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IMT-type Quadrature Formulas Free from Intrinsic Errors
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Abstract Let x=0(t) (V(0)=0, Y(t)+¥(l-t)=1) be an IMI-type
transformation for the numerical integration of féf(x)dx. This note
points out that the transformation x=m(t), where U(t) = fétw(s)ds
(0st=1/2) and U(t)+P(1-t)=1, leads to a quadrature formula which is free
from the intrinsic error (i.e., exact fér f(x)=1) and as efficient as the

original quadrature formula based on x=Y(t).

1. Introduction
We consider the numerical integration of
I = fé £(x)dx. | - (1.1)
A numerical quadrature formula based on the chénge>of variable x=0(t)
(V(a)=0, W(b)=1, ¥'(a)=P'(b)=0) is obtained by applying the trapezoidal
rule to the transformed integral
I = 12 £U()V' (D). | S (1.2)
Among such formulas, the IMT formula [Iri—Moriguti—Tékasawa 1970]
and the DE (Double Exponential) formula [Takahasi-Mori 1974] are well

known (cf. [Davis-Rabinowitz 1984], [Mori 1985]). The former employs
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]

(1/Q) 1 exp[-1/s-1/(1-8)]ds, (1.3)

fé exp[-1/s-1/(1-s)lds

()
Q

as the function\w(t) to map the interval (0,1) onto itself (i.e., a=0,
b=1 in (1.2)), and the latter adopts

wDE(t) = (1/2)tanh[(nm/2)sinh t] + 1/2, (1.4)
which mabs (a,b)=(-»,») onto (0,1).

The resulting quadrature formula in the case of (a,b)=(0,1) is then
given by
N-1 :

Sy = h ‘El £(W(ih) V' (ih), : (1.5)
where h=1/N. Inlzhe case of (a,b)=(-»,»), on the other hand, the
trapezoidal approximation to (1.2) (with mesh size h)

S=h _; f(Y(ih))V' (ih) (1.6)
involves infinit:I: many points (abscissas), which should be truncated to
a finite number, say N, without deteriorating the degree of.
approximation; SN will denote a sum of the form (1.6) with N terms.

We will define

EN B EN(f) = SN -1, (1.7)
which is the integration error for an integrand f(x). It is known that
the IMT formula and the DE formula have the property:

EN deéreases faster than any polynomial in 1/N as N»® for a

class of integrands of practical interest that may possess

integrable algebraic/logarithmic singularities at endpoints

of interval of integration. ' (1.8)
One of the peculiar properties of such a quadrature formula is that

it fails to integrate a constant function exactly, that is,

EN(l) # 0. | (1.9)



The error EN(l),is called the intrinsic error of the formula, which we

are particularly concerned with here. Both the IMT formula and the DE
formula, as well as their variants [Mori 1978], [Murota-Iri 1982], do -
have the property (1.9). In fact, all the formulas based on -the
technique of change of variable found in the literature (cf., e.g.,
[Takahasi-Mori 1973], [Mori 1985]) have this property, too.

Very recently, héwever, it was pointed out by Prof. Iri (reported in
[Nishii-Murota~Iri 1985]) that there exists such a transformation
function w(t)=¢U(t) that yields a quadrature formula which has the
property (1.8) and is free from intrinsic errors, i.e.,

EN(l) =0 for N even. ‘ (1.10)
The function wU(t) is the cumulative distribution function of the random

variable

© 03

z u./27 : : (1.11)

j=1 >
where Uj (j=1,2,...) are independent random variables each being subject
to the uniform distribution over the unit interval (0,1). It can be
shown [Iri-Kabaya 1985] that wU(t) satisfies the functional equation

2t N -

wU(t) = IO wU(s)ds (0=sts1/2), (1.12)

wu(t) + wU(l_t>=1-
See'[Iri—Kabaya 1985] for other properties of wU(t).

Unfdrtunately, the quadrature formula using wU(t) turned out

[Nishii-Murota-Iri 1985] to be far less efficient for general integrands
f(x) than the IMT-type formulas, as compared in Table 1.1. This note

gives quadrature formulas with no intrinsic errors that are roughly as

efficient as the known IMI-type formulas.
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Table 1.1. Efficiency and Intrinsic Errors
(a,b) ‘ Formula Efficiency (Error EN(f)) Intrinsic Error EN(l)
finite wU(t) - exp[-c(log N)2] 0
(0,1) IMT: wIMT(t) exp[-cvN] same as EN(f)
IMT-type DE*  exp[-cN/(log N)z] same as EN(f)
IMT-double**  exp{-cN/(log N)z] same as EN(f)

IMT-triple**  exp[-cN/(log N (log log N)Z)] same as EN(f)

infinite DE: wDE(t) exp[-cN/(log N)] same as Eﬁ(f)
(...oo’oo)

¥ [Mori 1978]; ¥*% [Murota-Iri 1982]

