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On Certain Vector Valued Siegel Modular

Forms of Degree Two

BT A M kB F¥# ( Takakazu Satoh )

Introduction

We explicitly construct vector valued Siegel modular forms of
degree two and the automorphic factor detk®SymZSt for an even k
where St denotes the standard representation of GL(2,C). As an
application, we prove some congruences between eigenvalues of

Hecke operators, Details of this paper are contained in [12],

0. Generalities

Let D=G/K be a tube domain where G is a semi-simple Lie group
and K is its maximal compact subgroup. Let Cw(G,V) be the set
of V-valued Cm—functions on G. For a holomorphic representa-
tion o of the complexification KC of K and its representation

space V(p), we put

£(gk) = p(k) P ECq)

c”(G,V(p)) = { £eC7(G,V(p))
P for all geG and kekK

Let
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9o =P © koo p

be the Cartan decomposition where g and k denote the Lie alge-
bras of G and K respectively and subscript € stands for com-
plexification. & Cm—function f on G is said to be of holo~
morphic type if it is annihilated by p . Let W be a finite
dimensional Ad(K) invariant subspace of the symmetric algebra

of p* and 1 representation of K on W (by Ad(K)). For

feCw(G,V(p))p and XeW, we put
DTf(X) = r(X)f

where r(X) is right differential extended to the universal
enveloping algebra of 9 - Then we have canonically

© *
D_feC (G,V(pI®W ) .
T *

pPB®T

where K gcts on W* by contragradient representation r* of 1.
For a subgroup I' of G, the function th is left I'-invariant if
f is left '-invariant. In general, th is not of holomorphic
type. However we may cancel non-holomorphic term by taking
suitable linear combination. All these things can be translated
to the language of automorphic form on D, Using them 1in the
cagse of G = Sp(2,R) and W = p+ we construct holomorphic Siegel

modular forms of degree two and type dethSymZSt.
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1. Construction of vector valued modular forms of type (k,62).

Let r, be the full Siegel modular group of degree 2 and H, the
Siegel upper half plane of degree 2. Let V(k,r) be a represen-
tation space of the holomorphic representation detk®SymrSt of
GL(2,C)., A Cm-Siegel modular form f of type (k,r) and degree
two is a V(k,r) valued Cw—function on H, satisfying the equa-

tion

£C(AZ+BI(CZ+D) ') = (det“®Sym” St)(CZ+D)IE(Z)

for all M = {é g] er, and for all Z e H, and the usual growth

rate condition (see Borel [2, §71), which is satisfied for f£

treated in this paper. We denote by M: r(Fz) the C-vector

space of all such functions. If r=0, the subscript k,r is
abbreviated as k and type (k,r) is mentioned as weight k for

simplicity. We also denote by Mk r(l"z) and Sk r(Fz) subspaces

of M: r(Fz) consisting of all holomorphic modular forms and all
holomorphic cusp forms, respectively. Let S, be the C-vector
space of complex symmetric matrices of size two. The action of

GeGL(2,C) defined by
A — det(g)“ca‘c (Res, )

is equivalent to detk®SymZSt where ‘G is the transpose of G.

2 2z
1
Henceforth, we set V(k,2)=Sz. For the variable 7 = on

23 4

Hz and feMk(FZ) = Mk n(r‘z), we define the differential operator

V=V by



k-1 1 4
VE = sEc2in Tt 4 oL L (1.1)
where
5 ), (17238, X a
- = with 3 = T
dz (1/2)8, 3, I8z
and Y = 5%(2—2). By Shimura [15, (4.5)1, we see that

Qo
erMk'z(Fz). For feMk(Fz) and geMj(Fz), we put

_ 4 (1.d__1.4d
(6,91 = z7(Ed79 kgdzf]'

By (1.1), we have

= Llipg - L
[f,91 = JEVg - {oVf,

so [f,g]eMk+j‘2(F2).

The dimension formula of Sk r(Fz) for r=0 and k24 or r21

and k25 is obtained by Tsushima [16, 17]. We use a method of

Maass to evaluate dim Sk 2(F2) for a small k.
Proposition 1. Let k€6 be an integer. Then dim S, 2(I’z) = 0,

This proposition is proved by a method similar to Maass [9, pp.

189-1961.

Recall that the graded C-algebra ®M (I',) where k runs over
k

even integers 1is generated over C by four algebraically
independent elements., (We understand that MR(FZ) = {0} for a

negative k.) They are ¢4eM‘(P2), wBeMG(FZ), X1oes1o(rz) and

X1zes1z(r ). For an odd k, we have Mk(rz) = X35M

) (FZ) where

k-35

Xas is a cusp form of weight 35, (See Igusa [5] and



Maass [101.)

