gbooooooogn
0 5890 1986 0 79-92

79

On some properties of the universal

power series for Jacobi sums

Yasutaka Thara ({3 /& %) k-3 *

In our previous work [PGC], we associated to each element

P of Gal(0/Q) an @-adic power series ?P(u,v) in two variables

and studied its connection with Jacobi sums, Coleman power series

etc., as a first step in the study of the Galoié representation
in Aut')'(i’rc—Q (Pl\{o,l,&ﬂ). In this paper, we shall prove some
symmetricity properties of the power series ?} (for stal(a/Q(FE»)D,

in particular, GSg-svmmetricitv of the amalgamated product

E(0,V)E (!, v) & z,[u,v,at vt /0(L+u)(1+v)(14u')( 14v") -1].

This is based on the corresponding 65;—symmetricity of Jacobi sums
on 4 parameters a,b,a',b'e(Z/g") with a+b+a'+b'=0 (n21);cf.
Theorem Al below. As a consequen;e,‘we conciudé that, although
there are m+l. coefficients of %Ju,v) in degree m, they are “esseh_

tially the same" for each m (Theorem‘Az).

This study was motivated by a recént'communication with
P.Deligné, who eﬁplained me his idea to use amalgamation of two
- copies of 'Ki(g%\{o,l,OO}) along 1tl(Sl)‘(iﬁ the contéxt of algebraic
geometry) to obtain a similar type of restriction to the Galois
_image in Aut'Kgro-g(Pl\{O,l,M&).*) In the present situation,
it is carried out by érithmetical means.

LY

.The author learned that G.Anderson has also obtained various

results on F

e including similar symmetricity, by a different method.

*) The author wishes to thank P.Deligne for this valuable communication.
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We shall present our maln results 1n §l and their proofs

in §2. In é3, we dlscuss some open auestlons related to the

image of ¢ = F  (mod ).

1l The main statements

Let Q be a flxed ratlonal prlme, ZR ‘be the rlng of Q—adlc
lntegers, and /4 be the commutatlve Z —algebra of formal power

series:
w . A =g e =z [e,v,w]/ LA (L) (L4w) <11

equipped with the Krull topology. An element of ,A: will be
denoted by F ="E'\(u v), and also as F(u,v,w) (a representative
modulo the 1deal [(l+qu+le+w) l]) Let GQ= Gal(Q/Q) be the
absolute Ga101s group over Q, 7( G-—% Z be the Q—cyclotomic
character describing the action of GQ on the group )lx of Q-power

roots of unity. in Q, and. let GQ act on/4. via
7 :"1+u‘—>(1+u)7(“°’-’, 1+v9(1+v)x"9')‘, 1+w‘—>(l+w)x(f)

€9 EGQ)- In. [PGC], we constructed a continuous. l-cocycle
2 o> AT (g .

It is uuramified outside 4 , and is "universal" for Jacobi sums
on 3 oarameters ,a;b,c e(z/in) with a+b+c=0. :This:l—cocycle
depeuds_on the choice of ar"coordinate system ) " related to
Ttpro—l 1 .H‘ ; “]f ; : T b‘ , P ‘“ ,

(p \{O,l,&ﬁ) (loc.cit I§2), but its restriction to G

1 Q(rix)
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= Gal (‘Q_/Q()lim) ), which is a continuous homomorphism
, ‘ g
(3) SQ(p — 1+avwA < A,
§'A
depends only on the choice of a basis (g’n)n>,l of TQ(Gm) = l%_m }L_Ln

(which is subject to Ll ).

For each F = F(u,v),éA , define F * F to be the element of

(4) A*A = 2, T, v,u',v' ] /(1+a)(1+v) (L+u " ) (14v') 1]
represented by the product F(u,v)F(u',v'). (This algebra A*A
is a sort of "completed amalgamated free product ,4 ® A A

z twl

)
but we denote it simply as A *A , for brevity of notations.)

The first formulation of oui: theorem is as follows.

