
33

Programming Language Designs
to Support

Programming Methodologies

Hayashi, Tsunetoshi*

北海道大学大型計算機センター 林 恒俊

1. Introduction
It becomes not unusual that a large number of large scale softwares have been developed and
are in continuous use for a long period of time. To maintain such a large scale software over
its whole lfe cycle, it is indispensable for its principles in solving problems and their descrip-
tion in programs to be easily understood by programmers other than the author, and by
the author himself long after the development as well. Proper programming methodologies
should be used to make programs understandable and readable. Structured programming,
top-down programming, stepwise refinement, and bottom-up programming (software com-
ponents) are some of such programming methodologies which give programmers support to

write understandable programs. The analytical, or deductive, approach like top-down pro-
gramming seems to have more descriptive power than the synthetic, or inductive, approach
such as bottom-up programming. In the top-down approach, a program is developed in the
same way as a programmer solves the problem by expanding it into subproblems. Then the
subproblems are further divided over again until a partial program will emerge by itself as
a solution to each subproblem. This approach inherently coincide with the natural working
of human mind, so a program written in this way often becomes very understandable.

Using such a methodology, however, is not a sufficient condition for a program to
become understandable. There are lots of garbage programs without goto statement. A
programmer should obey the strict discipline of the programming methodology used and
direct his way of thinking along its paradigm while writing his program. There should be
some software tool, or programming language, to support, or to enforce, such disciplnes.

It seems, however, there is slight discordance between the programming language de-
signs, especially modern ones, and such top-down programming methodologies. The mod-
ern design unwittingly supports the bottom-up approach rather than top-down one. This
fact sometimes discourages a programmer to follow the analytical, or deductive, discipline.
Therefore we should reconsider the current design tendency of a programming language,
and/or devise some means for coping with its defect.

On the other hand, in the bottom-up approach, several functional program modules are
prepared in advance, and they are used as building blocks with which a complete program
is to be constructed. It is rather difficult to understand the total logic of a program by
induction on what its constituent modules are doing. It is difficult as well to prepare requisite

*Associate Professor, Hokkaido University Computing Center, Kita 11 Nishi 5, Kitaku,
Sapporo, Hokkaido 060, Japan

\copyright Copyright 1985 by T. Hayashi

1

数理解析研究所講究録
第 586巻 1986年 35-43

36

functional program modules in advance, since we cannot know what module is necessary
until we are forced to use that module.

In addition, a program must have its precise documentation along with its source code.
The source code alone is insufficient for a reader to become acquainted with the logic of the
program, whatever detailed comments are dispersed among the source code. Comments are
just comments and cannot be compared with a readable document. It is rather indispensable
than desirable that a descriptive program document should be written hand in hand with
the source code development. And the tool should also encourage a programmer to write
documentation as well as the source code simultaneously.

In this paper, we would lke to give considerations on the design principles of a pro-
gramming language, or software tool, which inherently support programming methodologies
and documentation.

2. Programming Methodology vs. Programming Language

As stated above, the modern programming language design does not necessarily support
to write readable programs. The reasons are: (i) it does not help a programmer to write
a program in top-down manner; (ii) the contextual distance between a definition and its
reference sometimes grows very far, for example, a few tens of pages in a large program;
(iii) it does not to help recording the problem solving steps. These are discussed in the
following.

There is a slight discrepancy among the natural textual orders of pieces of program ele-
ments defined by a programming language syntax and the top-down programming method-
ology. The program elements in this context are names of variables, procedures, labels, and
so on.

Programming languages, especially modern ones, request that the the definition of a
name should have been completed when that name is to be accessed. For example, in Pas-
cal [JW76], the names must be declared in the order label, constant, type, var followed by
procedure and function. A variable to be accessed in the program body must be declared
explicitly in the var part. Even in the declaration part, a name representing a symbolic
constant in the type part must appear in the constant part. For some special case of
mutual recursion, which cannot meet above principle, Pascal provides special programming
devices such as pointers (\uparrow) with deferred type and forward specification. This is also the
case for C language as well as Ada [Ad83], where the declaration should precede reference
contextually. Ada also provides special programming devices: the specffication declaration
and body definition; and incomplete type declaration.

This ordering is very natural for compiling a source program. The definition and spec-
ification of variables and subprograms are perfectly completed when they get referred to
later in their scope in the source code text. It simplifies the compiler design as well, as the
whole source program need not be kept in the memory all the time.

