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Local densities of quadratic forms

and Fourier coefficients of Eisenstein series
Yoshiyuki Kitaoka

Local densities of quadratic forms are important invariants in the
theory of quadratic forms and they appear in Fourier coefficients of Eisenstein
series. But it is not .easy to evaluate them. To study their properties,
it is desirableAto look for felations among them, and it is known that
there are many relations [3], but they are not concise. We consider a
different kind of relations here and impfove a result of Zharkovskaja [7,8]
in the case of Eisenstein series as an application.

Let p be a prime number and Z&, the ring of p-adic integers. We

define local densities as follows : Put
(1k = identity matrix of degree k).

For a half-integral regular matrix T of degrse n (s 2k) we define

lim(pt)n(nfrl)/z-an

tro

. N -t
#H{CeEM (Z_/p a.p)[p (HZk[C] -7

2k,n>p

: half-integral}.

By definition T is half-integral if and only if 2T 1is a symmetric and
integral matrix whose diagonal entries are in ZZp.

Our aim is to prove

. Theorem 1. Let T be a half-integral regular matrix of degree n

(¢ 2k). Then the formal power series
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T T
I a T, H X
= p (P T, Hyp)

is a rational function in x with denominator

I - p(®i)(avir1-26)/2
0<jsn

i

P s -1 .
whose numerator has degree at most n. If, in addition p "T is not half-

integral, then the degree of the numerator does not exceed n - 1.

Theorem 2. Let ak(T) be the Fourier coefficient of Eisenstein

series I |cz + D[-k of degree n, weight k (k 2 0 mod 2, k > n + 1).
{C,D} : '

Then the formal power series

I ak(prT)xr
r20

is a rational function for any positive definite half-integral T with

denominator
jk-3(3+1)/2,

I (l_p )’

and the degree of the numerator is at most n, and at most n - 1 if, in

addition p-lT is not half-integral.

Remark. It is known [7, 8] that the (not necessarily reduced) denomi-

nator of the formal power series in Theorem 2 is given by

‘ v , I (k-1i.)
(1 - x) I (1 - P1§J§r
1§i1<°-°<ir§n

x).

Lemma 1. For a half-integral matrix T of degree n we put
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b(s, T) = Zv(R) “e(a(TR)),
R .

where R runs over symmetric matrices in Mn(Qp/Zp) and v(R) is a

power of p equal to the product of denominators of elementary divisors

of R, and ¢ 1is the trace and e(z) means exp(27i{z mod 1)) for 1z € QP.
If T 1is regular and k 1is a natural number with k 2 n/2, then we have

bLk,bT) = ap(T, HZk).

Proof. Let T be a half-integral regular matrix of degree n. It.is
known [4, 6] that b(s, T) is absolutely convergent for s >n + 1 and a
. s s -5 P, R - ams s
polynomial in p 7, and b(s, T) = ap(—;, “7:3 for a sufficiently large
integer s. The property that ap(~Tﬂ H’s) is a polvnomial comes from
Lemmas 8,9 in [4]. Since Lemma 9-is valid for any integer s 2 n/2, the

. . -S . . s s .
polynomial in p given by Lemmas 8, S which is equal to aDL-T, st)

for a sufficiently large integer s gives also ap(-T, H7s) for any integer

[\

s 2 n/2. Thus we have b{(k, T) = b(k, -T) = ap(T, HZk) for an integer

k 2 n/2. N, in Lemma 9 and Theorem 2 in [4] should be a maximal subspace

which is totally singular and splits N.

Lemma 2. For a half-integral matrix T of degree n and s >n + 1,

we have
i-s. -1
T (1 -p %) "b(s, T)
0<gisn-1
L A.(n+l-i-s)
. 1gisn 1
= I 3j(x, T)p =7 s
AEN
where A = () = (Al,...,kn)lo < AI Seeeg An’ Ai € Z}
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For (tij) ="T[L‘J.l],

and  j(A, T) = #{U € UG .
A, A,
P ;ltii’ P l[Ztij for i.é j
Here we put (U)= GL (Z ) and @n =On x(x)"@(x)(x(x) = diag (pll,
: . np .
*
ooo’p )).
Proof. This is nothing but (2.8) in [2].
We put, for 0 sk shs=sn
Ai =0 if. -i sk,
A, = {3 = (A ,°+,3 ) €A . : },
k 1 UL >0 if ik
i
A = { ! = i€ - : ) -
Ak,h {y € Ak[Ai . 1 i k <ish, A 22 if i > h}
Then it is easy to ses
A= U A (disjoint), A, = U A (disjoint).
Oskin\k : k kshsn k,h '
For X = (kl,---,ln) € A we define X -1 by .(ul,---,un) with By =

max (0, Xi - 1). Then the mapping XA - A-1 1is clearly bijective from

Ak,h on Ah.