Theorem Al' Let ?eG Then FP € A is symmetric

Q( Hioo)

in u,v,w, and Fj’* E} e A*A is symmetric in wu;v,u’',v'.

We shall show that these symmetricities w.r.t. 6'3, and 64
follow from corresponding symmetricitieé of Jacobi sums (§2) . The
first symmetricity also allows a direct proof based on the definition

of F As for the second, the author learned that :G.Anderson

) -
recently obtained it independently by a totally different method.

Further éymmetrici.ties of Jacobi sums (GJr+l-5ymnetriCity of the
Jacobi sum on r+l1 parameters agr--erd g (z/gR) for r >4 )do

"not give any more new functional equations for F_.

To state the second formulation of the theorem, change



.varibles as

(4) l+u=exp U, l+v=exp V, l+w=exp W (U+V+W=0) .
Then
| Theorem A2 Let 1 e-GQ(FQm). Then Ff has an expansion
of the form | '
S ' (f)
(5) F(u,v,w) = exp > P — (U
b m23 ms :
odd

with Bm(f) € ;1 (m23, odd).

This is in accordance with the results of [PGC] IV (Theorem 10
and its Corollary). Combining this with a formula of Deligne[D]
(cf. also [PGC] 1IV) which, in our terminology, determihes the
coefficients of UM v and OV % in log %J (at least for m<Q),

we conclude that

(6) B () = @-H (p)

for m?>3,0dd (and at least for m< Q). Here, 'Xm is a Kummer
 character w.r.t. some system of circular ¢ —units of Q(}&Q)([PGC] Iv).
From this follows in particular that the Vandiver conjecture for
Q ("the class number of Q(cos %;) is not divisible by Q") is
valid if and only if @m.: GQ( °°)—5-22- is surjective for all

m=3,5..., §-23(%>3),



2 Proofs.
Proof of Theorem A,. Let (gn)nﬂ. be the basis of Tﬁ(Gm)
which determines the homomorphism (3) of §l. (Each Q"n is a primi-
. 9 ‘__ “ '
tive element of }Jin , and gn-i-l = §n (n71).) For each n>1, denote

by I‘n the set of all ordered triples (a,b,c) such that a,b,c &
(Z//q_f".) ~ (0), a+b+c£=0, and such that at least one of a,b,c belongs
to (Z/zﬂ')x. For F = F(u,v,w) GA and (a,b,c) € ‘t‘n (nZl) ,the
special vaiue | | “

(1) Fg2-1, 52-1, g S-1

is well-defined, because a+b+c=0 (and the series obviously converge:
We shall first prove the following two statements (I), (II) for

any e e G "and nZzl:

(1) F,(e2-1,52-1,2°-1), for (a,b,c)el , is symmetric in

a,b,c.
(II) Let a, a', b, b'¢ (Z/Qn) be such that

a+a'+b+Db' =0,
b, b £ 0 (mod L),

a, a' =0 (md £), but a , a' # 0;

(hence necessarily n2 2). Then

a ., b ,a's wb'ol a', b a ., .b',.
(2) F(Sa-1 SpmDEER-LS ) = BA-1, C-DE(SI-1,S 10

In fact, for each fixed ny 1, we shall prove the statements

of (I)(II) for all P < GQ(Pgn) (resp. when (= 2).

G

+
| ‘ Q(}lin 1)
By continuity, it suffices to prove them when [ is a Frobenius

element of a prime divisor E of Q(}J/Qn) such that })*ﬂ, But
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a b c .
for such ? , %jcn—l,§n—l,§n—l) ((a,b,c)e;tn) is, by Theqrem 7 of

[PGC]II§6, the Jacobi sum:

_.a . b . cc _ la b
(3) ij{n-l,En—l,gn—l) = ixf?;E’ X (%) Xh(y)
x+y+l= =09
=‘ _;::ILT 2 X (X)ax x cl
g X,y,2 € F%
x+y+z=0

where g = N(§), Fq is the finite field Z[§h]<r , and'Xn:F;42Pf1

is the Teichmuller character determined by

g-1
X (x)= x % (mod p) (x e F.)
0 x‘:; X | mod p X c g
Note that 'Xn(—l)=l, because when (= 2, we assumed § ¢ GQ(}§P+1)
and hence g=1 (mod 2n+l . Since the right side of (3) is symmetric
in a,b,c, (I) follows.