Theorem 2. For each even integer k, we have (as a C-vector

space)

Mk,z(rz) = Mk_10(r2>[¢4,¢61 ® Mk_14(F2)[¢4,XlﬂJ

© M, (Tl X, , 10V, (T,00p X, ] (1.2)

oV, , (Idle X 1w , (T ,x,]

k 12 k 12
and
Sk,2(r2) =8, 4 (Tyle, e oM (Mle, X, ]
@M, (Tile, x, ,JovVv (I Ile X ] (1f3)
® Vk_ia(rz)[¢6,112] ® wk_zzcrz)[xlo,xizj
where

vk(rz) Mk(FZ) N CE¢S,X 2] and

10'x1

wk(rz) Mk(Fz) n C[Xiu, 12
Proof. (Outline.) The inclusion o is clear in both (1.2) and
(1.3). We show that subspaces appearing in the right hand side

of (1.2) are mutually linearly independent., This is shown by

the following lemma,

Lemma 3. Let k be an integer. For j=4, 6, 10 and 12, let

£ eM,  (T,). If
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d d d d _
£, az% e qz%s tEio az¥%10tEi2q7%, =0

’

then we have

Using linear independency we show that the equality holds

in (1.2). Let dk be the dimension of the the right hand side
of (1.2), Then,

© 10 14 i6 18 28 26 28 32
s q ks T #T #2T 4T =T =T '=T 47 (1.4)

k=0 (1-t* - Hra1- -t

where T is an indeterminate. On the other hand, by Arakawa [1,

Proposition 1.31 we have

Mk'z(rz) = Ek‘zcrz)esk_z(rz)

where Ek ) is the space of Eisenstein series of type (k,2) and
© y T1o
> dim E 2(FZ)T = 7 — (1.5
k=0 : (1-T )(1-T")

By Tsushima [16, Theorem 4] (cf. Tsushima [17, Table 1]) and

Proposition 1 we obtain

14 16 _18 _22 26 _28
) k _ T 42T +T  +T  -T -T
S dim Sk,z(rz)T =

k:even (1-Hra-Hra-m"a-1?)

.

(1.6)

Comparing (1.4), (1,5) and (1.6) we see that dk = dim Mk 2(1"2)

for each even k, so the right hand side of (1.2) spans the left

hand side. Noting dim E_ ,(r,) = dim M __ (T )-dim s __ (T ),
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we have (1,3) by the same arguments,

Q.E.D.

A modular form feM:’r(Fz) is said to4be an eigenform if f is a
non zero common eigen function of all Hecke operators. Let f
be an eigenform. We denote the eigenvalue of the m-th Hecke
operator T(m) by A(m,£f) and put QC(f) = Q(A(m,f)|m21), For a
holomorphic function f on Hn satisfying £(Z+S) = £(Z) for all
ZeHn and all symmetric integral matrices S of size n, we denote
the Fourier expansion of f by

£(Z) = 3 a(N,flexp(2riTr(NZ))
N

where N runs over all semi-integral matrices and a(N,f) stands
for the Fourier coefficient of £ at N, For a subring R of C

¥F

we put

Mk,z(rz)R = {feMk’z(Fz) | a(N,f)eM(2,R) for all NZU}

and

Sk,z(rz)R = Sk,z(rz) n Mk.z(rz)R'

Theorem 2 yields the following corollary.

Corollary 4. Let fenk_z(rz) be an eigenform for an even integer
k. Then, Q(f)/Q is a totally real finite extension, and the
eigenvalues A(m,f) are algebraic integers for all m21,. For a
subring R of C, the R module Mk,2(r2)R is stable under T(m) for
all m21,
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Remark 5. Let R be a subring of C. For each odd integer k239,
we see that Mk,z(rz)R is a non-zero R-submodule of Mk'z(rz) and

that M, 2(FZ)R is stable under T(m) for all m21,

To prove congruences treated later, we construct a map
from M 2(!‘2) to M:+2(r2) which commutes Hecke operators up to
constants, Following Maass [8], we define a differential

operator Bk acting on a C®~function £ on Hz by

8 f = (2ri) " |Y|

k

2, —k+(1/2)| d k-(1/2)
)dZ’(:Y|‘ £).

maps M_(I,) to M, ,(T,). We define a

By Harris [3, 1.5.31, & , (T,

k

1 ®
subspace PHk(FZ) of Mk(r2> by

1
PM,(F,) = M (T )48 M __ (T,)

+{f6Jg l feMk_z_J(Pz), geM (")) }C
where { }C stands for a C-linear span. The next theorem is
essentially the particular case considered abstractly in Harris
and Jakobsen [4, §1]1. But our result is so explicit that each

Fourier coefficient can be computed effectively (and we can

prove congruences),

Theorem 6. Let FeMk 2(1‘2) for an even integer k. Then there
exists the unique element D(F) of PM1+2(F2) satisfying the fol-

lowing conditions (a) and (b):
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(a) With respect to the Petersson inner product, D(F) lies 1in

the orthogonal complement of Sk+2(F2) in PM1§2(F2).