Lemma 3. Let X € A Then @(k-l) 5@(}\) and [@(3\-1) :@(J\)] =

k,h’
pk(n°k) T (p*-1) -m (p-;"-l)‘1 hold. Here T means 1.
k+1<ish 1sish-k ¢
~ X.—Ai
Proof. Let U= (u.) €. ueQn) if and only if p >’ lu
for i < j. Hence we have only to prove uj - ui s Aj'- Ai for i < j,

W= (up,eeeu ) = A1 to show @n-1) @), For i < j, we have
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Aj - Ai - (lj-l) + (Ai-I) if i 2 k+1,

= Aj - Ai - (Aj-—l)mi if 1isk«<j,
A, = A, = AL+ X, if j sk
J 1 J 1

2 0.

Thus we have Q}(l-l) > @UYX:). By virtue of Lemma 6 in [1] we know

©:0c1 = p 0,0 e, e, TN
1

t

4

where © (P 7)) = T (p *-1) and A = (A!,e++,A!, e} ,e5e,21) with
T e 1 1 t .t
1515 —— P
kl Fa kt

Y
, A5

bt -

Lemma

matrix T

Proof.

< Al <eeex< Aé. Hence we have, for X € A

k,h

[QCe-1 Tl = (@ T Yo

- r (n-2i-1}

k<isn -1 -1,-1 -1,-1
P | 0, (P Do P ) 9y P 7)

e By .
Kken) 7 ey 1 7hn

P I
k+1<ish lsish-k

4. j(u, pT) = WO-1) :@0)13(-1, T) holds for a half-integral

and X € A.

Put u = A-1. Then we have

@) Qe T

|For (t..) = T[U‘l],
= [@(“) :®(\)]#{U E@(u)\@.’ ij }
u. u.

i i . .
p ]tii, P lztij for i < j

Ky

3]
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-1, M M1 o
= #{U € QOA)\Y|For (t;5) =TI L, p lltii, P 112tij~ for i < j}.

Since ui =0 or Ai - 1 according to ki =0 or ki 2 1, the conditions

Ao X

i i . .
Ztij are equal to p Iptii, P |2ptij fo?, i < j. Thus we

H

u.
1
|2t,;, P

i
p I

complete the proof.

Combining Lemmas 3,4 we have

Lemma 5. If X € Ak h? then we have

J, pT) = c(k,h)j(R-1, T),

m-X) 3

where c(k,h) = pr K 1 iy 1 o
. k+1<ish l1sish-k

For a half-integral matrix T of degree n we dencte by f£f(x; k,h) =

f(x; k,h; T) (0 £ k £ h £n) a formal power series
z Ri(n+1-i-s}

‘1gisn

T(r p it pTT)X.

. s T v e
Coefficients of X are absolutely convergent if s > n+l by Lemma 2.

We put

f(x) =£f(x; T) = z £(x; k,h)
0skshsn
= 1 -pt%7 5 obes, PO

O0sisn-1 rz0
Since b(s, prT) is rational in p.s [4], we have only to prove the asser-

tion for f(x) similar td Theorem 1 instead of E‘ap(prT, Hz_k)xr by
: rz0

virtue of Lemma 1.
Lemma 6. For 0 < k £ h £ n  we have

{



L Xx,(n+l-i-s)

£(x; k,h) = £ poiEm 3 (0LT)

AeAk,h

(n-k) (n+1-k-2s)/2

+ c(k,h)p z f(x; h,f)x.
£

hsfsn
Proof. By definition,

ZAi(n+1-1-s)

£(x; k,h) = I I p ion P
> A&
r20 lc“k,h
in(n+l-i-s)
=z p*t iGLT)
AEAk,h
ZX, (n+1-i-s) ,
1z opt i, pT R
’-"). .
20 A€ k,h ;
~ zxitn+1-i-s)
= I itT
Xexk’h
Eki(n‘l-i-S] r v+l
+ c{k,h) T I p F(a-1,p " T)x .
20 KeAk,h
Since the mapping i - A-1 is bijective from Ak h o o Ah and
Zki(n+l—i-s) = [ (n+l-i-s) + Zui(n+l-i-s) (0 = X-1), we complete the

k<isn

proof.

