Oo0000O0000
0 586 0 1986 0 153-181 155

An Implementation Scheme for Relational pDatabase Operation

Systems based on Demand-Driven Pipeline Processing Concepts

+ ++ +
Yasushi KIYOKI, Kazuhiko KATO and Takashi MASUDA
=y miE B fE BE

Institute of Information Sciences and Electronics
University of Tsukuba
++ poctral Program in Engineering

University of Tsukuba

ABSTRACT

In this paper, we propose an algorithm which exploits the
inherent concurrency between relational operations included in a
query. We also present an implementation scheme for a relational
operation system pbased on this algorithm. This relational
operation system executes a query concurrently within restricted
memory resources by combining pipeline processing with demand-
driven control. The main feature of this system is that the
highly concurrent'pipeline processing is implemented without
overflowing the main memory space. We have designed basic
primitive operations for the implementation of relational
operation systems pbased on the algorithm and have actually
developed a relational operation system’by using these primitive

operations.

154

This implementation scheme is apprdpriate to the
implementation under the environment where multiple conventional
small computers (workstations) exist on a local-area network.
The scheme exploits the concurrency flexibly adapting to an

existing system environment.

1. Introduction

To improve the processing performance of relational database
operations (relational operations) [1], many processing schemes
such as specific algorithms and database machine architectures
have been proposed ([2]1,[3],[4]1,[5],[6] et al.). Almost all of
these schemes try to exploit the inherent parallelism in an
individual relational operation. Most database machine
architectures are designed on the basis of dedicated hardﬁares to
exploit the parallelism within an individual relational
operatibn.

In this paper, we propose an algorithm which exploit the
inherent concurrency between relational operations included in a
gquery. And we also present an implementation scheme for a
relational operation system based on this algorithm. This
algorithm enables relational operations to be executed
concurrently within restricted memory resources by combining the
pipeline processing with the demand-driven control. By using this
algorithm, a query can be carried out within restricted main
memory space without causing memory swapping of intermediate data
(intermediate relations). This algorithm is suitable for
implementation of a relational database system under the
environment where multiple small computers such as workstations
exist on the local-area network. In general, in the local-area

network environment, the number of computers is restricted, the

capacity of main memory in each computer is also restricted, and
every computer does not haﬁe a secondary storage. This algorithm
makes it possible to flexibly utilize available computers on the
local-area network and to exploit the parallelism in such
resource-limited environment.

In most existing schemes for executing relational operations,
when a query consisting of multiple relational operations is
carried out, the granularity of the operand data for each
relational operatidn is a relation. In this case, after the
relational operation node completely produces a whole
intermediate relation, the subsequent relational operation that
consumes the intermediate relation is activated. Therefore, the
concurrency of pipeline processing between relational operations
is not utilized. Furthermore, memory swapping is necessary
between main storage and secondary storage when memory overflow
occurs due to intermediate relations. If the granularity
transferred between relational operations is set to a page
instead of a relation, the inherent concurrency of pipeline
processing in a query can be exploited [2]. An execution scheme
that implements the pipeline processing by using a data-driven
control mechanism had been proposed [3]. However, pipeline
processing using data-driven control may cause a memory resource
explosion when executing a query. A binary relational opération
node is required to compare each outer-relation page with all of
the inner-relation pages. Therefore, even if only one inner-
relation page and only one outer-relation page remain to be
produced, all of the other outer-relation pages and inner-
relation pages must be kept in storage. As the result, every
node of a query may be forced to keep large amounts of
intermediate data in storage. For example, as shown in Fig. 1, if
the processing of some node (the Join-~1 node) is slow, many

intermediate pages are kept in every node.