(b) The function H(F) defined by

H(F) = D(F) - %IZRYI-l Tr(2nYF)

is a holomorphic function having Fourier expansion of the
following form

H(F)(Z) = 3 a(N,H(F))exp(2riTr(NZ))
N>0

where N runs over all positive definite semi-integral

matrices of size two.

Moreover, if FeMk 2(1"2) is an eigenform, then D(F)ePM:+2(F2) is

an eigenform satisfying
A(m,D(F)) = mA(m,F)

for all m21.

2. Congruence formulas

We prove some congruence formulas between eigenvalues of Hecke
operators., Unfortunately, the method is not so systematic as
that of Serre [13]., In principle, this is done by comparison
of Fourier coefficients. However on congruences between -eigen
functions of different type, say type (k,2) and weight k+2, we
cannot compare them immediately, For this purpose, we use
Theorem 6. Let sk(ri) be the space of cusp forms of degree one

and weight k. For a cusp form f € sk+2(r1), we denote by
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[f]2 €M, 2(r‘z) the Klingen type Eisenstein series attached to

f defined by [fJZ(Z) = E, 2(Z,f,Q) in the notation of

Arakawa [1, (1.4)], We denote by A, the eigen cusp form of

weight 16 normalized as a(I'A1s) = 1., For simplicity, we put

My = [Xio,¢4]. Using Theorem 2 we see that an eigen basis of
M14’2(F2) is { [A1s]z' U }, while an eigen basis of S1s(rz)
is { Xf:), Xf;) } where
x(2) = 185.4x e +(-128:/51389)121 0, ,

respectively by Kurokawa [6, §3].
Theorem 7. The following congruences hold for all m21;

Alm,n,,) = A(m,[a, . 1,) mod 373, (2,13
and

Nesolm o, o-a(mx(3’]) = 0 moa 13 (2.2)

where K = Q(J/51349) and N is the norm map.

K/7Q

Proof. (Outline.) The proof of (2.1) is standard. By a numeri-

cal computation, we have

1 2 403200
144 %6 9,1 = 08,00, - 373 My
Denominator 373 gives rise to the congruence (2.1),. (Cf.

Kurokawal7, Theorem 1].) As to (2.2), we first compute D(n1‘).

This shows

[a(E,138320H(n1‘))-a[E x(i)]] =0 mod 13

Nk/q Xy

_10_



Using the uniqueness of Fourier coefficients we have

| (+)
NK/Q[(A(m,D(n“ »)-ACm, X 2’ ))a(E, 1383200y, ))]

= 0 mod 13
which is equivalent to (2.2) by Theorem 6 and a(E,H(n14))=T%Eu
Q.E.D

With respect to congruences of eigenvalues between eigen cusp
forms of type (k,2) and weight k, we have the following general

result, We denote by Z(f) the integer ring of Q(f),.

Theorem 8. Let FeSk(Fz) be an eigenform. Let Qo be a prime

number dividing k satisfying

Qn # 2, 3, 5 1if k is even,
Qo # 5, 7 if k is odd.
Let @ be a prime ideal of Z(F) lying above _. Then, there

exists an eigenform GeSk 2(I‘z) such that

- = >
NK(G)/K(A(m,G) mA(m,F)) = 0 mod ¢ for all m 21

where K = Q(F) and K(G) = K(A(m,G)im21),

As an example (giving skeleton of the proof), let
F=X14 € 814(F2), K =40, =7 and R = 2(7). Here X, = ¢4X10 is
the eigen cusp form of weight 14, Then G = My &ince
dim 514,2(r2) = 1 and we have

X(m,nl4) = ml(m,114) mod 7.

In this case we have moreover
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A(m,n14) = mk(m,114) mod 35

using

7 -
VAX, ,~54X, Ve, = 1040,

and a(N,¢4) = 0 mod 240 for all non-zero semi-integral N,

Congruence (2.1) would be related to a special value of
the second L-function of A1s’ Let feSk(Fl)'be an eigen form,
Lz(s,f) the second L-function attached to f and <f,f> its
Petersson inner product normalized as in Shimura [14, (2.1)1].

Put

-(2s-k+2)

Ly (s, £) = L, (s,£)(20) F(s)/<f, £>,

Then, L:(s,f) belongs to Q(f) for an even integer s with

k€s£2k-2 by Zagier [18, Theorem 2]. Using this theorem we have

29.373
2 .2

L:(28,A ) = -l
st A 11

i6

Here we note 28=2(k+r)-2-r with k=14 and r=2, More generally we
expect that L:(Z(k+r)—2—r,f) appears in the denominator of
Fourier coefficients of Ek‘r(Z,f,vu) with suitable choice of v,
in Arakawa [1, (1.4)]. We notice that the case r=0 is proved
in Mizumoto [11], (Cf. Kurokawa [71.)

The author would like to thank Prof. R. Tsushima for com-

municating his paper [17] before publication, and Prof. N.

Kurokawa for his encouragement.
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