . .. The second statement,
concerning the isomorphism betueen the spaces of textunesAand

multilinear maps is clear,
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Let M be a linear space over a field K . A mapping
H: M=K is called a homogeneous form with a degree p if the
following two conditions hold: (1) H( ax)=a® H( x)

( @E K, XEM) ; and (2) the mapping da:MX------ X M - K

{p-times’

defined by @, (X1, ", Xe)=H(Xat -+ +xp)- H(xs)- -+~ H(xp)

(X1, ", ¥p E M) is a multilinear form on M X------ X M. In

(p-—times)

this c‘ase, cb,, is c‘alled thé multilinear form 6ssociated with the

homogeneous fof'mvuith‘ the'dégree p H, and it can be shown tok'be

symmetric, Ne'have e (%,-+-,%) = p H(x) ( x EM ) and"
H(x)=(1/p) &e (%, ---,%) if the characteristic of K=xp . In

general, for any multilinear form f: M X+«-..- XM=K , the

<P-tinyog)
mapping H: M- K defined by H({x)=f(x,----, %) is a homogeneous
: : ‘ (p-times)
form with a degree p . And moreover, assigning X1®----®xn to
(Xs,-°*,%n), we obtain the canonical multilinear mapping
Mg X+ XMn,n 2 M: @----Q M, . Thue, given any linesar

space L, we have the natural isomorphism

HOM(Mi ®""®Mn, L) oK t( M:. ,"".Mn: L).

§ 5. A condition for the normal form fo be unique



Let's‘recall the algorithm‘of»Lemmma 2.7., in it first we
fixed our eyes opop_the monomials with thellowost degree, and we
have taken the normol»form.of‘the homogeneous polynomiai uhioh was
generated from the mooomia]s./ ; Ho?eyer,‘the normal form is not'
unique, va‘;ho way to ;ake the‘normo}_form of Lemmo.2.7.(2)‘io_
different, no}oraliy‘the oorma] formroroduoed‘by the Jos;
maoioulation‘is different. So,:peotry jo_impooe a ooodition
on the way-tobtagef}he onigue oormal fo:m“of homogenfoo$‘ 

polynomjaL

vbefinit;oo S.L R LeiyA be an n1X";t XNhm texouro in C.
By the ronk of };codfmension'one n;.X;- Xnij-s XNjsa X;- *nm
texoooe‘kfﬁi ﬁm)}of';ﬁnwé shall oeen fhe max}mom numoer of
liooariy:}ndepoodono :i;cooémension‘one ﬁ; X .- an_,jkﬁi+1 X-.- Xn;
textures (1 ;si‘\s;n o;; Al. h Touo ohose ronks orottoe dimensions

of the vector spaces generated respectively by i-codimension one

Na X+« XNi-gs XNisg X+ Xnm textures (1Si Sm) of A,

Definition 5. 2. Let P""* be a (n-1)-dimensional complex
projective space with a coordinate [x4, ---,xn] and let f=Xc,x*'
be a homogeneous polynomial with a degree m (ih usual sense)

- 21 -
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in Pr-t, We define’ 811,44+, im= amf,/ 6x;1-?---'881mv

where 1SimSn, in€E N. . We dehote the rank of i-codimension
one texture by Ty (f). We defihe the vector rank of a each
monomial xX! & f to be ( Tai(xk? ).----.Tn(x“‘ 3).

And T(f):= 2 2 Ta(x®! ).

1m1 i=g
We give the following order to the monomials of f.

Definition 5. 3. . For the exponents Ki=kis,----,kun and
KJ=kJ1,""ckJn, K:i is greater than kJ if kis > kyas or

kip"'kjp (1$p <m) ’ k!p+1>ka+1

Condition 5.4, © We try to delete a monom}als x%*' by
suitabie linear transformations,. Then if we can delefe the
monomial x** ( Ky is the minimal number of the exponents ) without
generating a monomial x¥J ( K;<Ky ),vde delete the monomial x**

\

Otherwise, we don’t submit the linear transformations,

FromftheseiDefinitfonsPand thé”Conditjon.,ue éan?ﬁefiné a

following unique invariant on the normal form of f
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Definition 5.5, We define the vector rank of the
homogeneous polynomial f to be
Ve ‘-'(Ti( xki);"".Tn( xki).Ti( xka)."",Tn( xnz)."",Tn( x'_"'))

where Ki>Kie.as (i=1,----,m-1),
Here, we define the normal forms of homogeneous polynomials,

Definition 5.6, Let f be a8 homogeneous polynomial in G .
Then f is said to be the nomal form if, for every g which is
linearly equivalent to f, T(f)ST(g) and satisfies the condition

5.3..

Let 7 3(f)= Z Ti(n®?), And sssume that T3(8)S T s+a(f)

=14

(j=1,----,n-1). Then f is linearly equivalent to g if and only

[t T(§)=T(g), Ti(fd= Ti(g) (i=1,---+,n) and Ve=V, .

Example 5.7.  Let f be s non-singular elliptic curve and let
g be a nodal curve in P?® . Then we obtain the following table
Nomal form T(f) (T4, T2, Tsa)
‘x2z+y2+ay2z+2°=0 8 (ax10) (‘2.:3.3)
(sa€ C, 42%+27=10) 5 (a=10) (1,2,2)
xyz+ty2+2°=0 g (2,.3.3)
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B Ve

 (2,0,1,0,1,0,0,2.1,0,0,1)
(2’ U! 1. uo lonl”0¢ 0; 01 n; Up 1)
(2,2,2.0,1,0,0,0, 1)

We consider it natural that normal form should be easy to
write and remember; that is, the normal form should have the
fewest monomials, and each monomial should be simple. - The

normal! forms defined in this ééction meet the above condition,

Condition 5.8. Awhenvue;try{o:deleteifhé moiémialsbgy
suitable analytic tran§formations in Lemma 2.?2. we consider
the part of :the monomials with the lowest degree under
Definition 5.8.. . If the part has normal form, then we consider
the next part of ;he monomials diih the fowest degree except for
the above paft under Definition 5.6.1A | wg repeat thig

manipulations,
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