156

In the implementation scheme proposed in this paper, a
pipeline is constructed among relational operation nodes, and
processors are allocated to relational operation nodes on the
pipeline. Between nodes on the pipeline, a stream of tuples is
passed as an ordered sequence of the intermediate data. As the
stream is produced and consumed under the environment of demand-
driven control, a query is performed within restricted memory
resources. The main features of this scheme are as follows: |
(1) Intermediate data does not cause the memory overflow even
when the Join operation, the Cartesian-product operation or the

Union operation creates a large intermediate relation.

(2) Concurrent pipeline processing is implemented among multiple

relational operations in a query.

(3) The response time required to get the first tuple of a query
result is very short. A part of the query result can be obtained
if only a part of each operand relation exists. This feature is
effective for applications which do not regquire the entire

results of a query.

(4) This scheme is suited to the the implementation on multiple
small computers connected to a local-area network. This scheme
exploits the concurrency flexibly in adapting to an existing

system environment.

In order to make the effectiveness of this scheme clear, we
show the results of a performance evaluation. These results were
obtained by actually processing queries on the proposed

relational operation -system implemented on a workstation.

2. An Algorithm for Executing Relational Operations

In this section, we explain a basic algorithm for
relational operations. This algorithm is based on the concept of
demand-driven pipeline processing.

A query such as shown in Fig.1, is executed by this
algorithm as shown in Fig.2. When a relational operation node
receives a demand from the upper relational operation node, which
is the consumer of intermediate tuples produced by the node, the
node gets a page from the input buffer and then executes the
relational operation until this node completes the production of
one resulting page with tuples in the output buffer. The output
buffer is then treated as the input buffer for the upper
relational operation node. Each relational operation node does
not create a whole intermediate relation for a single demand.
Each node creates only one page of tuples for a single demand.
Each buffer does not require the capacity to store an entire
intermediate relation. That is, the buffer size does not reiate
to the size of an intermediate relation. Each page size 1is set
to a half of the corresponding buffer size, that is, each buffer
has the capacity to store two pages. As the size of the buffer
allocated to each relational operation node is different, the
page size is also different among relational operation nodes,
that is, each page size is fixed according to the size of the
corresponding buffer.

Immediately after a page is received from the input buffer,
the receiving node sends a demand to the lower relational
operation node to request the input buffer to be refilled by the
following page. In this algorithm, the double buffering mechanism
is supported in every buffer. As a result, concurrent pipeline
processing .is performed between relational operation nodes. By

using demand-driven pipeline processing, unary relational

158

operations (the Selection, the Restriction and the Projection
operations), and binary relational operations {(the Join, . the
Union, the Intersection, the Difference and the Cartesian-
product operations) can be concurrently executed within the
restricted buffer resources without buffer overflow. In
particular, in executing the Join, the Union and the Cartesian-
product operations, which are the most time-consuming, because
these\operations produce large intermediate relations, this

algorithm shows attractive advantages.
2.1 Unary Relational Operations

A unary relational operation node has one input buffer and
one output buffer. Unary relational operations are executed by

the following algorithm.

(1) When the unary relational operation node receives a demand
from the upper relaticnal operation node, it executes operations
(2) and (3) repeatedly until the resulting tuples of one page are

created and stored in the output buffer.

(2) A single operand page is read from the input buffer which
stores tuples of the operand relation. Then, this input bhffer
becomes available, and a demand is issued to the lower relational
operation node to refill that buffer. As a result, pipeline
concurrent processing is implemented between this unary
relational operation node and the lower node. (A double buffering

mechanism is supported in every buffer.)

(3) The relational operation is executed on the page that has
just been read in (2), and the resulting tuples are stored into

the output buffer, which corresponds to the input buffer of the

158

upper node. If the output buffer is filled with resulting
tuples, control is returned to (1) and this node waits for the
next demand from the upper relational operation node. Otherwise,
(2) and (3) are executed repeatedly. If the manipulated page is
the last one of the operand relation the execution of this

relational operation is terminated.

