goooboooogn
O 5890 1986 U 58—7858

ON A QUESTION ARISING FROM COMPLEX MULTIPLICATION THEORY
by Greg W. Anderson

§0. Introduction

An’abélian vériety A defined over G;>equipped with complex
multiplication and level structure, is described up to
isomorphism by some invariants that are "analytic" in nature.
(The details of thié deécription are feviewed in §1.) Let s
be an arbitréry automorphism of C. ‘Taté conjectured [8] and
Deligne proved [1] a formula for the analytic invariants of AS,
the conjugate of A under s, in terms pf classfield theory.
(See also Lang [4], in which summaries of the contents of [1,8]
can be fdﬁnd;)' Tate'é'formula’génefalizes‘the classicall
reciprocity law of Shimura-Taniyama [6,7] to the case in which
s does not necessarily fix the CM type of A. (Tate's formula -
is reviewed in §1.)

Now figuring prominently in Tate's formula is a certain
cocycle. The task we set for ourselves in this paper is to
abstract the construction of the cocycle figuring in Tate's
formula making possible the‘subsequEnt specialization of that
construction to the function field case. This task is éarried
out in §Z.

The ebonymoué questioﬁ of the paper is not the question
answered by the investigation of §Z, but rather the question
raised by it: What interpretation can be given to the new
cocycle Wﬁich-we have constructed. in the functioh’field case?

This is an open problem; the author expects the solution



to be found in an as-of-yet-undeveloped theory of higher-
dimensional Drinfeld modules with complex multiplication

in which, in particular, an analogue of Tate's formula is valid.
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§1. The Basic Problem of Complex Multiplication’Theory

1.0. Notation: We denote by Q the algebraic closure of @ in C.

Complex conjugation is denoted by /P. Byvthe term numberfield,
we understand an extension of @ of finite'deg;ee embedded in €.
Given a numberfield K, let

rK:(idéle group of K)‘——f9Gal(Kab/K)'
denote the reciprocity lLaw of classfield théory, where Kab denotes
the maximal abelian extension of K in E. Let ﬁidenote the
profinite completion of Z, and let /?’:Gal(ﬁ/(ﬂi)—""&x denote

the cyclotomic character. - Let KabS

of Kab in which every archimedean place of K splits completely,

denote the largest subfield

and let
— A X :
Tt (KOZ) ——> Gal(K2P9/K)
denote the unique homomorphism rendering - the diagram

r

(idele group of K) K > Gal(Kab/K)
forget components S , oL .
at o Ka s
NI}/ — > Gal(K2PS/x)
Tk

commutative. Note that, in partiéular,

2.
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?Q(X(o)) = the restriction of & to Qabs'.

1.1. Let K Bé a CM numﬁerfield, i. e. a nuﬁberfield K such that
for ail x € K and 06Ga1(a/m); - | |
TPX = poX € oKli,é R.

Let & <Hom(K,T) be a CM type, i. e. a subset @ such that

FNF-0. BU- .
Let é? denote the ring of integers»of‘K, and Hl(A) the first
singular homology group of the complex manifold underlying A.
A homomorphism 9:(9%———?Endm(A) relative to which Hl(A)

becomes a rank one projective (s%—module is termed (a structure’

of) complex multiplication by C9k. The complex multiplication
¢ is said to be of tyge.jﬁ if
where for each ™€ Hom(K,Ej, »

- Lie(A) dgf {ve Lie(A)l Vxécak, g(x)*v = T(x)v%..

An continuous parameterization of an abelian variety A defined

over € endowed with complex multiplication (gby C}k

definition an GQ—equivariant isomorphism of real Lie groups

is by

A:(oL® R)/oL"HA(L)
where Ol is a suitably chosen fractional ideal of ng.
1.2. Let K be a CM numberfield; Let A be an:abelian variety
defined over € endowed with complex multiplication G‘by C?K of
type é?. Let s be an automorphism of C. Let &eGal(a/Q) denote
the restrictién of s tdia. Let s 8 denate the composition of 7,

with the "transport of structure" isomorphism Endm(A)fQi+End¢(SA),

where sA denotes the conjugate of A relative to s.
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Then S8A is endowed with complex multiplication s@ of type sj?.
Select continuous parameterizations ):(cLelR)/OL—é%A(E) and
/M—:(,Q?@)IR)//QD—'E’SA((E). Let A and sA denote the torsion

tor tor ‘
subgroups of A(L) and sA(E), respectively. Then there exists

A .
unique g € (K®Z)x rendering the diagram

A
~
K/ot ——> A ___
X b—=gx l : l ar-sa
/4;

