Problems for convergence properties

愛媛大(理学部) 野倉嗣紀 (Tsugunori Nogura)

§. 1. Definitions. All spaces are assumed to be T_3 and T_1 topological spaces. A space X is said to be bi-sequential if, whenever \mathcal{F} is a filter in X with a cluster point x, then there exists a countable filter base \mathcal{F} in X which converges to x and whose elements intersect all elements of \mathcal{F} . If the definition of bi-sequential space is modified by restricting \mathcal{F} to be a countable filter base, the resulting concept is said to be strongly Fréchet. A space X is said to be Fréchet if $\mathbf{x} \in \overline{\mathbf{A}}$ for A \mathbf{c} X, then there exists a sequence in A converging to the point x.

Let X be a space. A collection ${\mathcal Q}$ of convergent sequences of X is said to be a sheaf in X if all member of ${\mathcal Q}$ converge to the same point of X, which is said to be the vertex of the sheaf ${\mathcal Q}$. In this paper all sheaves are assumed to be countable. We

consider the following four properties of X which were introduced by Arhangelskii[1,2].

Let $\mathbb Q$ be a sheaf in X with the vertex x ϵ X. Then there exists a sequence B converging to x such that:

$$(\alpha_1)$$
 $|A-B| < \alpha_0$ for $A \in \mathcal{Q}$,

$$(\alpha_2)$$
 $|A \cap B| = \beta_0$ for $A \in Q$,

$$|\{A \in \mathcal{Q} : |A \cap B| = \mathcal{S}_0\}| = \mathcal{S}_0,$$

$$(\alpha_{\Delta})$$
 $|\{A \in \mathbb{Q} : A \cap B \neq \emptyset\}| = \emptyset_0.$

The class of spaces satisfying the property (α_i) for every sheaf ℓ and vertex x ϵ X is denoted by $<\alpha_i>$ for i=1,2,3,4. We denote by $<\alpha_i$ -FU> the intersection of the class of Fréchet spaces and the class $<\alpha_i>$ for i=1,2,3,4.

The following diagram shows the relationship between the above spaces and other spaces.

$$<\alpha_1> \to <\alpha_2> \to <\alpha_3> \to <\alpha_4> \text{ sequential}$$
 l'st countable
$$<\alpha_1-\text{FU}> \to <\alpha_2-\text{FU}> \to <\alpha_3-\text{FU}> \to <\alpha_4-\text{FU}> \to \text{ Fréchet}$$

$$<\alpha_1-\text{FU}> \to <\alpha_2-\text{FU}> \to <\alpha_3-\text{FU}> \to <\alpha_4-\text{FU}> \to \text{ Fréchet}$$
 bi-sequential
$$<\alpha_1-\text{FU}> \to <\alpha_2-\text{FU}> \to <\alpha_3-\text{FU}> \to <\alpha_4-\text{FU}> \to \text{ Fréchet}$$
 countably compact Fréchet

g. 2. Classification problems.

<u>Problem 2-1.</u> Is there a "naive" countable $<\alpha_1$ -FU>-space which is not first countable?

<u>Problem 2-2</u>. Is there a "naive" $<\alpha_2>$ -space which is not an $<\alpha_1>$ -space?

Remark. Olson's example [see 5, Introduction] is an $<\alpha_2$ -FU>-space, and not first countable, so in every model of set theory it solves either Problem 1 or 2. If we omit "countable" in Problem 1, then we get an example. In fact Σ -product of more than countable number of first countable spaces is such a space [2, 6.16].

<u>Problem 2-3</u>. Is there a "naive" $<\alpha_3>$ -space which is not an $<\alpha_2>$ -space?

Remark. If we assume (CH), then there exists an $<\alpha_3>$ -space which is not an $<\alpha_2>$ -space.

§. 3. Product problems for Frechet spaces.

Let P be a class of spaces. Let $\mathcal{F}(P) = \{X: X \times Y \text{ is Fréchet} \}$ for any Y ϵ P}.

We use the following notations:

C = the class of compact Fréchet spaces,

CC = the class of countably compact Fréchet spaces,

a companied a state to the state of the transfer of the

B = the class of bi-sequential spaces,

S = the class of strongly Frechet spaces

Problem 3-1. Is $\mathcal{F}(C) = \mathcal{F}(CC)$?

Problem 3-2. Give inner characterizations of classes $\mathcal{F}(C)$, $\mathcal{F}(CC)$ and $\mathcal{F}(S)$.

Remark. $<\alpha_3$ -FU> \subset $\mathcal{F}(CC)$ \subset $\mathcal{F}(C)$ \subset S and B \subset $\mathcal{F}(S)$ \subset $\mathcal{F}(CC)$. Note that $\mathcal{F}(B)$ = S. If we assume (CH), then $<\alpha_3$ -FU> \subsetneq $\mathcal{F}(CC)$ and $\mathcal{F}(S)$ \subsetneq $\mathcal{F}(CC)$.

<u>Problem 3-3</u>. Is there a "naive" example of 7(CC)-space which is not bi-sequential?

<u>Problem 3-4</u>. Is there a "naive" example of $\mathcal{F}(CC)$ -space which is not an α_3 -FU>-space?

Problem 3-4. Is B = 7(S)?

g. 4. Miscellaneous problems.

<u>Problem 4-1(Arhangelskii)</u>. Is $t(X^2) = t(X)$ for each countably compact regular space X?

<u>Problem 4-2(Arhangelskii)</u>. Give an inner characterization of subsequential spaces (A space is said to be subsequential if it can be embedded in a sequential space.).

<u>Problem 4-3 (Gerlits-Nagy)</u>. Let X and Y be G-spaces.

Is $t(X \times Y) \le f$? A space X is said to be G-space if each countable subspace is first countable and X has countable

tightness.

A space is said to be quasi-prime if X is embedded as a closed subset of $\prod_{i \in N} Y_i$, then there exists an n ϵ N such that X is embedded in $\prod_{i=1}^{n} Y_i$, where Y_i , i ϵ N are arbitrary spaces. For example N \cup {p} (p ϵ N *) is quasi-prime [3].

<u>Problem 4-3</u>. Let Q be the space of rationals. Is βQ quasiprime?

Problem 4-4. Is Q quasi-prime?

References

[1]	A.V. Arhangelskii,		The frequency			spectrum of a		topological	
	space and	the clas	sific	ation	of	spaces,	Soviet	Math.	Dokl.
	13 (1972)	265-268.							

- [2] _____, The frequency spectrum of a topological space and the product operations, Trans. Moscow Math. Soc. (1981).
- [3] T. Nogura, Ultrafilters in a product spaces, J. Math. Soc. Japan 34 (1982) 209-217.
- [4] _____, Fréchetness of inverse limits and products, Topology Appl. 20(1985) 59-66.
- [5] _____, The product of $<\alpha_i>$ -spaces, Topology Appl. 21 (1985) 251-259.
- [6] _____, A counterexamples for a problem concerning the Product of Frechet spaces, to appear.