In the case of the Projection operation node, as it is
necessary to eliminate duplicate tuples, this node must not
remove the tuples in the output buffer even after those tuples
have been read. Therefore, the Projection operation node must
reserve the space to store all of the resulting tuples of the

Projection operation.
2.2 Binary Relational Operations

In binary relational operation nodes, the operation‘is
carried out by comparing each page of the outer-relation with all
of the pages of the inner-relation. Each binary relational
operation node has two input buffers and one output buffer. One
of the input buffers is used for storing pages of the outer-
relation and the other for storing pages of the inner-relation.
Binary relational operations are executed by the following

algorithm.

(1) When the binary relational operation node receives a

demand from the upper node, it executes (2), (3) and (4).

(2) One page of the outer-relation is read from the input-buffer
which holds tuples of the outer-relation. Then, a demand is
issued to the lower relational operation node to refill that

buffer. By issuing the demand before executing the relational

I Ey

100

operation, the production of the following operand page in the
lower node is overlapped with the execution in this relational

operation node.

(3) One page of the inner-relation is read from the input-buffer,
and next a demand is issued to the lower relational operation
node to refill the vacated input-buffer. As a result, pipeline
'concurrent processing is implemented between this binary
relational operation node énd the lower node that constructs

inner-relation pages.

(4) The relational operation is executed by comparing the outer-
relation page read in (2) with the inner-relation page read in-
(3). The resulting tuples are stored in the output buffer. When
the output-buffer is filled as the result of the demand received
in (1), control returns to (1) and execution is stopped until the
next demand is issued from the upper relational operation node.
Otherwise, (3) and (4) are executed repeatedly. If the compared
page of the inner-relation is the last page, the lower relational
operation node whichAcreates‘inner—relation pages is initialized
and control returns to (2) in order to compare the following
operand page of the outer-relation with all the ©pages of the
inner-relation. (Thié means recomputation by the lower-relational
operation node which creates the inner-relation. The inner-
relation is recomputed to compare all the inner-relation pages
with each outer-relation page.) If both of the compared pages
are last pages, the execution of the relational operation is

terminated.

3. An Implementation scheme for Relational Operation Systems

161

In order to implement the proposed algorithm, a relational
operation system must provide the demand-driven control mechanism
and the pipeline processing mechanism.

One scheme for the implementation of this algorithm is based
on using a dataflow machine with data-driven and demand-driven
control mechanisms. In this scheme, the relational operations are
described by functional programming language which is suited to
the dataflow machine. This scheme realizes demand-driven
pipeline processing of relational operations by applying
functional programming concepts to relational operations. We
have described a relational operation system in the functional
programming language Valid [8]. Valid supports the eager and lazy
evaluétion mechanisms (8],[9],[10] in executing a functional
computation [9]. The eager evaluation mechanism and the lazy
evaluation mechanism correspond to the pipeline proceésing
mechanism and the demand-driven control mechanism in the dataflow
machine, respectively. The execution of relational operations on
relations corresponds to functional computation on streams, énd
the arguments of functions are evaluated by using the eager and
lazy evaluation mechanisms. The relational operation system is
implemented on‘a dataflow machine [7] which supports the eager
and lazy evaluation mechanisms.

In thié paper, we present another implementation scheme
for a relational operation system based on the proposed
algorithm. This scheme is designed for using conventiongl
computers and a procedural language. This scheme is appropiate
to the implementétion in aﬁ environment where multiple small

computers such as workstations exists on a local-area network.
3.1 A single processor environment

