goooboooogn
0 586 0 1986 O 182-195

182

On the Description of the Communication Protocol HDLC in cHFP

HRLK 818 =iy fli ( Toshio Miyachi )
Fil s#1 ( Takuya Katayama )

Department of Computer Science,
"Tokyo Institute of Technology,
2-12-1 O-okayama. Meguro, Tokyo, Japan 152

1. Introduction

This paper presents a description of communication protocol HDLC in
cHFP as an example of cHFP application to an complex concnrrent'
processing syvstem like communication programs. The .functional con-
current computation model cHFP is an extended descendant of HFP which
was based on the attribute grammar and module hierarchy. It enables
us to describe concurrent processes performing nondeterministic actions
and synchronizai;ions in the functional language framework, we can enjoy
description on harmonious combination between data-flow principle and
sequential flow of control.

A number of methods for formal specification and verificatioﬁ of
communication protocols have been proposed[l-‘zj. It is a hard problem
to give formal specification of communication systems, since they'
includes concurrency and knondeterminism. Of course ihe specification
method must be easy to analyze as well as to implement.

This paper is organized aSVfOHOWS . in section 2, we outline cHFP;
in section 3, the description of HDLC in cHFP is given after brief
introduction of HDLC; in section 4,\ we make reference to relating works

and draw future plans of further work as concluding remarks.



2. Functional concurrent computation model ! cHFP
The functional concurrent computation model cHFP[3~'4] is an

(5]

extended descendant of HFP which was proposed by T. Katavama as a
hierarchical functional language based on the attribute grammar and the
module hierarchy. It enables us to describe concurrent processes
performing nondeterministic actions and synchronizations in the func-
tional language framework by introducing rendezvous together with syn-
chronizing and sequential condition. We can enjoy on harmonious combi-
nation between the data-flow principle and the sequential flow of
control.

A cHFP program is composed of a number of cuncurrently executed
processes. A process of cHFP is an actor which extend a computation
tree and evaluate attribute values on its nodes. Processes can commu-
nicate and synchronize each other only by binding leaf nodes of th(?ir‘
computation tree. The binded special tyvpe nodes are called communiéa—
tion ports, and the others are called modules. w

In the same way és a set of derivation trees is defined in formal
grammar, formally cHFP program is described as a &-tuple !

(M, C, P, Er)
where M is a set of modules, C is a set of communication ports. The
nodes of computation trees are members of M N C. For any element ¢ of C
there exists an unique element ¢ in C which is called a complementary
communication port to ¢, and g’ = c. For every element n of M and C
two mutually disjoint sets I(n) and O(n) are associated. The elements
of I(n) and O(n) are called input attributes and output attributes of n,
respectively. Input and output atiributes are called simply ‘attrib-

utes’. They work like variables in conventional programming lan-



184

guages. We assume that I(c)=0(c) and 0(c)=I(c) for every communica-
tion port ceC. P is a set of processes. Each process peP has 3
unique initial module i, such that i,€M and Kiy)=¢.

Er is a set of extension rules. According. to Er, every process
extends its computation tree, which is initially a trivial tree with the -
initial module i.p as its root. The general form of extension rules is
as follows :

Xg = Xy oo s Xy
- <atiribute-value-definition>
‘when <extension-condition>
synch <synchronization-condition>

order <sequence-condition>

where XOEM is called left-side of the extension rule, and a list Xl,

e Xy of elements of M U C is called righi-side of the extension rule.

Right-side of an extension rule may be empty list. When the same
element of M U C appears twice or more in an extension rule, we annex an
appropriate suffix to them in order to identify each module or communi-
cation port which is refered an occurence.

The attribute-value-definition is a set of equations, which deter-
mine the value of each attribute that belongs to O(Xy) or I(X;) from the ‘
attribute values that -belongs to I(Xp) or O(X;), where I1Sisi. In
contrast to assignmeht to variables of conventional languages, cHFP
evaluates each attribute value only once by pure functions with no side
effect. So the result of cHFP program does not depend on the order of
evaluation of attribute values.