2. Intrinsic-Error. Free Formulas
In the following, we assume .
0(0)=0, ¥(1)=1 (Y(t)=0 for t<0, Y(t)=1 for t>1),
W(e) +0(1-t) =1, | (2.1)
P'(0)=P'(1)=0 (V(t) is differentiable as many times as needed).
The Fourier transform of ¥'(t) is defined by »
W(K) = S5 ' (t)exp(i2mt)dt,  KeR. (2.2)
The error EN(f) is expressed (see, e.g., [Murota-Iri 1982]) in terms
of the Fourier coefficients Ck=Ck(f) of the integrand of (1.2):

EN(f) = 2 5

i Re CpN(f), (2.3)

1
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C () = Ié £(O(E))0' (t)exp(i2mkt)dt,  keZ. (2.4)

The intrinsic error is then given by
[oo]

Eg(1) =2 §1 w(pN). | (2.5)
This expressig; indicates that if
W(2k) =0 (k=1,2,...), (2.6)
then the formula with x={(t) has no intrinsic errors for N even.
It is a rule of thumb that the efficiency for a generél integrand
f(x) is measured by how fast |w(k)| decays as |k|+®. In fact, this is
the case with the IMT—typé formulas. We discﬁss this issue in Appendix.

" Now our problem of designing an efficient intrinsic;error free
quadrature formula is reduced to that of finding such a Fourier transform
w(K) of a nonnegative function V¥'(t) (or, a characteristic function of a
symmetric probability distribution) that satisfies (2.6) and decreases as
rapidly as possible as |k]|+w,

Here we take notice of the following chts:
(1) The Fourier transform of W'U(t) (or, the characteristic funcgion Qf
(1.11)) is given by

wﬁ(K) =‘exp(iﬂK) -§1 sin(nn/zj)/(nK/zj), | (2.7)

which satisfies (2.6) on ag;ount of the factor.sip(ﬂK/Z)/(ﬂK/Z). That
ié, the factor corresponding to U1/2 in (1.11) fenders the quadrature
formula using wU(t) free from'intrinsic errors.
(2) The Fburier transform w(k) of the derivative of an IMT—tyﬁe
transformation funétion Y(t) tends to zero rapidly as |K|+w§ e.é.,;for

(1.3), it is known [Iri-Moriguti-Takasawa 1970] that

opr(<) = O(expl~c/TRT1). @
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(3) The product of two characteristic functions is again a characteristic

function of a probability distribution.

When given an efficient quadrature formula based on é transformation
x=Y(t), we can construct an intrinsic-error free formula using the ‘
transformation x=0(t) defined as follows. Let w(K) and W(K) be the
Fourier transforms of ¥'(t) and {'(t), respectively. We define

B(k) = w(k/2) exp(imk/2) sin(mk/2) / (mK/2) (2.9)
and §'(t) to be the inverse Fourier transform of (k). In terms of
Y(t) and ﬁ(t),’this amounts to ‘ »

T(t) = Fotu(s)ds  (Ostsl/2), (2.10)
and

U(t) + P(1-t) = 1. (2.11)
Then it is easy to see, baséd on the above—mentioned facts, thét x=0(t)
is qualified as the transformation function satisfying (2.1), and that
the resulting quadrature formula-is’free from intrinsic efrors and
roughly as efficient as the original formula With‘x=¢(tj. To be more
precise, the new formula will require at most twice as many function
evaluations as the original one, since we have

|@(c)| = |(2/m) w(K/z)l, k40, (2.12)
from (2.9). Nahely, we may expect the relation

[E(D)] 5 |Ey,,(D)] . (2.13)
between the integratioﬁ error EN of the new formula énd thaﬁ of the
original one.

When ¥(t) is a polynomial, the exﬁlicit form of ¥(t) can be given;

for example, when
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PT(E) = (mD) /@) th(1-0)", m=2,3,

we have

I

B(r) = 8t(5-12t48t2) (0sts1/2) for m=2,

and

]

BCt) = 326 (7-28t+40t2-20t°) (0stsl/2) for m=3.

It may worth while noting that (1.12) shows that wU(t) is a fixed

point of the transformation (2.10), i.e.,

Ty(t) = Yy(e).

3. Numerical Examples
We compare the quadrature formulas with x=0(t) and x=0(t) (cf.
(2.10)) for the two choices Y(t) = wTAﬁH(t) and Y(t) = wIMTDE(t)’ where
Upp(®) = (1/2)tanh[ (1/6)(1/(1-6)-1/6)] + 1/2, (3.1)
WIMTDE(t) = (1/2)tanh[(n/2)sinh[(W/4)(1/(1-t)~-1/t)]1 + 1/2. (3.2)

The formula with x=¢ is the IMT-type double exponential formula

vrpE(t)
of [Mori 1978]. The formula with x=wU(t) [Nishii-Murota-Iri 1985] is
also considered.