In implementing the proposed algorithm in a single

162

processor environment, a pseudo-pipeline is constructed between,
relational operation nodes. Each relational operation node acts
as a coroutine, and pseudo-pipeline processing is carried out
between these coroutines. The query shown in Fig.3(a) is
implemented as shown in Fig.3(b). A relational operation node
includes an execution management table (emt[]) that specifies the
execution environment of a coroutine and indicates the input and
output buffers. A buffer management table (bmt[]) is provided in
each buffer to indicate the buffer states as shown in Fig.3(b).
The demand-driven control mechanism is implemented by activating
the suspended coroutine by the execution of a basic primitive
operotion "demand". The execution sequence of relational
operation nodes, that is the execution sequence of coroutines,
is scheduled by a single scheduler. The scheduler passes control
to one of the relational operation nodes ;hich receive a demand
from an upper node. The choice of the next execution node depends
on ﬁhe scheduling policy. The relational operation node which has
obtained control executes a reiational operation on an operand
page stored in the inpuf buffer. Relational operations are
executed by using theLbasic primitive operations shown in
Fig.4. Each node continues the execution of the relational
operation until one of the following conditions occurs.

(1) a single output page is created énd stored in the output-
buffer, or

(2) the processing on the pages stored in the input buffer is

- terminated.

If the éxecution is suspended due to (1), the relational
operation node storesva."put—wait"ﬁxxthé waiting state of the
ekecution management table, and also saves the resume point of
the same node (the relational operation routine). Then, the same
node executes the basic primiﬁivé opefatioh "écknowledge(sid)" in

order to inform the upper node (the consumer) that the output-

10

165

buffer (the input-buffer of the upper node) is filled, and
returns control to the scheduler. If the execution is suspended
due to (2), the node stores a "get wait” in the waiting state of
the execution management table, then executes the basic primitive
operator '"demand(sid)" to the lower relational operation node to
request the creation of the foliowing page, and returns control

to the scheduler.
3.2 A multiprocessor environment

One or more relational operation nodes are assigned to each
processor before starting gquery processing. The same
organization as that in the single processor environment
discussed in (1) is implemented in each processor. Therefore,
each processor includes its own scheduler, and the scheduler
controls the execution sequence of the relational operation nodes
allocated to the processor. For each processor, the relatiocnal
operation nodes and the buffers allocated to the processor are
also managed in the same way as that for the single processor
environment. Between a relational operation node and another node
which are allocated to different processors, the operand data
(stream data, that is, tuples) and control signals (demand{(sid)
and acknowledge(sid)) are transferred through a communication
link. The transfer of the "demand(sid)" is shown in Fig.5(a) and
is carried out in the following sequence.

1) In processor-1, a relational operation node (Relational Op)
issues a basic primitive operation "Demand()" in order to regquest

the following operand page for this relational operation.
2) If the destination node of this demand is allocated to another

processor (processor-2), this demand is sent to the communication

handler (CP) in processor-1.

11

164

3) The communication handler creates a packet including the
demand, and then transfers the packet to the communication

handler of processor-2.

4) The communication handler of processor-2 accepts the packet
and interrupts the execution of the relational operation node
(Relational Op) which is currently executing a relational

operation with processor-2.

5) In processor-2, the interrupt handler is activated, and the
demand issued by the relatiocnal operation node in the processor-1
is received by the destination node of the demand. Then, the
relational operation node interrupted in 4) is activated, and

restarts the execution of the relational operation.

The transfer of an operand page (stream data) and the
transfer of an acknowiedgement are shown in Fig.5(b) and are
carried out in the following sequence.

1) The relational operation node (Relational Op) in the
processor-2, which receives a demand from the upper relational
operation node, creates a page and stores it in the output buffer
(Buff). Then, this node issues an acknowledgement to inaicate

that the production of the page is completed.

2) If the consuming relational operation node of the page is
in another processor (processor-1), the requirement for the
transfer of the resulting page and the acknowledgement are sent

to the communication handler of processor-2.

3) The communication handler creates a packet including the

page and the acknowledgement, and transfers the packet to the

12

communication handler in processor-1.

4) The communication handler for processor-1 receives the page
and the acknowledgement, and stores the page in the buffer (Buf).
Then, the communication handler interrupts the execution of the
relational operation node which is currently executing a

relational operation in processor-1.