K/ 4 ———sA
tor

commutative. It can be shown without great difficulty that

X A X ' : o
modulo K"<(K®Z) , g depends only upon K, é and o. Set

ge(o B) &0 oK ¢ (x@ 2Y /K",

One of the most basic problems of complex multiplication
theory is the determination of gK(o,ﬁr). "The reciprocity

law of Shimura-Taniyama [6,7] is, in effect, a formula for
gK(c,gf) in the case s§§ =~é§. Tate cbnjectured [¢] a
formula.in the general case more or less equivalent to the
"O—dimeﬁsional case" of Langlands' conjecture [§] on the
conjugation of Shimura varieties. Both Tate's conjectural
formula and O-dimensional Langlands' conjecture were later
proven by Deligne [1,2]. The remainder of §1 is devoted to

a presentation of Tate's formula. | |

1.3. The cocycle g,(?,?) constructed in the preceding paragraph
satisfies many fﬁnctional equations. We note here several_of'

the most important functional equations. Let K be a CM field,

Y



D)
~

é;a CM type of K, and o, 7 elements of Gal(Q/Q). Let L be
a CM numberfield containing K, and let,? be the unique CM type.

of L such that
¢ -3t

Then the following relations hold:

¢ Hom(K,T) l te L,
K

gy (0,78 g (7, §) = gelor, P). (1.3.1)
(’r’®1)gK(0‘,§) = g,rK(a,é“r‘l). o '(1.3.2)
gx (6,2 )gy(@p$) = Y (o) mod K. (1.3.3)
gL(o,f)z gK(oi,f) mod L”. (1.3.4)

Of these relations, only (1.3.3) is not a purely formal
consequence of the definition. In order to prove (1.3.3) one
considers polarizations. (See Tate [ 8] or Lang [ 4 ].)
1.4. Deligne uncovered a much deeper functional equation
for g?(?,?) , a consequence of his theory of absolute Hodge cycles
on abelian varieties [2]. Let K be a CM field. Given'a CM type
5? of K, one attaches the characteristic function

1 if ol e

k bdef K —>
é € o —> ):Gal(Q/Q) 0,1¢%.
[#] ( 0 if 0‘1K¢§§ { %

—

Deligne observed [1 ] that given CM types @l,..{,@n and

m.,...,m_ €Z such that
n

2.n (&0 =0,

1

one has
m.

) l gK(G’ “C?l) + 1 mod KX (1.4.1)

for all o€Gal(Q/qQ).

I

-
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1.5. We consider Tate's half-transfer constructioﬁ.' Let K be

a CM numberfield. Fof each embedding r:K— 0, select a lifting
w*_GGal(E/Q) subject to the constraint

=pwW,. . - © (1.5.1)

wf’,V
Then, according to Tate [§&], for each ¢€Ga1(5/m) and CM type

55 of K,xtheré'exists'unique FK(m,jg)e Gal(Kab/K) such that
olef o , '
F oo, @) = [ (w 10~w,) mod G(Kab),
K red o e .

independent of the choice of a lifting w,_ € Gal(Q/Q) for
each embedding"P:K——éﬁ subject to condition (1.5.1) and the
choice of an ordering of the product.,(A‘proof of this indépén—
dence in a more general,confe#t will be given in-.§2%) Tate"
termed this construction thé half—transfef becausé

(e PIF (0 pB) = Very (o), (1.5.2)

:Gal(mab/m)‘“9Ga1tKab/K) denotes the traﬁsfer

where Ve?K/Q

homomorphism. Tate went on to show that there exists unique

A
fK(O‘,_@—)G K*/X" such that

(po V(@B E(28) = J(e)  mod K, (1.5.3)
| T (£ (o, E)) = Fe(o, &), (1.5.4)
(A proof of this‘uniqueness result in a more general context
will be éiven in §2.) Since gK(U;j5) poésesses property
(1.5.3) and, in the case cf-F , possesses (1.5.4) by
Shimura-Taniyama reciprocity, Tate was inspired to conjecture [¢]
fK(@,AK) = gK(Gng). (1.5.5)

According to-Deligne [1], (1.5.5) is the consequence of

(1.3.1,2,3,4), (1.4.1) and Shimura-Taniyama reciprocity.
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1.6. In order to complete the task of motivating the abstract

cocycle construction of §2, we prove the following

Proposition. Let f:Gal(E/Q)—*?ZZbe a locally constant function.
The following two conditions are equivalent:
(1) The function’f’is an integral linear combination
of functionS‘of the form [5§]K, K an arbitrary CM fieldﬁ
and & an arbitrary CM type of K.
(I1) For all o, € Gal(@/0),

f(ﬁpvﬁ + f(o1) = f(ﬁ) + f£(1).