Lemma 7. For 0 5 a £ n, we have
-3 i+1-2 2
NS GESDICRS AL Ve
0<jsa

= (polynomial in x of degree a-1) + K(a)xa

Sl ALK EG KGR,

a+lskshsn
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where A(a,k) is independent of h and «(a) satisfies

Zki(n+1-i-s)

k(a+l) = z A(a,k) = p i(A,T)
a+1skshsn AEA
k,h
) p(n-a—l)(n+2+a-2s)/2K(aj,.
«(0) = £(0).

Proof. We use the induction on a.

1_pn(nvl—ZS)/Z

( x)£(x)

= £(x) - pn(n+l-25}/2xf{x\

7

(n-k) (n+1-k-25)/2

fe(k,h)p £(x; h,£)

h<fen

n(n+1-2s)/2. .
- P TTE(x; k,h):

= £(0) + x I £(x; k,h){ yp (A-£) (n+1-£-25)/2

-
e
Oskshsn Osfsk

c(f,k

21225 /7
- pn(nll _s)/-}

£ R 1 c(f,kp (AR (Ae1-£-2)/2;

z
1skshsn 1sfsk

|
Hh
N
o
—
+
~

. - +1-fF- 2
)p(n £) (n+1-£ 25)/”, the first step has been proved.

T (l_p(n-j)(n*j+1-25)/2x)f(x)
0sjsa+1

l-p(n_acl)(n+2+a-25)/2x){(pdlynomial in x of degree a-1)

= (
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sqa)x® + x*Y T A f(x; k,h))

a+1lskshsn

= (polynomial in x of degree a)

xa+1{ T ACa,K)E(x; Kk, h) - K(a)p(n-a—l)(n+2+a-25)/2}
a+lskshsn

- x3rpmma-l)(@e2+a-28)/2 o an 1£(x; ko).

a+1skshsn

By Lemma 6, we have

S Ala,k)fx; k,h)
a+1skshsn
Z,\i(nd-l-i~s)
= T, A(a,k) I P . i(x,T)
a+l<kshsn A R -
-k +1-k-23) .
+ I AaK)erk,hypPTRI(I-k=28)/2 0 e o )k
a-lgkshsn hsfzn
Thus we have
. -‘ "x - ’---, 12
T - p(n {n1-3-25)/2 v £y
Ogjsa+l
= (polynomial in x of degree a)
ZX. (n+1-i-s)
SN a@ o zop ? i(h,T)
a+1sgk<hsn Aeﬁk,h
- +2 el 2
. K(a)p(n a-1)(n+2+a _s)/_}
i ~k - -‘) N
T (A Ke(k hyp TR (RIk=28)/2 0 o e L)
a+lskshsn hsfzn

o p(r-as)(ne2+a-25)/2, () 1ye(x; k,h)).

7
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The last term is equal to

a+2 (n-£f) (n+1-£-2s)/2

b z f(x; k,h){ I A(a,f)e(f,k)p
a+l<ks<hsn a+lsfzk
_ p(n-a-l)(n+2+a-25)/2A(a’k)}
=x®% 1 P R I A(e,Be(s,k)p R (nrl-£-2s)/2

a+2skshsn a+rlzfsk "

.- +3+2-25) /1
_ p(n a-1) (n+2+a ‘s)/zA(a,k)}.

- -£-25)/2

Putting Alarl,k) = I A(a,f)c(f,x)p R D (@rI-5-28)/

a+lgfsk

-F - ..:s- —2 b 2
- p(n 1) (n-2-a-2s}/ A(a,k), we complete the proof.

7 (l-p(n-j)(n+j,l—zs)/2x)f(x)
0sisn

From Lemmz 7 follows that

nomial of degree n whose leading coefficient is «(n). It remains for

\ e - . -1 . .
us to prove Theorem 1 that «k(n) =0 if p T 1is not half-integral.

-£) (n-£+1-
Lemma 8. Put g(f) = p(“ £) (n-£+1 25)/2,

D(£,k) = it (p-l-l) I (p-'él)- . Then we have

f-1sisk 1gigk-£

A(0,k) = T g(£)D(f,k),

1sf<k
A(a+l,k) = I  A(a,f)g(f)D(f,k) - g(a+*1)A(a,k) for O0sasn-1,
a+lsfsk
x(n) = z Jk,n{ T (T (-g(3)NA@,k)
O<kshsn 0sigk-1 i+2sjsn

is a poly-
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tki(n+1-i-s)
where J(k,h) = I p ioLm.
AeAk’h