Now, to prove (II) when P is a Frobeniﬁs element of‘y, let
a,b,a',b' be as in (II). Then all the 4 triples
(a,b,-a-b),(a',b’',-a'-b"),(a',b,-a'-b),(a,b',-a~-b")
belong to jin, becauée a+b,a'+b',a'+b,a+b'%ao (mod @); hence in

particular # 0. Therefore, the formula

o
(a) B(L -1 5,1 = - > X ok o

is valid for («,0)=(a,b),(a',b'),(a',b),(a,b'). On the other hand,

(5) D N A e A U A D
X,y,x!y'er?
X+y+x'+y =0

= Zi 2, X 603X (> Z X a'xnw')b}.

zeF X+y=2 X +y ==z
X, y#0 , ',y #0

Since j(n is surjective and ‘a+b,a'+b'# 0, the summand for z=0
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vanishes; hence (5) is equal to the sum over z«qu. The summand

X e L o
for each 2z'€ Fq may be rewritten as

ST x xn ¥ (v >0 &'y v'®,
x+y=-1 x'+y'=-1
X, Y70 o xyAO

which is independent of z, as a+b+a'+b'=0. And since X, (-1)=1,

(5) 1is equal to.

(51 (g-1) Z 7( <x>a7< @ D X (= )ax (¥
L x+y=-1 X +y'—-l
._x‘y¢0 S ',y '#0
= - r a- b_'». a’l l
= (q 1)Ff(§n.1,§'n 1)‘]5}_@’11 l,§’n 1).
Since (5) is a priori symmetric in a,b,a',b', and (4) holds for.
(&, @=(a',b),(a,b'), we deduce that (5') is also'egual to

" a’ b . a : b
(5") . o | (Qfl)§j§n—l,§n-l)?(gn-1,gn-l).

This gives the proof of (II).

E;j-symmetricity.. In [PGC] II we studled the ldeals

(6) Ay =,{?=F(u,v,w)€/4 i F(§ -1, § -1,¢"-1)=0, for all §,§' §"T
G}Aﬂm\ {1} with egiet =1
21) of /4 and in particular proved that [ ) a = (0)
m21

(cf. II§4(14), él(ls)). Now the property (I) proved above for all

ném implies that if pPEG ~and 0 is any substltutlon of

Q(}j‘-ﬁoo)
three letters u,v w; " then
Flu, v w) F«ru oV ,0wW)
i £ R
belongs to (ﬂm. Since. anlf'ls arbltrary, this must vanish.

Therefore, %Jh}v,w); as an element of A, is symmetric in u,v,w.

G;;—symmetricity. Let u,u',v be 3 independent variables,

and define v'e %ﬂju,u',vﬂ by the equality

(1+u) (1+u') (1+v) (L+v')=1.
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(Note that +v' has no constant term.) To prove the & -symmetricity

of 5} * E} ‘(for P e GQ ()L )) , it suffices to prove that
7 F(u,v)F(u', = F(u',v)E(u,v') ( G
(7) ﬁ(u V)fu v') y(u V)f(uV) pe _

holds in ZL[[u,u',v]] , because G4 (on u,u',v,v') is generated
by 3 transpositions uesv, u'ev', and ueru'. (These transposi-
tions generate a transitive subgroup containing " 6'3 on u,u’',v ",

the full stabilizer of v'.) Now, to prove (7), fix f and put

G(u,u',v) I:J‘a(u V)F(u , V) ~F(u’ ,v)F(u v')

f

ZH(uu)v,
i=0

Il

with Hi(u,u') e“ZL[[u,u']l’. Then, by (II),

6g2-1,52:1,88-1) = 0

X
holds as long as a, a'e (Z/g_n) ~ (0), be(Z/ln) and a, a'= o0
(mod (). (Note that b'=-a-a'-b _%'; 0 (mod 2 ).) So, if we fix
mZ21l and o, «'c (Z//Qm)\ (0), and take n=m+k (k=1,2,...) and

a=9}& , a'=9_kcg’ (the image of «, ' by the Kk—multiplication
map (2/9™ = (2/9™)), then
o oy b
G(Q’m-l,g‘m—l, §m+k-l) =0