Proof. The implication (I) = (II) is‘obvious. We turn to thé

proof of (II) = (I). For all ¢y+’€Gal(5/m),

£(o(rpr o)) = £(p) + £(1) - flop) = £(o).
Therefore,_for a suitéﬁie CM numberfield K galois over @, the
function f factors through Cal(K/Q), Select a CM type j? of K
arbitrarily and identify é? with a subset of Gal(K/Q)hin the
evident fashion. Set

dgf

w

f(/o) + £(1).
Replacing f by féw[f]K, we may assume that w=0. For each

’I“fé-, set

/'.J

o def 7[‘§]K _ [(§'U;/o7uf)~§7°§]l(.
Then k |

f=2_ftg.. |
_ e P LN

N



§2. The Abstract Cocycle Construction

2.0. Notation: Let k be a global field and 1et o be a place of .
k. We assume that, in case éhar(k) = 0, the place o is the
unique archimedean place of k. Let k., ~denote the completion of
k at e, kz a fixed separable algebraic closure of k , and kS
the separable algebraic‘closure of k in k° . 'Note‘thét k® is a
separable algébraic closure of k. Let us agree to restrictythe

use of the term global field henceforth to the designation of

subfields of k° containing k and of finite degree over k. Set

dgf dgf

G Gal(kS/k), D Gal(k3 /k_),

identifying D with a closed subgroup of G in the evident fashion.
Given any subfield K of kS contaiﬁing k, we write

dgf

G(K) Gal(k®/K) =G.

Given a global field K and aJplace v of K, we say that v is

infinite if v lies above oo, and finite 6thérwise. We write
Kab dgf

Kabs def

the maximal abelian extension of K in ks,
the largest subfield of Kab in which every
infinite place of K splits completely.
Set - ‘
a%8f fxe k| |x|, 21 for all finite v,
h def lim A/ot,
where the inverse limit is extended over éll nonzero ideals
o1 of A. Given a\glébéi field K, we Writé

~ def

A
K K®A.

A
We denote by

tp:(iddle group of K) —>Gal(k®P/k)

¥
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the reciprocity law homomorphism of global classfield’theory,

and define

K-K > Gal(k2PS/x)
to be the unique homomorphism rendering the diagram

r

: KR ‘
(idele group of K) -————~———>Gal(Kab/K)
forget components ‘ e ol abs
at oo i ' : : gabs.
A . .
K™ — > Gal(k2PS/x)

a]
~

commutative.
2.1, ‘Let X denote,the set of locally constant functions

_@- G—>Z such that for all o ’IJ€G

/J(cr/wdf /ﬁ(pdj»

def "
qp =" normalized Haar measure on D.

where

Given o €G and j;éX, we define ,Gﬁng and BoeX by the rules
def" -1  def -1
@ () € BTy, Eo(m & FreTH.

For each global field K, set

x(x) def ?ﬁex o*eG(K), Qo— -3 ¢.

Lemma. Let K be a global field, B an abelian group (written
‘additively) and f:6—>B a function factoring through the double

coset space D\G/G(K) Then for all jfé‘X(K), the function

0\'—-}2 f(m*).@(r) G—B

TE€G/G(K)

is constant.
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Proof. We may assume without loss of generality that B = Z
and that f is the characteristic function of a subset S of G

such that DSG(K) = S. Set

dy dgf normalized Haar measure on G.

[G:G(K)] ™} Z £ (@) B(r) =1f(«~s’)§mdx

T€G/G(K)-

=A(A f(/a‘1¢g)df>§(w()dy= [f(f)({f(@"}bdp) ﬁY
([ro)fepy)-

2.2 For.each‘global field K,?let W(K) deﬂotekfheﬁset of

Then

functions w:G—>G such that w factors thrdughﬁG/G(K)‘and'such
that for all GéG and ?%D,

w(s) e oG(K), wira)w(e) LeD.
‘Given any 7€G(K), let Tk &enbte the image of 7 in Gal(Kabs/K)
under restriétibn.