This ordering also helps to write a program in the bottom-up approach. The natural
ordering of program elements written in this approach is “declaration to reference.“ Sub-
programs are written as functional modules prior to their invocation. Variables should be
declared in advance at the beginning of a program.

2

37

On the other hand, the natural ordering defined by the top-down approach is contrary
to the above one. According to this approach, a higher, abstract level part of program
comes first, then its lower, more concrete parts come next contextually, and so on. In other
words, if we assume these parts are written as subprograms, reference to them precedes their
declarations, as shown in (1).

program

{abstracted action is invoked}
the-action;

{here abstracted action is further expanded} (1)

procedure the-action;

end

end

The specification for variables should be also determined with respect to the requirement
emerged while expanding the problem. This implies the variable declaration should foUow,
or be parallel to their reference in a partial program. This ordering does not agree with
the current programming language. A programmer is always required to make conscious
effort to think in the other way than the paradigm a programming language defines while
writing a program. in a sense, rather classic languages, Algol 60, PL/I, and even FORTRAN
are superior to modem languages in this respect. In PL/I and FORTRAN, the declarations
and the other statements can be intermixed freely. There is no restriction on the order of
subprogram definitions in Algol 60 either.

To ease the task to read a program, it is desirable that variables should be declared
contextually near to the place where they are most actively referred to as much as possible.
The programming language design cannot meet this condition either, especially for so-called
global variables. Variables common to several subprograms is to be declared globally, that
is, outside to those procedures. They are put at the beginning of a program. Then, several
intervening subprograms tend to follow for a few pages. And, finally subprograms referring
to those variables appear. A reader must turn pages several times when he is reading that
part of a program.

To understand the problem solving logic of a program, it is indispensable to know how
it is developed in each step of top-down programming. A programming language also fails
to meet for this condition in another point. A final program written in the top-down ap-
proach can hardly record the developing steps in itself. The only thing we can do is that
the abstraction done in one step is reserved in the name of a subprogram with explanation
in comments. This tends to develop rather large number of subprograms, which makes bad
run-time efficiency. And explanation in comments tends to be of poor quality. A program-
ming language should provide some means to record such steps, other than subprogram
abstraction mechanism.

3

38

program
var

{global variables are declared here}
global: \cdots

{interveneing procedures several pages long}

procedure \cdots
(2)

{a global variable is accessed here}
$globalarrow\cdots$;

end

end

3. Program Document vs. Comments
In reading a program, there is some difficulty in the program representation itself. There are
several representations of a program written in some program language. Some of them are,
for example, hardware representation and publishing representation. The hardware repre-
sentation is machine readable and used for storing programs in a computer. The publishing
representation is for printing source codes in a publication. Here, keywords, names, symbols
and operators are printed in different font styles and are mutually distinguishable. This con-
vention makes a program source code often very readable. The conversion ffom hardware
represenation into publishing format could be done automatically by a sophisticated pretty-
printing (pretty-typesetting?) program. It is desirable that a language processor should
provide such facility, rather than using a separate software tool.

Although a program source code itself has some descriptive ability, it is insufficient to
give an acount of how the program is actually working. Informal explanation sometimes ex-
cels formal description. Therefore, almost all languages are provided with additional means
for explanation–comments–within their basic syntax. Comments are usually ignored by
the processor, still they are parts of a source code and are subject to the source program
syntax in general. in some language, a particular combination of characters is not permitted
in a comment, as it might terminate the comment in which it appears. Comments cannot
be unrestricted, full, free texts, they can be used only for simple explanation.

A programming language should provide a facility to write a (possibly fully typeset)
document as well as source code description. Both of these should be done hand by hand
simultaneously. It might be better to write a document with pieces of programs interspered
than a program with comments interspersed. A language processor can be made to accept
such a document and extract the source program codes.

4. The Case of WEB

WEB language [Kn83, Kn84] developed by Knuth can be seen as an example which can fiU the
gap between the current programming language design and programming methodology. The

4

39

concept involved in WEB is cailed literated programming. WEB is founded on Pascal language
and m typsetting program, and used chiefly for writing Iffi itself. The WEB basic function
provides facihities to write a program in top-down manner; to record refinement steps; and
to generate a document along with a program source code. There are also some beUs and
whistles added to the basic function.

It is said that Pascal lacks sufficient functionality for large scale systems programming.
The primary purpose of WEB is to complement weak points and to enhance program porta-
bihty of the basic language, Pascal. WEB is very successful with respect to its purpose, since
a good number of large scale programs are written in WEB, which have been transported to
many kinds of computers. The source code of W itself is to be published [Kn85]. This
shows the effectiveness of WEB as an information communicating medium.