5) The interrupt handler is activated in processor-1, and the
arrival of the page is acknowledged by a signal to the relational
operation node which had issued the demand. Then, the relational
operation node interrupted in 4) is activated and restarts the

execution of the relational operation.

As mentioned above, the proposed algorithm is easily
implemented under the multiprocessor environment by the extension
of the relational operation system implemented in the single

processor environment.

4. Query Processing

In this section, we discuss the effectiveness of concurrent
pipeline processing implemented on the basis of the proposed
relational operation algorithm. The typical query shown in Fig.6
is used to evaluate the effectiveness of pipeline processing.
This query consists of six Join operation nodes and an output
node for the creation of the resulting data. Nodes 0 - 6 are Join
nodes and node 0' is the output node. We actually developed a
relational operation system on a workstation (Sun-2, Unix4.2BSD
[11]1) as denoted in section 3.1. Furthermore, we simulated a

multiprocessor environment discussed in section 3.2 by this

13

relational operation system. The query was executed under three
processing environments on the developed relational operation
system.

The three processing environments (A, B and C) were set as
follows :

(The total amount of buffer spaces is equal for each of the
three processing environments.)
A : The same amount of buffer space is allocated to each Join
node.
B : The query is reconstructed according to the join
selectivity factor "jsf" ({(the number of tuples in the
intermediate relation) = jsf*(the number of tuples in outer-
relation)*(the number of tuples in the inner-relation)). The Join
nodes that have the highest jsf among the same level nodes in a
query (node-1 -and node-2 are in the same level, and node-3, 4, 5
and 6 are in the same level) are designated to be the nodes
(noae-o, node-2 and node-6) to create the inner-relations on
pipeline.
C : After the reconstruction of the query as in "B", the buffer
space is allocated accordingfto a set condition to utilize the
concurrency of pipeline processing. The condition is defined as
follows. We consider a query consisting of three Join operations
(four-way Joiné) as shown in Fig.7. The size of the input;buffer
for storing outer-relation pages is set to "bs1" (the unit is the
number of tuples) and that for storing inner-relation péges is
set to "bs2" in the Join-3 node. If, while the Join-3 node is
comparing among currently stored pages in input buffers, the
"Join-2 node completes the production of the following inner-
relation page, the delay of the pipeline is eliminated. That is
to say, in the Join-3 node, the suspension of the relational
operation execution which occurs due to the absence of the

following inner—relation page 1is the delay of pipeline

14

167

processing. In order to eliminate the delay in pipeline
processing, the size of thé input buffer is set according to the
following formula. In this evaluation, it is assumed that each
join node executes the operation between two operand pages by

using the nested-loop algorithm.

(P2,P3 : the number of processors in the Join-2 node
and the Join-3 node respectively,
N11,N12 : the number of tuples in the outer-relation and

the inner-relation of the Join-1 node respectively,

the number of tuples in the outer-relation and

the inner-relation of the Join-2 node respectively,

jsf-m : the join selectivity factor of the join node "m" that
decides the size of the intermediate relation

(jsE*N1*N2).)

N211,N22

X}

1) processing time for the comparison operations in the Join-3
node

(bs1*bs2/p3) : time to compare between two pages
*(§sf1*N11*N12/bs1) : the number of outer-relation pages
*(§jsf2*N21*N22/bs2) : the number of inner-relation pages

2) processing time for producing the inner-relation page (bs2)

(bs2/(js£2*P2)) : time to produce an inner-relation page
*(jsf1*N11*N12/bs1) : the number of recomputation times
*(jsf*N21*N22/bs2) : the number of inner-relation pages

3) the condition for eliminating the delay of the pipeline
1) > 2) ---> bs1 > P3/(jsf2*P2) ------- formula 3)

If buffer sizes are set by using formula 3), the delay of
pipeline processing between every pipeline node in a query is
eliminated. Therefore, the overhead for recomputation of a
relational operation is eliminated by pipeline processing. If one
processor is allocated to each join node (P2 = P3 = 1), formula
3) is defined as bs1 > 1/jsf2. In general, the condition for
utilizing the concurrency of pipeline processing between the
upper node-m and the node-n that generates the inner-relation of
node-m is defined as

bsm > 1/jsfn (bsm : the buffer size (the unit is the number
- of tuples) for the outer-relation of
- node-m,
jsfn : the join selectivity factor of
node-n).