Proof. The first two are nothing but their definition. To prove the

last we show the following inductively :

k(a) = I n (-g(3))) z A(i,k)J(k,h)
0siga-1 i+2<jsa i+lskshsn

+ I (-gi)) t  J(k,h).
lsiza 0skshsn

Here we put I = 0. Then it is clearly true for a = 0. Let 0sasn-1;
]

then by Lemma 7

«(a+1)

z A(a,k)J(k,h) - g(a+1l)<(a)
a+1skshsn

T A(a,k)J(k,h}
a-1skshzn

-ga-n){ © ( ® (-g())) I A(i,k)J(k,h)
0sisa-1 i+2sjza © i+1gkshsn

+ 0 (-g(1)) T J(k,h)]
1sisa 0Oskshsn

= I ( I (-g(i))) z A(i,k)J(k,h)
0sisa i+2sjsa+l i+1skshsn

«+ ( m (-g(@))) T J(k,h).
lsisa+l » Oskshsn

Applying it to a = n, we prove Lemma 8.
If p-lT is not half-integral, then J(0,h) = 0 follows from j(A,T)

=0 for A § AO,h since Al z1 for X € AO,h' Hence, to complete the

/Y
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proof of Theoremil, we have only to prove

Lemma 9. k() = T J{O,h) T (-g(j)), more minutely
Oshsn 1gjsn

£ (T (-g()))A(i,k) + T (-g(j)) =0 for lsksn.
0sisgk-1 i+2<jsn 1gjsn

This follows directly from the fcllowing

Lemma 10. Let .D(a,b), g(a) be independent variables for 1 5 a < b

and put D(a,a) =1 for a

[\

1. Define A(a,b) for 0 s a < b inductive-

1y by
A(O,m) = T g(fiD(f,m),
1sfzm
A{a+1l,m} = I A{a,f)g(f5D{f,m) - g(a+1)A(a,m) for O0sa<m-1
a-lsfim

Proocf., We use the induction on m. Since F(0,1) = A(0,1)-g(1) =0,
the first step is true. Suppose m 2 2 and F(k,n) =0 for O0cg kgkm-lg m-2.

If k s m-2, then we have
F(k,m) = -g(m)F(k,m-1) = 0.
It remains for us to prove F(m-1,m) = 0 for m 2z 2. We put

F(m) = F(m-1,m)

(-g(3))-

(o m (gUGINAG,M) + A(m-1,m) +

it
0<igm-2 i+2<jim l5jzm

Ip>
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We prove F(m) = 0 by showing that all coefficients of the polynomial

F(m) in g(m) vanish.

Sublemma 1. A(a,b) does not contain g(m) for b < m, and A(a,m)
is a monic polynomial in g{(m) of degree a+l, and F(m) 1is of degree at

most m.

Proof. The first assertion is easily proved by the induction on a.

The second is also proved by the induction on a : A{O,m) = £ g(£HD(£f,m)
1=fsm
= I g(£)D(f,m) + g(m) 1is a monic polynomial of degree one. For
1sfsm-1

0 £ a £ m-2, we have

A(a+l,m) = Afa,f)g(£)D(f,m) - gla-1)A(a,m)

z
a+lsf<m

A(a,f)g(f)D(£,m) + A(a,m)g(m) - g(a+1}A(a,m).

z
a+1gfim-1

By the inductive assumption and the first assertion, A(a+l1,m) is a monic

polynomial in gf{m} of degree a+2. Now the last assertion is clear.

Sublemma 2. For 2 £ g < m, the coefrficient of g(m)q of the poly-

nomial F(m) in g(m) vanishes.

Proof. Write A(a,m) = z h(i; a,m)g(m)l, where h(i; a,m) does
Osisga+l

not contain g(m). Then we have
h(a+l; a,m) = 1 and

h(i; a+1,m) = h(i-1; a,m) - g(a+l)h(i; a,m) for i 21,

72
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by the definition of A(a,m) and the above sublemma. We complete the proof
of this sublemma by the induction on q = m,m-1,¢++,2. By Sublemma 1, the
coefficient 6f g(m)m is 0. Suppose that the coefficient of g(m)r

vanishes for r = q+l,***,m (2 5 q S m-1). The coefficient of g(m)q is

-z I (-g(i)h(g-1; i,m) + h(g; m-1,m)
0sism-2 i+25jsm-1 J
q-1si+1

=- I (-g(3n) - L ( il (-g(i)))h(g-1; i,m)
g£jsm-1 - i i+25jsm-1 .

+ h{a; m-1,m).

-

For gq-1 s t £ m-2, we have

hi{g; t+1, m) - z (

. I (-g03)))h(g-1; i,m)
g-lsist i+2sjst-+l .