The three conditions in extension rules are optional. "The _exten-
sion condition is a predicate over attributes belonging to I(XO).

Whenever the extension rule is ‘appliéd, its extension condition must be



true. The synchronizing condition is a subset of set { X .. Xy }
n C, that is, instances of communication ports which are included in
right-side of the extension rule. We can apply the extension rule,
only if immediately after applyving the rule, every instance of communi-
cation ports specified in the synchronizing condition can be connected
to its complementary instance in other process ( This connection between
complementary communication ports are called ‘rendezvous’ ) as soon as
they are created. The sequencing condition is a partial ordered
relation over the set {Xl, .. »X3t of occurences in right-side, and the
order of rendezvous of communication port instances mustn’t contradict
the partial ordered relation induced by the sequencing conditions.

The computation process of cHFP goes on along three axes, i.e.
extension of computaion trees, evaluation of attribuie value on nodes of
the computation trees, and rendezvous between a pair of communication
ports. Computaion trees are formed in the way similar to the der{val-
tion trees in formal language theory, in which extension rules, modules,
communication ports, and an initial module work like rules of grammar,
nonterminal symbols, terminal symbols, a start symbol, respectively.
That is, if a module exists at leaf of a computation tree and also is
left-side of an applicable extension rule, the new instances of right-
side of the extension rule are created, and added to the computation
tree as sons of them. The construction of computation trees begins at
trivial ones consisting of an initial module of processes, and 1is
repeated while there are any applicable extension rules.

The values of attributes on instances of modules and communication
ports is undefined when they are newly created. The attribute-value-
definition pdrt of extension rule specifies how the attributc values are

defined. This evaluation process is completely data—drivenv with no



186

side effects. Although Id[ﬁj and Concurrent Prolog[ﬂ essentially
need variables of stream type since communication between processes are
expressed with stréams, whose partial value is determined step by step
during computation, in our model employs no stream-type value.

Rendezvous is an action that a pair of communication port instances
are connected and exchange their attribute values. It is only means
for inter-process communications in our model. It is at. most one
rendezvous the each communication port instance is engaded to.

From the viewpoint of object oriented languages, processes of cHFP
are objects, and communication ports can be regarded as methods of
ob jects. In cHFP, the state of objects is defined by computation
trees and values of attributes oﬁ nodes of computaion trees, and the
method bodies of objects are defined by’ the extension rules. This
distinguishes the object oriented programming in cHFP from one in
Smalltbalk-SO_. whose method bodies are described as a sequentially
execufed command sequence whose components are called message-expres-
sions. Rendwzvous of cHFP as inter-process communication is note-
worthy on the following two viewpoints : One is that the evaluation of
attribute values engaged in rendezvous is not necessary to have been
completed at rendezvous time because cHFP rendezvous is only binding
between attribute instances, while values are transmitted as messages in
almost all message passing style inter-process communication scheme.
Another point 'is that there is no ‘syntactic distinction between sending
and receiving operation of rendezvous, that is rendezvous between a pair

of proceSses 1s carried oul symetrically.

3. Description ofv the cdmmunication protocol HDLC in cHFP

3.1 Communication protocol HDLC

W



187

HDLC[&g] is a communication protocol for data link control, and
has been developed by ISO in response to IBM’s SDLC protocol. HDLC
permits us to transmit arbitrary bit sequences with variable length in
point-to-point link or multi-point link network with high reliabililyv by
handling errors of physical layer. Also CCITT defines a subset of
HDLC in its recommendation x.251101 a5 the second laver (data link)
protocol. The actions of HDLC communication system are separated into
three stages : (1) initialization, (2) data exchange, and (3) closihg
session and releasing link. As for data exchange, three kinds of
communication mode is supported, which are independent to each other.

In this paper we show a part of the description of data exchange in

Normal Response Mode (NRM) Which is the most fundamental.