Figure 1. WEB configuration.

The basic design principles of WEB are:
\bullet A WEB source code looks like a document text with special mark-ups rather than a

program source.
\bullet The mark-ups discriminates the source text into several kinds of texts, for example,

document text, Pascal program text, module name and definition, macro definition,
indexing specification, etc.

\bullet A WEB source code is divided to several pieces, or modules in $V\mathfrak{W}$ terminolgy, and a
module is the unit of programming. A module occupies at most one page when it is
typeset.

\bullet A module consists of at most three parts: a document text part; a macro definition
part; and a Pascal program part, in this order.

\bullet The Pascal program part may be given a name, which is an arbitraIy text. Statements
in the Pascal program part may refer to this name. This name serves as a pseudo-
instruction. The definition and reference to module names can be in any order.

\bullet There are two WEB processors, one to translate a WEB source text into a Pascal program,
and the other to convert it to $?\mathbb{F}$ input text. (See fig. 1.) The former, called TANGLE,

5

4 $\lceil J$

$\ovalbox{\tt\small REJECT}_{f}$

generates a Pascal program by replacing the module names with its definitions. $Modules|i2$

with the same name are collected and concatenated together. The latter, called WEAVE, 1
generates a Iffi source text, which wiU be then typeset as the program document.

Using the module names, we can write a WEB source code in the top-down manner, and $|$

record the developing steps. At the abstract level, we can use a name instead of Pascal
statements, and then a module with that name is developed later. Global variables can
be declared at several places by using the name attached to the module containing var
statement, as shown in (3). The generated Pascal program looks ahnost the same as (2).

\langle global $variabIes$) \equiv

{a module to define global variable}
$var\cdots$

(outer $module\rangle$ \equiv

{another module in which module $\langle the_{arrow}action)$ is invoked}
procedure

{ $the_{arrow}action$);

end; (3)

(the $action\rangle$ \equiv

{here { $the_{arrow}action\rangle$ is defined}

{a global variable is accessed}
$globalarrow\cdots$;

(global $variables\rangle$ $+\equiv$

{global variables are to be declared}
global: \cdots

There are some shortcomings or defects in WEB language. First, one must juggle with
three mutually much different languages in writing a WEB source code, namely, WEB language,
TEX source language, and Pascal. Good understanding of these languages are required. The
number of languages involved should be small as much as possible. Second, the coupling be-
tween a WEB source and generated program is rather loose. This is because the WEB processors
are implemented as preprocessors. There is no way to reflect the source module $organ\dot{w}$ation
to the generated program at run-time. The program must be executed independent to the
source WEB program.

6

41

S. Literated Programming Language Design Principles

A programming language supporting top-down approach and documentation should be de-
signed to the following criteria. The language is called LLP (Language for Literated Pro-
gramming) tentatively. The LLP can establish itself as a new language with its own proces-
sors and environment. It need not depend on some existing language.
Segmentation The LLP source program is divided into several segments. Each segment
represents a refinement step of the top-down programming activities. Not the syntactic
structure of programming languages but the internal logic of a program should determine
the segmentation, and then refinement process. In other words, it must be made that, in
the LLP, the syntactic and logical aspects of programming should be separately dealt with.
A segment may include program document text, partial program itself, or both. A segment
should not be too long and better not span over one page when formatted.

No mark-ups The mark-ups are not to be used for designating the document part and
program part of a segment. Instead, some means like shift/escape sequence may be used
for this purpose. Or else, compiler directives like $\#$ lines in C language may be employed.
This relieves a programmer from remembering superfluous subtleties. The point is that a
programmer should be able to handle the both text and program parts in the programming
language framework.
Flexible intrasegment structure The program part and text part in a segment may
be interleaved in arbitrary order. The WEB segment structure is rather rigid: a segment must
be constituted from the text part, macro definition, and program part in this order, where
some parts may be omitted. This turns out to be rather inconvenient as related pieces of
programs and variables declaration must be put in separate segments.

Segment naming convention Either a segment or each piece of program texts in a
segment may be given adequate name. The name can be any arbitrary text as in WEB. This
name serves as a pseudo-code in the referring occurrence, and can be used as a lexical item
in a piece of program text. There should be some means to abbreviate a name when it is
appeared second time or later.
Name definition and reference The order of definition and reference of a name is
arbitrary, moreover, a same name could be defined at several places. This means consecutive
pieces of program text are scattered among several places.