- o (-g(in
qsjst+l

h(g-1; t,m) - g(t+1)h(q; t,m) - h(g-1; t,m)

- z ( 0 (-g(i)Nh(g-1; i,m) - T (-g(N
q-lsist-1 i+2sjst+l _ gsjst+l
= -g(t+1){h(q; t,m) - z ( T (-g(i)))h(g-1; i,m)
g-lsigt-1 i+2sjst

- m (-g(GN}.
gsjst

Applying this to the coefficient of g(m)q from t =m-2 to t =q-1,

it is equal to

(-g(m-1))---(-g(q)) 0 = 0.
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Sublemma 3. The coefficient of g(m) of the bolynomial F(m)\ vanishes.

Proof. The coefficient of ~ g(m) 1is equal to

- £ ( ©  (-g(i))))n(o; i,m) + h(l; m-1,m) - T
0gism-2 i+2sjsm-1 1<j<m-

-g(i))-
1

We show inductively

h(1; a,m) = : (1T (-g(3)Nh(0; im) + I
Osisa-1 i+2sjza 15

(-g(3))-
a

A

-

For a = 0, both sides are equal to 1. Suppose that the above formula is

true for a. Then

h(1; a+1,m}

h(0; a,m) - g{a+1)h(1; a,m)

h(0; a,m) + <© ( T (-g@Nh; i,m) + T (-8{3)
O0<iga-1 i+2gjsa~l " 1sjsa+l

= I ( I (-g(G)Nh(o; i,m + T (-g(3))-
Osisga i+2sjsa+l 1gjsa+1

Thus the above formula is proved, and the.case of a =m-1 is what we want.
Thus it has been proved that F(m) is a constant with respect to g(m)

and hence we Haveionly to prove
F(m) = h(0; m-1, m) = O.
Sublemma 4. .For 0 £ a £ m-1, we have

h(0; a,m) = ( T (-g(i)))h(0; O,m) + I ( ©  (-g)NGG),
1iiza O0gjza-1 j+2:zida
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here G(j) = z A(G,B)g(£)D(£f,m).
j+lsfsm-1

Proof. When a = 0, both sides are equal to h(0; O,m). By definition,

e have, for 0 s a s m-2

h(0; a+l,m). I A(a,f)g(£)D(£f,m) - g(a+1)h(0; a,m)

a+1sfsm-1

G{a) - g(a+1)h(0; a,m)

G(a) + (T (-g(i)))h(0; 0,m)
1siga+l

=( & (-g(@))Nh(0; 0,m) » T ( i (-g(1)))G().
1giga+1 0sjsa j+2gisga+l

Sublemma 5. h(0; m-1, m) = 0.
Proof. h(0;0,m) = £ g(fHD(f,m) and G(j) = I  A(,H)g(H)D(E,m)
‘ 1sfsm-1 j+lsfsm-1

ollow from their definition. By Sublemma 4 we have

h{0; m-1,m)

]
~
=]

(-g(i))) £ g(£)D(f,m)
1gism-1 1sf<m-1

+ I (0 (-g(i1))) t  A(G,D)g()D(f,m)
0<jsm-2 j+2sism-1 j+lsf<m-1

T g®)pEmMm{ © (-g(1)) + DI 1 (-g(L)NAG,H)}
1sfim-1 1sism-1 0<jsf-1 j+2<izm-1

/1
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"

I g(f)p(f,m) I (g m (-gi))
1sfsm-1 f+1sism-1 1zisf

+ T (T (-g(MNAG,
0sjsf-1 je2sisf

]
n ™

g(E)D(f,m)( i (-g(1)))F(f) = 0,
1 f+l<icm-1
since F(f) =0 for 1 £ f £ m-1 by the inductive assumption.

Thus we have completed the proof of Theorem 1.

Proof of Theorem 2. Let T be a half-integral positive definite

matrix of degree n. Then ak(T) is given in [3] by

nk/2,n(k-(n-1)/2) _

-1

i e '1'Xk' = = c = o e
For a unit = € ‘p’ we have ap(T, HZk) b(k,T) bk, T) wp(,._T, sz).

Hence we have

T T _ o T nk-(n+1)n/2
T ak(p T)x” = const. I ap(p T, HZk)(p x)

rz0 rz0

T
»

which is a rational function in x whose denominator is

11 - p®3) (n+1-2k+j)/2enk-(ne1)n/2
0<jsn
= o o1 - pikIGen/2y

Another assertion follows from the corresponding one in Theorem 1.

/71
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Remark. The formal power series similar to one in Theorem 1 for any

quadratic form instead of H2k seems to be rational.
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