/
m+k

for all k21 and be (2/g But then, G(Cd-l,fd—l, v) vanishes
at v = € -1 for infinitely many distinct values of §€}(®. By
lemma 1 below, this implies that G(g -1, y l v) =0, i.e.,
Hi(fm—l,§m-l) = 0 for each 1i20. This implies in particular that
Hi € OZm. Since m >/l is arbitrary, this gives H € Qmm = (0),
all i. Therefore, G = 0. This gives (7), and hence corlzpletes '

the proof of Theorem Al'



87
lemma 1. Let k be a finite extension of Ql’ @ be the
ring of integers of k, and G(u)e Q[Cuill be a formal power series

of one variable over © . Suppose ‘G(é‘ -1) = 0 for infinitely

many distinct elements § of }lf,. Then G = 0.

Proof This is well-known, and can be verified immediately

as follows. Suppose on the contrary that G(u)= Z aiul # 0 (aiee) ’

120
and let i, be the smallest integer> 0 such that ord, (a;, ) =
0
Min‘ordk(ai) (ordk : the normalized additive wvaluation of k).
i

Take n (> 1) so large that Qn_l > i, (,Q-l)—lordkﬂ. » and let §e‘j~*ﬂ°°
i L

be of order exactly Qn. Then ordk(g-l) 0= io(_q,n—qn l) lorde<1.

But then, it is easy to see thét

(8) | 4_ crard_k(ai0 (§'—l)l°) <ordk(ai(§-l)l) , all i#io;

Therefore, G(£-1) # 0 fdr all such &, a contradiction. g.e.d.

Proof of Theorem A,. For each F = F(u,Vv) eA with F(0,0)

= 1, define its logarithm by log F = Z (-l)m—l(F-l)m/m, and
' m71 ' '

consider it as an element of Q, [Cu,v)] , where U=log (l+u),V=

log(l+v) . The involutive automorphism of /4 defined by l+u —=>

1 1

(14+u) =, 1+v = (14v) (i.e., U>~=U, V> -V) is denoted by the

bar sign * > *, We shall reduce Theorem A1 to:

Proposition 1 Let F = F(u,v) e/Af . Then the following

conditions (i) (ii) are equivalent;
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(1) ©F = 1 (mod uvw),
F-FP =1,
F is symmetric in u,v,w,

Fx*F is symmetric in u,v,u',v';

(ii) log F 1is of the form

9  legF =3 Emgmmm
m23 :
‘odd
where W = - (U+V), Bmézl." :
Remark. As the folld&ing proof‘éhcws, (1) is

also equivalent to an apparently weaker condition:

1 (mod uv),

il

(1) ' F

F(u,v)F(u},v')lzz F(u',v)F(u,v") mod[ (1+u) (1+v) (1+u') (1+v')-1].

When F = Fj’ ( f € GQ(}“Q“)

are proved in [PGC}, and the last two are givén'by Theorem A

), the first two properties in (i)
1°

Thus, Theorem A2 is reduced to Proposition 1.

Proof of Proposition 1. We shall only prove the implication

(i)' = (ii) (the implication (ii}»i}>(i)' is obvious). From the
first congruence of (i)' follows that log F is divisible by UV.

Hence log F is of the form



(10) _ > Ui ga ,

, ~ gr 1,32y itjlo
with @ije Zla(That Bij is inteQral follows automatically from
the integrality of the coefficients of F(u,v); cf.[PGC] IVéZ.)
So, it remains to show, from the second congfﬁehce of (i)',that

Bij depends only on m = i+j and vanishes when'm is even.