Lemma/Definition. - There exists for all global fields K,

o€ G, and Z¢X(K) a unique element,FK(w,sg) of Gal(KabS/K)
such that for all weé W(X),

B(7)
@ @) = T [ wenTewrmy

Y€G/G(K)

Proof. Proyisionally,.let us denote the product on the right

by FK(¢,§§,W)., At issue is the dependence of FK(GQQ?,W) upon w,

/0
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Given also w'€ W(K), we have

-1 -1 B)
FK(¢,§,W')FK(0‘,§,W) = ] [ (h(e?) “h(r)) T

~€G/G(K)

abs/K) is given by the rule

where h:G—>Gal(X

def

h(ey 985 (v (o)w(e™?

-
Now the function h factors through the double coset space D\G/G(K)

by the lemma of 2.1,

FK(G’§_vW) = FK(G‘:.@‘aW')° I]

Theorem/Definition. There exists one and only one way to assign

to each triple (K,CT,i) consistihg of a global field K, ¢ €G,
and QCX(K) an element fK(O‘,f)ofﬁx/K* such that for all
global fields L =2 K, 2, é'e X(K), o,7€ G, the following

relations hold:

(I) £ (o, P (7, B) = £, (67 D).
(1) (T @ (e, ) = (s, 3771,
A
(I11) fe(e, @) =f, (¢, &) mod L*,
(V) (e, @) Ep(e, B = £ (e, F+ B
(V) rg(fg (e, 8)) = Fr (o, @),

The proof is deferred, pending some discussion of the theorem

and the proofs of some lemmas.

S S
] ’k ) =

2.3. Let us consider the theorem in the case (k,k
(Q,C,0). Then for all ¢€Gal(Q/Q), CM numberfields K and
CM types @ of K, the value of the symbol fKﬂrhﬁ) defined in §1,

following Tate, coincides with the value of the symbol

fK(T,[§5]K) as defined by the theorem above.

s/
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2.4. Next, let us consider the theorem in the case that the
characteristic of k is»nonéero. Then fhe cocycle f?(?,?)

does not figure in a réciprocit& law.analogoﬁs to (1;5.5), as
far as the author knows. But iﬁspired by Drinfeld's paper [3],
we pose the eponymous question of the paper: Does there exist
a theory of higher-dimensional Drinfeld modules with compléx

multiplication in which a cocycle g,(?,?) can be defined without

the use of classfield theory, such that a significant reciprbcity
law of the form "f=g" is valid? The author is convinced thét
this is indeed possible; a few steps toward this goal were ﬁaken
in the author's paper [ ].

2.5. Let K be a global field and let U(K) denote the set'of
nonzero elements u of K such that for allnfiﬁite places v of K,
[u\v =1, For each finite set S of finite places of K and

0<€<1l, let U(K;S,¢) denote the.set of eleménts'u:of U(K) such
that for all places v of S, ‘lu-.-l\\V < E.

Lemma 2.5.1. For all positive integers n and global fields K,

there exists a finite set S of finite places of K and 0<&1
such that U(K)" 2 U(X;S,€).

Proof. This is due to Chevalley, but the author cannot find a
suitable referenée;‘therefore‘the following sketch of a proof
is offered. We may assume:at.the outset that n is a power of
'a prime number p. We then distinguish four cases: -

(1) P = char(Kj = n,

(1I1D) p = char(X) < n.
(I11) p # char(K) and K 2/¢n(k_s).
(1IV) p #

cHar(K) and K galuh(ks).

/2
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In case (I), we consider the Spéce V(K) consisting differentials

of the form %% , U an arbitrary eiemént of‘U(K); The:sequehceA

u}—é-(i-11

1 U(K)P— u(x) 2 SV(K)—>0

is well knoWn to be exact. Therefore, in order to insure that
U(K)p contain U(K;S,€), it is neceSsary only that S be large
enough so that any'differéntial «’' belonging to V(K) such that

‘e vanishes at v for all ve S vanishes identically. In case (II)

note that '

U™ 2 U(K;S,e) = UK)"P 2 U(x;s,eP).
Thus case (II) is disposed of by an induction the base step of”
which is case (I). In case (111), one considers the finite
Kummer extension L of K in k° obtained by adjoining every nEE
root of efefy element of U(K) to K. One insures that U(K)"
coﬁtaiﬁ U(K;S;E) by takingﬂS to be any finite set of finite -
places of K unramified in L such that

| {(V,L/K)'ecal(L/K)l vest
genefates Gal(ﬂ/K), where (v,L/K) is the Artin symbol., Finally
in case (IV), it is enough, in view of case (III), to prove
that the index