‘In NRM there are a priori specified one primary station and one or
more secondary stations. Although data transmision can be initiated
by any station, a primary station has a special role to watch the timer
in order to detect and handle time-out errors. X

Data and link control inforamtion are exchanged in the épecific
form called a frame. The frame consists of several fields. The
format of frames has one of information transfer format (I), supervisory
format (S), and unnumbered format (U). Fig.l shows each of them.

The command field in a frame specify the frame format and the function

of the frame.

Flag Flag

01111110 |AddresdControl | Information IFcs® | omnig

(a) Information transfer frame format.



188

Flag ; Flag .

01111110 JAddressiControl FCS(*) 01111110

(b) Supervisory and unnumbered frame format.
() FCS is a frame checking sequence.

Fig.l the HDLC frame format

The conirol field in a frame carries inforamtion expressed in the
following Pascal record data:

tvpe control = record pf ! boolean:

case flag . ISU ofk
I1: ( record s,r: 0.7, end);
S : (record cmd: Scommands; r : 0.7 end );
- U ¢ ( record cmd: Ucommands end )
end ‘
where the data s () is called a sendu(receive) sequence number,
indicating ‘its frame sequence number ( the expected value of s field of
a next I commandl ), and inspected to check out frame sequence error
(respectively).
In the range of this paper it is sufficient to indentifv only three

co/mma;nds : informatioan command (I), receive ready command (RR), and

receive not readyv command (RNR). [ command has I format, and its
function is tolytransfef across a data link sequentially numbered »frames
containing’ an information ﬁeld. RR and RNR commands have S format.
RR comménd is used to (1) indicate it is ready to receive an 1 command;
(2) acknowledge previously received I commands numbered up. RNR
command is used to indicate a busy condition: i.e., temporary inability
to accept additional incoming I commands. RR may be used to clear‘é

busy condition that was initiatéd by the {ransmission of RNR.

3.2 Representation of system status



185

A HDLC point-to-point communication syvstem is considered, which
includes a pair of stations ( a primary and secondary station ), users (
user,, and userg ) for each station. up and down communication lines (
liney, and lineqowy, )» and a timer which alarms timeout errors (imer).
it is modeled as a set of processes. To specify communication proce-
dures is to define how a pair of stations interact with other processes,
which constitute an environment of communication procedures by speci-

fving how the stations change its state and which frame it sends and

receives.
usery userg
Network layer
,,,,,,, -
| primary secondary
station station
Data link layer
'- -----------------------------
v
. line, , |+ X
. "4 ic \
timer . Physical layer
: “nedown
!

Fig.2 The communication system.

Since the computation of cHFP is defined as a sequence of exten-
sions of computation trees, roughly speaking, the state of each station
in represented by the attribute values on a certain module, say S, and a
new instance of the module is created when the state is changed. since
the attributes of cHFP can’t be substituted more than twice. Sub-
sidiary state such as error handling can be represented by iniroducing
other modules.

A set of atributes of the module S is { rdata. sdata, sedq, nextsnd,



150

nextrcv, ack, checkpoint, t-error, ready, busy_}; where rdata and sdata
are the buffers whose entries are accessed with sequencial number and
which contains data to be sent and received respectively; seg is the
send sequence number of data to be sent next: nextsnd is the send
sequence number of data to be sent next for the first time (not one sent

again for error recovery). nextrcv is the send sequence number of frame

to be received next: ack is the receive sequence number of another
station which has been already reported to this station; checkpoint is
the send sequence number of the frame sent most recently with PF-bit on:

t-error is true when timeout error is detected: readyv is true when a

frame with PF-bit on is received, i.e. when the PF-bit of a next issued
frame may be on, busy is true while no response to RNR command has been

received.

3.3 Representation of data exchange

Data exchange in a communication system, i.e. input and output
from/to communication line, in other word, interaction with downward
laver in layver protocol model, is repredented as rendezvous with the
processes represeniing physical layer. In the cHFP description, six
communication ports, which are refered by a pair of command name and
action, e.g: IS. RRI. and so, are introduced in order ito model sending
and receiving three kinds of commands, Fields in communication frames
are modeled as attributes on communication ports.

The communication ports and their atiributes which are intorduced

for the HDLC description are shown in the following .