Macro definition lt is desirable the LLP provides macro programming function. How-
ever, this may be realized by the named segment convention. It is much useful that a named
segment could accept parameters which will be substituted for the formal arguments in the
piece of program text. In this way, the module definition and macro definition in WEB can
be unified.
Overall consideration The source program incJuding both text and program parts
should be programming language-oriented rather than text-oriented. This is required for
giving concise and precise explanation in the program document. This point is important for
the batch-oriented implementation, where the formatted document and the source program
text might be much different.

7

42

The programming language of the program part can be arbitrary as stated before. It may be
a completely original one designed to be best suited for the literated programming. It can
be a generic algorithmic language, from which a program in any language can be generated.
The LLP “TANGLE“ processor may handle such conversion. This point leaves much &eedom
for the LLP design.

6. IMplementation as Programming Environment
There are several conceivable ways to implement the LLP. For example, WEB employs con-
ventional preprocessor implementation in the batch-oriented processing mode. WEB has two
processors, TANGLE and WEAVE, their functions are document preparation and program pre-
processing respectively. Both of them run on the same WEB source, but at the different time.
Therefore the program and its document are obtained separately. The TANGLE rearranges
the source code by replacing segment names with their definitions, and generates a program
which can be processed by a compiler. The WEAVE does virtually nothing but inserts direc-
tives for pretty-printing and generates the index and cross-reference. The implementation in
this way makes the coupling between the source program preparation, generated program,
and the program document rather loose. It is very important that we can settle only with
the single source program preparation by strengthening the coupling.

We had better devise a means to strengthen the coupling to make the LLP a good
programming tool. The means may be (i) improving the LLP compiler in the batch mode
processing; and (ii) implementing the LLP in the interactive mode processing as a program-
ming environment.

In the batch mode processing, a single compiler can be made to handle both parts of
the LLP source input. The unified compiler, which may have processors such as given in
the above as its phases, can be made to accept the source program and generate a program
document and an object at the same time. In this way we may get along with the LLP
source program only.

The LLP will work best in the interactive processing mode, where only the program
document need be prepared. Sufficient check wiU be done over the source program by
combining the editting and syntactic processing. Neither mark-ups nor special LLP own
syntax are required. The document wiil be printed as is shown on the screen. The program
can run in the interpretive/interactive execution, debugging and run-time profiling can be
made reflecting the source segment structure. A program may be generated as the final
result, which can be preserved for later batch mode compihing.

In this case, a problem is that only one page of the program document can be displayed
on the screen. This will become obstructive when developing a large scale program, where the
number of related segments might grow large and they might span over several pages. The
semi-automated multi-segment access through the multiple window mechanism wiU solve
the problem. Related segments can be accessed and displayed on the separate windows
automatically by referring to the symbol cross-reference and index database when editting
a segment. Such database can be created and maintained by the interactive LLP processor.
In a sense, the LLP should be implemented as a programming environment in the interactive
mode processing.

8

$4_{j}($

7. Conclusion
So far, we have discussed the relationship between programming language design and pro-
gramming methodology, from the point of view of program understanding. The current
design of main-stream programming languages does not tend to support the programming
methodologies adequate for writing understandable programs. In addition, current program-
ming languages fail to support programming as documentation proccess.

We should devise some means, which we called the LLP, to fill the gap between the
programming language and programming methodology. We presented the design criteria of
the LLP, which are extracted from the experience in using the WEB language. Finally some
LLP implementation techniques are considered and their merits and demerits are discussed.
An interactive one implemented as a programming environment will be most desirable in
this context.

References
[JW76] K. Jensen and N. Wirth, PASCAL User Manual and Report in Lecture Notes in

Computer Science 18, Springer-Verlag (1976).
[Ad83] The Programming Language Ada Reference Manual in Lecture Notes in Computer

Science 155, Springer-Verlag (1983).
[Kn83] D. E. Knuth, The WEB System of Structured Documentation, CS-980, Stanford

University Computer Science Department (1983).
[Kn84] D. E. Knuth, “Literate Programming,“ Computer Journal 27 (1984), 97-111.
[Kn85] D. E. Knuth, Zffl: The Program, Addison-Wesley (1985).

[Ha85a] T. Hayashi, “Literate Programming Considered as a Means of Stepwise Refine-
ment,“ WGSF 13-6 (1985), (in Japanese).

[Ha85b] T. Hayashi, “A Structured Documentation Language for FORTRAN,” The 31st
IPSJ Meeting $8Farrow 7$ (1985).

9