1 def

. [UK DTN UK :U(R)"]

is bounded, where Kn denotes the field obtained by adjéining the

n-t-E roots of unity in k° to K. Now thewmap



71

G
wr Va0 K DTNUE) = (UKD Jpe, (1)) 7
is an isomorphism, where | '
c, et car(x_/x). |
Thus by considering the long exact sequenoe in ancohomologj
for the short exact sequence |
l—é/an(Kn')—%U(Knj%U(Kn)/:/an(Kn)———>1,
one arrives at the estimate o -
| I < #H(G, (K)).
The quantlty on”the rlght is e3511y shown to be bounded for n
ranging over the powers of the‘prlme p. ﬂ
Given e global rield‘K, let <§§ denote the ring of eiements of K
regular at all finite places of K. and let ﬁ(K) denore the
closure of the group U(K) in the profinite group (C%(QQA)
By Lemma 2.5.1, U(K) is prec1sely the prof1n1te completlon ofr
U(K). For any global field K galois over k, and left G—module
M, let HomG(X(KJ,M) denote the group of homomorphisme f;X(K)——%M
of abelian groups such that for all 0¢G and _?GX(K), |
£(Foh = cE(B).

Lemma 2.5.2. For all global fields K galois over k, the

A
homomorphism HomG(X(K),KX/KX)—----)HomG(X(K),Gal(KabS

/K)) induced
by ?K is an isomorphism., |

Proof. The sequence of Gal(K/k)-modules

A a3 x rK | ebs
1—U(K)/U(K)— K /K ————>Gal(K

/K)—1
is exact. It therefore suffices to prove ‘the followiug two

Statements:
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ﬁ(K)/U(K)-is an injective‘Gal(K/k)fmodule. (2.5.3)
HomG(X(K),ﬁ(K)/U(K)) = 0. o (2.5.4)
Now &/Z is infinitely and uniqugly divisible,lli. e. ba vecfér
space over Q, The statement (2.5.3) now fdllows from the
obserfation that there exists a Gél(K)k)—équivariéﬁt isomqrphism
0(R) /U= U(K) &(2/Z),
and, further, (2.5.4)vnow reduces to |
Homg (X(K),U(K) ®Q) = 0. C (2.5.5)
Let |?| denote v v“anFeXtensioh to ki, of the absolute

value 2?1 of k,. Then for all u €U(K) such that there exists

P
FeX(K) and f€ Homg (X(K),U(K) @) such that £(&) = udly, and
fér all G‘GG; | | o : | |

, 1og]0ui = J{flog unl@p =vlogfuf, | | » (2.5.6)‘
by'appeal‘tovthe definition of X. But (2.5.6) impiies that u

is a root of unity, hence u®1m = 0. This establishes (2.5.5)

and completes the proof of the lemma. 0

Lemma 2.5.7. For all global fields L 2K, where L is galois

over K, the sequence

A A .
1K™ — Kx"“)(LK/L)“)Gal(L/K) —1

is exact.
Proof. Hilbert's Theorem 90. |
2.6. For each pair L 2 K of global fields, let »

Ver. ,,:Gal(K2P/K)—>Ga1(L2P/1)

L/K

denote the transfer homomorphism. Let

VersL/K:Gal(KabS/K)~—9Ga1(LabS/L)

denote the unique continuous homomorphism rendering the diagram

as



ab restriction abs ..
Gal(K®"/K) > Gal(X /K)
VerL/K VersL/K
Gal(L2P/L) > Gal(L2P%/L)
restriction

commutative; in order that VersL/K exist, it is necessary and

sufficient that

VerL/K(Gal(Kab/KabS)) < 6a1(L2P/L2PS), (2.6.2)

Now (2.6.2) follows from the well known fact that the diagram

- r . .
(idele group of K) ———E———a'Gal(Kab/K)

inclusion VerL/K (2.6.3)

(idéle group of L)———Gal(L2P/L)
' r
L
commutes. In turn, the commutativity of (2.6.1) and (2.6.3)

implies that the diagram

|

Pal
g K 5Gal(K2PS/%)
inclusion VersL/K . (2.6.4)
A
L - > Gal(L2PS/L)
v T

commutes.

/é
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Proposition. For all global fields L 2K, &, &'e€ X(K) and

c,T€G, the following relations hold:

(1) F (o, ") (7, &) = Fr(or, &).

(I1) rF (e, 8L < B (o, &L,

(II1) FL(c*,é) = VersL/K(FK(O‘,_ér)).
(1V) Fe(o, 8)F (o, &') = Fy(o, +2').