15

168

In order to evaluate the effectiveness of the pipeline
processing, we have executed a query (Fig.6) on the developed
relational operation system. The gquery is executed under
processing environments‘"A", "B" and "C" shown in Fig.8. We give
time charts which indicate the execution state of each
relational operation node. The execution time was recorded by the
actual query processing on the workstation. Time charts (Fig.9,
Fig.10 and Fig.11) show status transitions of each processor in
three processing environments (A, B and C) respectively. These
time charts were created according to the debendency between the
stream generating node and the stream consuming node; These time
charts show processor status transitions from the beginning of
the query processing for 1000 seconds.

In the proposed algorithm, the line of inner-relation
generation nodes becomes the pipeline of the data stream. In
Fig.6, the pipeline is built up between nodes 0', 0, 2, and 6.
The effectiveness of this relational operation system is
remarkable When the throughput of the top node (node 0' or node
0) is high apd the output of tuples is continuously performed.

The efficiency of this relational operation system is
influenced‘by the reconstruction of a query and the buffer
allocation. By comparing the throughputs (Fig.8) or the time
charts (Fig.9, Fig.10 and Fig.11) among three processing
environments (A, B and C), it is clear that the effectiveness of
pipeline processing is not remarkable in the case of processing
environment "A". This is because node 6 becomes a bottleneck, and
as a result the throughput of node 0 is very low. On the
otherhand, in the case of processing envircnments "B" and "C",
throughputs of the pipeline nodes (node 0', 0, 2, and 6) are
high, that is to say, the efficiency of pipeline concurrent
processing is femarkable. The effectiveness cf pipeline

processing in processing environment "C" is especially high.

16

Therefore, in an environment where join selectivity factors can
be estimated, the proposed system shows the best of its pipeline
processing advantages. In general, because the precise estimation
of join selectivity factors is difficult, it is not easy to
create an environment "C". On the other hand, as it is easier to
compare join selectivity factors of the Join operation nodes
which are in the same level in a query, an environment "B" can be
realizied easily. Therefore, in the proposed scheme, if the
precise estimation of join selectivity factors is difficult,

queries are executed under the execution environment as "B".

5. Conclusions

In this paper, we proposed an algorithm which exploits the
inherent concurrency in a query. We also presented an
implementation scheme for a relational operation system based on.
demand-driven pipeline processing concepts. This relational
operation system executes a query in a pipeline fashion and
within restricted memory resources. The main feature of this
system is that highly concurrent pipeline processing is performed
without overflowing the main memory space. We have designed basic
primitive operations for implementing the proposed algorithm and
have implemented a relational operation system by using these
primitive operations.

Unlike most of existing relaticnal database machines which
try to exploit thé parallelism existing within an individual
relational operation, this relational operation system exploits
the concurrency of pipelihe processing between relational
operations in a gquery. This relational operation system is
suitable for implementing on a conventional 1local-area network

including multiple workstations.

17

178

We are currently developing a relational operation system on
the multiple workstations connected to the local-area network. As
a result, a database server consisting of multiple workstations
will be implemented on our local-area network. We will also
consider the allocation problems of memory resources and

processor resources.:

18

17l

references

(11

[21]
(3]
[4]

(51

(6]

[71]

(8]

(91
(101

(111

E.F. Codd,"A Relational Model of Data for Large Shared Data
Banks," Comm. ACM, Vol.13, No. 6, pp377-397, 1970

J.M. Smith and P. Chang,"Optimizing the Performance of a
Relational Algebra Database Interface,"” Comm. ACM, Vol.18, No.10,
pPp.568-579, 1975