This is immediately reduced. to the following

lemma 2 Let m be a positive integer, and A g(x,y)
be é homoéeneous polynomial of degree m over a field of character-
istic 0. Then, if m i odd, the'folléwing"two~conditions (1) (i)
are ea_,uivalerijt;
(1) g(x,y) satisfies
(*) g(x,0) = g(0,y) =0, |
(%) gl +g(x',v) = glx',¥)+g(x,y') mod (xix'+y+y');

(ii) g(x,y) is a constant multiplerf‘(x+y)m—xm—ym.

If m is even, the condition (i) implies g(x,y) = 0.
Proof = The implication (ii)—>>(i) (for m:odd) is straight-

forward. To prove the rest, let g(x,y) satisfyv(i), and write

(11) g(x,y) = 2_ b.x'yd, and B, = iljlb,.
i,330 J ]
i+i=m
Then by = b_ = 0, by (*). The congruence (**) says that —

0
the polynomial"

/1
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(12) g(le) + g(x‘l"x"x'—Y)

is symmetric in x,x'. Therefore, the coefficient of yJ in (12)

for each j, given by the formula below, is symmetric in x,x'.

» l - - ‘
(13) bl + 2 b (-1 (3 ey FIpmeA
j . Qem & ]
j<g<m
_ i j+p (j+p P./p\ K ,i-M
=baxt + > 4, (-1IPIP)ST (P )k
3 0<pzi | 7P 1= M
. L . T
(put g =j+p). For m,V 2 0, )4+’1)= i, the coefficient of x x'
in the secondAterm of (13) is given by
(14) Z (—1)j+p<j*fp)(p>b.+ ~ (put q=i-p)
- D _3y=q (m-q\(i-q - D%y
0< g4V o ( ] XH ) *aq Jiptor
with v
5 i = (-1)9
(15) V O%V (q)@m-q
(.Bm-q , as in (11).) But since (13) is symmetric in x, x',

(14) must be symmetric in MV , unless Mor V = 0 (this excéption,
as we have not yet taken the first term bjxl in (13) into account).

Therefore, Xv= Xi_)) for all V, with 0<V< i. Therefore,

Yl = yi-l for 2< i< m; hence
) _ _ put
(16) K=Y, ==Y Y

Moreover, the coefficients of x* and of x'"t in (13) must be equal;

hence we obtain (noting that by=b _=0) :

m .
b. = _(._lLyl (i,5>0, i+j=m).
i

Therefore,
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(17) | ,(33' = (1" yi. (0< i< m) .
Therefore, (16) gives

, ' put

- (18) _(31 = (32_ = ... =(3m_l? G.

Since (30\ = Bm = 0, we obtain ' -
i3

g(x,y) = B~ 2 B =I%,((X+y)m—xm'-ym)..
i3z v :

i+j=m .

On the other hand, (15) and (18) gives X:. -8 , and (17) givés

(3= (-1)™Y . Therefore, 3= 0 when m is even. g.e.d.

/3:
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3 Some open questions

We have thus proved that F (gec; ) satisfies the '

kg Q()& o0)

equivalent conditions of Proposition 1. "It is natural to ask

X
Q(fa) in A

More plausible would be a similar characterization of the image

whether these condltlons characterlze the 1mage of G,

-moduio.ﬂ,; As we have seeu above, it is closely connected with
the'Vandiver conjecture at.Q It also seems to be an lnterestlng
quest.lon to construct all power serles in (Z/ﬁ) [l:u,vj] sa.t:.sfylng

the condltlons analogous to those of PrOpOSlthn 1 (i). Here, we
meet w1th the study of the power series h(u) € (2/g)[ful]l satisfying.

the differential equations of the form

o (ny- o my__, = b - u;
where D = (u+l)3§. (Such h(u) appears in the v-adic expansion of
F(u,v) as |
F(u,v) =1 + h(u)v + .... .)

Is there a totally different approach (e.g. from topology) to

construct such power series in (Z[Q)[Cu,V'ﬂ ?
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