Proof. The proofs of (I), (II), and (IV) are not particularly
difficult, and so we omit them. The proof of (III) is not
particularly easy; we gi?e full details., Select w¢W(L) and

€ W(K) arbitrarily. Set
def
Vv =

v

0

wev ..

0
Note that

wev = v € W(K). (2.6.5)

We define a function u:G—>G(K) by the formula

u(y) 98t v(ew)7!

Given ¥e¢G(K) and &€G(L), we denote by 3% and 6L the

images of ¥ and S, respectively, in Gal(KabS/K) and Gal(LabS/L),

cv(Y).

respectively. For each ¥€ G, we define a function h_:G(K) —G(K)

¥
by the rule
hy(8) 185 v (v (D8,
For each $¢G(K), we define a function p%:G——?Gal(LabS/L) by
the formula
def -1

Ps(x) = (b (&) h{(S))L.
By definition _%(Y)

Fe(on &) = T T u¥)y (2.6.6)

¥<G/G(K)

17



For each Y¢G, h, factors through G(K)/G(L) and has the property
that for all $8€G(X), ' |
hx(S)é‘SG(L). (2.6.7)
Consequently, by definition, for all YeG,
Vers, (u(D) = T [ (hya& lutnh ().
| S$€G(K)/G(L)

(2.6.8)

For all ¥YeG and §€¢G(XK), one verifies by direct calculation

that
Pacyys (T Py (yys (D (N T u(DhE))]
= (w(@v(X)S)_16~w(v({)g))L, » \ (2.6.9)

By definition,

| P(¥)
Fe,@) = T 1 T T GleviN o]

¥eG/G(K) $G(K)/G(L)
(2.6.10)

We claim that for all §eG(K), the function‘ps factors through
the double coset space D\G/G(K). To verify the claim, let Y¥eG,
pED, and T€G(K) be selected arbitrarily. Then

Pe(P¥™p (N1 = (o (97 1hy(8)))

(v (¥™) 9TV (v (D)),
(wpﬂ(QSYFPWpMKﬁ)%J=(ww(ﬂéfﬁgfﬂCN*%>k

‘1 eGal(L3P%/1),

[

where fﬁ"PZ €D are given by the formulas

1

P 2 vy,

£ S v (DS (p v DT

2%



76

By (2.6.8,9,10) and the lemma of 2.1,
-1
VersL/K(FK(O‘s f)) FL(09 é) :

' )

¥eG/G(K) \ SeG(K)/G(L)

I ¢
(pg(a¥) " o (1) )

)

YéG/G(K)(SGG(K)/G(L)

(b (V) p (1))
$€G(X)/G(L)H\¥<G/G(X)

1. 1

2.7. Proof of the theorem. We claim that there exists a unique

way to assign to each global field L galois over k, <¢G, and
@eX(L) an element ’va(o-,E) of iX/L" such that for all O,™€G

and _@_, [ € X(L),

(*® DE (= Z) - £ (0, @r™), (2.7.1)
F ()i (e ') = f(nd+8"), (2.7.2)
r(f (e, 8)) = F (e, E). (2.7.3)

The claim is established by an appeal to Lemma 2.5.2 and to
the proposition of ﬂ2;6. We claim also that for all global

fields M 2 L, both M and L galois over k, o€G, and HeX(L),

B (&)= T (e, &) mod M. (2.7.4)
This claim follows from the definitions, Lemma 2.5.2, Lemma
2.5.7, and (III) of the proposition of §2.6. By Lemma 2.5.2,
and (II) of the proposition of 2.6, for all global fields L

galois over k, o,7™€G and $¢X(L),

2



,va.(r.@’?@)gLﬁ(”.’ E).: ;L(""?’,:é).,’ . _. (2'...7'5) _

By Lemma 2.5.7, and relation (2.7.4) there exists unique.

fK(G,é:)€TEX/Kx such that for all global fields L 2K, with

L galois over k, | ‘ v

f (0, &) = (o F) mod L.  (2.7.6)

.By Lemma 2.5.7, (III) of the proposition of HZ.Q, énd (2.7.3),

fK(f,gf) possesses property (V) of the statement offthé fHeofem.

The reméining properties of fK(G)jg) are‘deduced via Lemmq12.5T7

from (2.7.1,2,3,5). This settles the existence of fK(¢,§§j.

Relation (2.7.6) affirms the uniqueness of fK(a,ég). ]
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