Ig ID={ s, r, d, pf } 0l )=¢
RRo.RNRg : I(RRO=I(RNR)={ r, pf } = O(RRg)=O(RNR¢)=¢
I (=9 0oI)={ s, r, d. pf }



191

RRRNR, ¢ (RR)=0(RNR)=¢ O(RR)=IKRNRp)={ r, pf }
The values of data pf. s, r in the field controi of frames are
represented by the attributes which have a corresponding name. The
attribute d contains the data in the information field of I commands.
Though attribute value may not be evaluated at rendezvous time in
cHFP, they must be evaluable at rendezvous time if the implementation is

executable.

3.4 Description of procedures

All we have to do in order o describe the communicaton procedures
is to write down what frames are sent and received, and how stations
change their states when sending or receiveing frames. In cHFP we can
do this by giving the extension rules and specifyving the creation of
communication ports and modules and the definition of attribute values.

In the following as a fragment of the cHFP description of communica-
tion procedures we show the procedure executed when receiving and

sending 1 command.

([ receiving 1 command at the primary station 1]
Sg = I Sy if Sg.ack # Sj.ack then TIMER:reset fi
some-frame-rejected := l..pf and Sg.checkpoint # Ir.r and
order(Spy.checkpoint, I.r. Sg.ack);
validicommand = ( I..s = Sy.nextrcv ),
Si-seq = if -some-frame-rejected then I.r else Sj.seq:
Si-nextsnd = Sg.nexisnd:
Sp-ack = Il.rs
Si-nextrcev (= if validicommand then Sg.nextrcv + 1
else Sy.nextrev,
Si-checkpoint = if order(l,.r, Sy.checkpoint, Sg.ack)
‘then I.r else Sg.checkpoint,
Sl;ready ‘= S¢.ready or I.pf;

10



19%

Sl.rdata = if validlcommand then append(Sy.rdata,i,.d)
else Sy.rdata;
Si-t-error = Sg.t-error; Si-busy = Sg.busy;
syvnch I, ' |
order if Syp.ack # Sj.ack then [, << TIMERireset << S
else I, << 5; fi

In the above description, order(s,t,u) is a predicate {o become true
when t is greater or equal to s, t is less or equal to u and s is not
equal to u in modulo 8 numbering svstem.

The extension rule given above represents the behaviour of the

primary station receiving a I command ; it changes its state from Sp to

Spp and then reset a timer. Two local variables some-frame-rejected
and validlcommand are used in order to simplify the description, and
expressing that some frames are discarded in another station because of
detected error, and that another staion is iudged to be able to ‘receive
commands, respectively.‘ The detail of the state transition is speci-
fied by defining the attribute values bf S; in terms of those of‘SO.
That is. this stdtion gets data of the information field of the received’
frame, if its s field has same value as nextrcv. And it also know that
the other station had rejected or not received some frames which this

station sent before, and that they should be sent again, if some-frame-

rejected is evaluated irue.

In the above rule the description if Sp.ack#Sj.ack then TIMERreset
fi is a syvntax sugar meaning that an instance of the communication port
TIMER:reset is also created if and only if the specified condition

holds.

[[ sending I command from the primary station 1]
S = Ig if timer is not running then TIMER:start fi, Sl

11



195

Igs = Sp-seqs . Igr = So.nextrcv;
Ig-sdata = Sj.sdatal Sg.seq I
if Sp.ready then I .pf = true;
Sy-seq = Sp.seq + 1
Si-nextsnd = if Sp.seqa = Sg.nextsnd then Sj.seq

else Sg.nexisnd:
Si-nextrev = Sp.nextrev, Sj-ack = Sg.ack
Sl.checkpoint = if Ig.pf then Spy.seq else Sp.checkpoint:

Sl‘ready = So.zjeady and not Is.pf:

Sl.t-error = So.t-error; Sl.busy = SO.bus._V:
when Sj.sdatalSy.seql is available and Spseq + 1 # Spy.ack
order IS << SO

Above rule represents the behaviour of the primary station sending a
I command | if there is data to be sent and the number of da;ta which
this station has already sent and which haven’t been received by the
other station doesn’t exceed 8, it sends a I command, changes its state

from SO to SI’ and then start a timer if the timer has not been started. .