The integration errors are observed for the following six integrand

functions: ‘
| fl(x) =1, I=1,
fz(x) = exp X, I =e-1=1.7182...,
£,(x) = x5, I'=1/3=0.3333...,
£,(x) = 1/vx, , - I=2,
f;(x) - (log x)/(x*-1.5x¢1.25), I = ~1.0518...
£(x) = 2/(14(2x-1)7), I=m/2=1.5707... .
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Fig. 3.1. Numerical integration based on the transformation x=y(t)

O Vppyu(t) ®: Tpyy(t)
B Uy(t) '
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The computations are done with mantissa of 28 hexadecimal digits by HITAC
M-170H. |

Fig. 3.1 illustrates. the integrétion errors for fA(X) and fS(X)
against the number of function evaluations. Similar results are obtained

for other integrands. Note that (2.13) is verified.

Acknowledgement The author thanks Dr. M. Sugihara for helpful comments.

Appendix

We discuss the validity of the claim that
if |w(x)| decreases fast as |k|+®, then so does ]EN(f)I
as N»w~ for a well-behaved integrand f(x).
The following proposition, combined with (2.3), implies that the above
claim holds true for polynomial integrands £(x)=x" in the particular case
of w(t)=¢IMT(t) (cf. (2.8)). Nofe that the proof is such that it can be
adapted to other transformation functions ¥(t) once bounds on |w(K)| and

|w'(x)| are obtained.

Proposition A.1l. Let ¥{(t) satisfy (2.1) and put

C, = J5 V' (Dexp(i2nkt)dt, keZ, (A1)

D= f§ ' (D)exp(i2Tke)dt, keZ, | o (A.2)

Ol = 5L W)™ (Bexp(iznke)dt, kez, mez,. | (A.3)
1f

ICkI s A exp(-B /Tk]), keZ, , (A.4)

IDkI < A exp(-B /Jk]), keZ, | : (A.5)

where A and B are constants independent of k, then



204

|cpl s A k| exp(-B VRT), kez\{0}, (A.6)
where Am is defined by
i 2
AO=A’ Am+1 =‘A[3/2 + (m+1)(1+4/B )Am/(2ﬂ)], m=0,1,... (A.7)
Proof: Firstly, put
&l = o (W(E)"™-t)exp(i2nkt)dt, keZ, nez, . (A.8)
We have
al =0 | (A.9)
a, : .
and
-1/2 s ag <0, ‘ (A.10)
since
m_ 1 m _el m,
ag = fo (W(t) -t)dt = o P(t) dt - 1/2
and

0 g.fé ¥(e)Mdt §~fé Y(t)dt = 1/2.

For keZ\{0}, integration by parts yields

[]

a [(U(t)"t)exp(i2nkt)/(i2m)]L_

- fé (mu(e)™ 19" (£)-1)exp(i2mkt )/ (i2mk)dt

~(n/i2mk) £3 V()™ ' (£)exp(i2mke)dt

—(m/i2mk) CE_I. (A.11)

]

Now we will establish (A.6) by induction with respect to m using the

following identity:

m+1 m+1 . m .
Ck = Dk + aj Ck - ((m+1)/i2m) _Z C.Ck_ 3, (A.12)
J;éO J J
which follows from
CE+1 = fé (¢(t)m+1—t)W'(t)exp(iZWkt)dt + fé tY' (t)exp(i2nkt)dt

oo}

m+1
= X a, Ck—j + Dk

j:-CX)

combined with (A.11).

- 10 -
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Basis (m=0): (A.6) for m=0 is obvious from (A.l), since Cg = Ck

and AO f A, v ; ‘ ’ ( ’
Induction: Suppose (A.6) holds true for m. From (A.12) follows
m+1 < m+1 m™ X m .
lee™ = I | + lagtic, | + ((m+1)/2 )j¢o chck_j/Jl. (A.13)
We have
laf*lc, | = (4/2) exp(-B VTET) | N (A.14)

from (A.4) and (A.10). The last part of (A.13) is estimated as follows
by (A.4) and (A.6):

z |c®c, /i
A €3G, 5731

IA

'io A 13l exp(-B VT3T)* & exp(-B VTk=31)/13]
J

AmA z vexp[-B(/T3T+/TE:3T)]
. j#0

k| ©
AmA( X exp[—B(/3+VTET:3)] + 2.2 exp[—B(/3+/TET13)] )

j=1 j=1
s A AC(Jk| + 4/B%) exp(-B VTRD), (A.15)

since

k| e k| _ _

'21 exp[-B(V3+/Tk]=3)] = -21 exp(-B VTkT) = [k| exp(-B VTkT)
and ” ' T

'21 exp[—B(/3+/TET;3)]

J=

exp(-B VIkT) £ exp(-B V3)
j=1

exp(-B VTk]) f; exp(-B vx)dx = 2 exp(-B VTk]) / B2.

A

A

Substituting (A.5), (A.14) and (A.15) into (A.13), we obtain
lk| exp(-B vTkT)

with Am+l given by (A.7). | Q.E.D.

m+1
el =,

- 11 -
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