H. Boral and D.J. DeWitt,"Processor Allocation Strategies for
Multiprocessor Database Machines," ACM Trans. on Database
Systems, Vol. 6, No. 2, pp.227-256, 1981

S.A. Schuster, H.B. Nguyen, E.A. Ozkarahan and K.C. Smith,"RAP.2
-~ An Associative Processor for Database and Its Applications,”
IEEE Trans. on Compt., Vol.c-28, No. 6, pp.446-457, 1979

Y. Kiyoki, Y. Tanaka, N. Kamibayashi and H. Aiso,"Design and
Evaluation of Relational Database Machine Employing Advanced Data
Structures and Algorithms, Proc. 8th International Symposium on
Computer Architecure, pp.407-423, 1981

Y. Kiyoki, M. Isoda, K. Kojima, K. Tanaka, A. Minematsu and H.
Aiso,"Performance Analysis for Parallel Processing Schemes of
Relational Operations and a Relational Database Machine
Architecture with Optimal Scheme Selection Mechanism," Proc. 3rd
International Conference on Distributed Computing Systems,
pp.196-203, 1982. ’

M. Amamiya, R. Hasegawa, O. Nakamura and H. Mikami,"A List-
processing-oriented data flow machine architecture," Prcc.

M. Amamiya and R. Hasegawa,'Dataflow Computing and Eager and Lagy
Evaluations," New Generation Computing, Vol. 2, No. 2, 1984

P. Henderson,"Functional Programming: Application and
Implementation,”" Prentice-Hall International, Englewood Cliffs,
N.J., 1980

K. Pingali and Arvind,"Efficient Demand-Driven Evaluation.
Part1," ACM Trans. Programming Languages and Systems, Vol. 7, No.
2, pp.311-333, 1985

Programmers Reference Manual for the Sun Workstation, Sun Micro
System, Inc., 1982

172

outer-
relacion

wg

(o053

Projection *

B
]
(2]

1

A

Join=2

relation name

inner-

Joiaet

A

outar-
relation

1A

relation

incarzediat
s’

2
ralazcion size

I\

22

a pege that has been
already produced.

T,
»

inner-
relation

a page that has not

|

been produced yet.
Database ’

Fig. 1. Query execution in existing schemes.

0

N

175

\
\

\
1 demand

1
Relational-operation=aods + ['

Projection

Y
“

\
\
7727 \
Z hut‘ter/.é !
!
ry 7
! demand
4
Relaticnal-aoperation-aode ’/ buffer size
Join-2 ,/
4 . - - - - - -
demand ,” >

/

/ AN AN NS,
Il deferid [Gutrei A .
! 7 butfer 711 the tuples that have been
+ \ alrezdy produced

t A .
Relatiozal-operation-code . f

Joiz=1 \ !
I/

7 demand

A\
N\ o\
\EN

Fig. 2. Demand-driven pipeline processing.

2/

174

relational operation
node

= demand

buffer

direction of stream
. (intermediate relation))

demand

< >

Database

Database

Fig. 3(a). Query.

22

Relational Operation Nades

input bufferd

text

autput buffer

enviranment ™!

input bufferQ

input bufferl
program
text

qutput buffer

“environment ™

input bufferd

program input buffer!

text

cutput buffer

s . *1
eavircnment

input bufferQ

program

text input bufferl

(*1 environment *2 state |

* parameters » reaaing point

* waiting stream -::ﬂ?’p’g! ;lag.

* resume point ° Tull Tid

- loc:l Valeia":les « end—af—stream flag
* local clack . force keeping fiag

swaiting state * containing
e whale stream flag

[buffer size

head address

;1 buffer area

tuple size

il head address

buffer size

H buffer area |
tuplie size : :

produced by

i head address

buffer size buffer area|:

tuple size

‘state

output buffer

environment

Fig. 3(b). An Implementation scheme for executing

relational operation.