4. Discussion and conclusion

Methods of protocol specification may be classified into three main
categories ! state transition models, programming languages, and combi-
nations of the first itwo. Generally speaking, specification in a
state transition model is rather easy 1o analvze, while it is hard to
implement, and one in the other mode! is hard to analyvze, while it is
easy to implement.

Though our method described in this paper falls into the programming
language approach, it makes the situation better since it has featurers
of functional language. T. Katavama et. al.[m showed a verification
method of atiribute grammar on which our computation model cHFP is

based. T. Kasami et. al. showed an algebraic specification of HDLC

12



194

and verified some of its properties in [2]. = Our description resembles
to theirs very well, so it is expected that a correéponding verification
technique can be developed. '

L. H. Landkweber et. al.[12’13] works about protocol specification by
attribute grammar. Theyv regards communication events such as sending
and receiving frames as ter‘minal svmbols of the atiribute grammar, and
interpret statements generated by the attribute grarﬁmar as histories of
communication. We are working on bridging between our approach and

theirs.

[ References ]

{11 S. S. Lam and A. U. Shankar . “Protocol Verification via Pro.jec
tions”, IEEE Transactions on Software Engineering, Vol.SE-10,
No.4 (1984) .

[2] T. Higashino, M. Mori, Y. Sugivama, K. Taniguchi and T. Kasami
“An Algebraic Specification of HDLC Procedures and Its Verifica-
‘tion”, IEEE Transactions on Software Engineering, Vol.SE-10, No.§
(1984) o |

(3] T. Miyachi, T. Katavama . “On the capability of hierarchical func-
tional computation model”, Japan Society for Software Science and
Technology, 1st Conference. [in Japanese]l  (1984)

[4] T. Miyvachi, T. Katayama ' “concurrent HFP @ a functional computa-
tional model for parallel processing”, Tokyvo Inst.of Tech.
Dept.of Computer Science T.R. CS84-TMO03. (Oct.1988) s
Japanese version is on Transacton of Information Processing Society
of Japan Vol.27, No.l, (1986) |

[5] T. Katayvama . “A Hierarchical and Functional Programming Based
on Attribute Grammar”, 5th Int. Conf. on Software Engineerimgr
(1981) . A

(61 K. P. Arvind and W. P. Gostelow : The (prelimianry) Id Reporti : An

- Asynchronous Programming Language and Computing Machine, Tech.Rep.
114, Dept. of Comp. Sci., Univ. of California, Irvine, (1978)
[7] E. Y. Shapiro : A subset of Concurrent Prolog and Its Interpreter,

13



195

ICOT Tech. Rep. TR-003, (1982)

[8] ISO : “Data Communication - High Level Data Link Control Proce-
dures -- Frame Structure”, International Standard ISO 3309, (1979)

[gl ISO : “Data Communication -- High Level Data Link Control Proce-
dures -- Elements of Procedures”, International Standard ISO
4335-1979(E), (1979)

[10] CCITT : CCITT Recommendation Interface between Data Terminal
Equipment and Data Circuit Terminating Eaguipment for Terminals
Operatinf in the Packet Mode on Public Data Networks, Fascicle
VIIL.2 - Rec. X.25, (1980)

(1] T. Katayvama and Y. Hoshino : “Verification of Attribute
Grammars”, Proc. 8h ACM Symp. of Principles of Programming
Languages (198D '

{121 D. P. Anderson and L. H. Landweber @ “A Grammar Based Methodology
for Protocol Specification and Implementation”, Univ. of Wisconsin,
Computer Science Dept. Tech. Rep.” 608 (1985

(13] D. P. Anderson : “A Grammar Based Methodology for Protocol Speci-
fication and Implementation”, Univ. of Wisconsin, Computer Science
Dept. Tech. Rep.” 612 (1985)

14