2.3

17

>

170

Parameters
sid . . ¢ stream identifier (that corresponds to the buffer
. where a part of the stream is stored),
i ¢ 1i-th tuple in the tuples currently stored in the
‘ buffer,

destination : work space for storing an operand tuple of a
.relational operation,
work space for storing a result tuple of a
relational operation.

source

Primitive Operations

get(sid,i,destination)
moves the i-th tuple of the tuples currently stored in the
input buffer to the work space indicated by '"destination'".
The "sid" indicates the identifier of the stream that
corresponds to the input buffer.

put(sid,source)
puts a resulting tuple in the work space indicated by source
to the stream that corresponds to an output buffer.

rewind stream(sid)
initializes the lower relational operation node indicated by
"sid". This operation is used when the recomputation of a
stream is necessary in a binary relational operation node.

demand(sid)
reguests the creation of the next pace for a lower relational
operation ncde. :

acknowledge(sid)
indicates the completion of the cresation of a page for an
upper relational operation node.

check end of stream(sid)
checks the end of the stream.

mark end of stream(sid)
marks the end of the stream.

Fig. 4. Basic primitive operations.

Handler

Create 3 packet @
and transmit it:

Scheduler Scheduler ~

Relational_ %;JSt_innal_
Lol 0p(): : b X .
RP Aeiational_0p— R Relational _0p
B] Interrupt —

Handlex

processori processor2

CP: Communication Praocess

RP: Relational DB Process
Buf: Buffer (shared by CP and RP)

Fig. 5(a). The transfer of a demand.

Network

R
Handler 1

QREORCNL

Handler

Creste 3 packet |
and transait it: f

Accent packet;

Relational
0pQ);

..'BéhnimuLﬁp
Interrupt Handler-_
(;\issue the acknowledge s

<%0 3n associated B

et
t.%.
.

.......................
................

..................................
..

processori processor2

FIg. 5(b). The trsnsfers of a stream and an acknowledgement.

28

178

nodeﬂ;

Relational Operation

| Buffer f
uffer for Nodes

Buffer for o
{ Outer Relation

Inner Relation
on Pipeline

Buffer for Bufter for fodel Pipeline

Inner Relation Source Relation
| : ded Nodes

0y 06

\. —

Fig. 6. Example query.
24

178

)
Relational-cperstion-aade y; / demand

rd
Joine3 /
- -
,l
..
’ bs 1
’ Vs
7 buffer
s 22204
. e r
Relational-cperaticn-node “ f
Jotme1
\
S S s /% V/ 1%
"/ e
cér s butter
7 Butter é/,!/////;

Fig. 7. Pipeline processing.

180

A B c
node/ -
buffer buffer | through- buffer | through- buffer | through-
$ jsft size put i lsf size put isf size put
0’ - - 1.20 - - 24.70 - - 31.60
0 0.005 10 4.20 0.003 10 60.20 0.005 10 638.40
1 0.01 50 2.50 0.002 50 4.50 0.002 100 9.20
2 0.002 50 32.40 ¢.01 50 90.30 0.01 30 87.00
3 0.04 50 0.20 0.005 50 2.40 0.005 80 3.60
4 0.02 50 2.80 - 0.01 50 8.60 0.01 20 10.10
S 0.01 50 12.90 0.02 50 2.70 0.02 30 2.50
6 0.005 50 98.70 0.04 50 55.50 0.04 40 64.40
Jjsfe Join Selectivity Factor
buffer size: the number of fuples 4 .
throughput: (execution time) / (processing time + idle time) % 100 (%),
processing time + idle time = 1000(sec)
Fig. 8. Query processing environments and throughputs.

N e

o &

*188{zac)
18.

181

~1

*1808(sac)
18.
[}

[

'Fig. 10. Time chart for the environment"B".

*188(sec)
18.

g.

11. Time chart for the environment'"C".

21

Fig.

