5
DD[]DD[]DD[%U
0 5910 1986 0 12-24

Complexity of
Acyclic

Kenji Uemura

TR

Department of Mathematics
Tsuru University

ABSTRACT
A path cover [3,1978]

inte node disjoint paths.

[1,19751.

T

in this paper we first

is a constant, m is the

cover with the minimum n

graphs (dags) with either t

by two. The constant kK is |1

in worst case. Using this

average running time of

alternate graphs. Fin

evaluations give the cunjec

n + log n.

1. INTRODUCTION.

There have been many

Yaku-lwata {see Jwatald,197

{3,19781 and Yakul3,1979],

[4,1983). This paper <un

numbeyr of paths in such co

with the mininum path numbe

Path Covering Problems in

Alternate Graphs 11

Yaku
BAFT &

Department
Science
Tokyvo Denki

Takeo

of Mathematical

University

of a digraph is a partition of digraph

It is also called a linearlization

show a K X m running time algorithm (kK

number of edges) that obtains a path
umber of paths for directed acyclic
he outdegrees or the indegrees bounded
ess than 1.5 in expected case and is 2

algorithm, we consider a bound for the

path-covering problems of acyclic
ally we -note that the numerical
ture that the complexity is bounded by

studies about covering of graphs by

811, Boesch-Gimpel [2, 19771, Iwata

Boffey{1,1975] and HRamanath-Solomon

cerns to problems to minimumize the

vering. We note that a path covering

ry is called maximal, since the number

of the edges covered by a covering is maximal when the path
ﬁumber is minimum.

Finding problem of a path cuver witn the minimum number of
paths 135 NP-complete for a digraph. Algorithms are known that

run in o(mz'a) time for dagé’, 'and that'runs in olm) time for
dags with both the outdegrees and the indegrees bounded by two,.
where m is tﬁe nuhber df\the edgés.

We deal with the class of dags with the outdegrees bounded
by two which concerns to data structures with the branches
bounded by two such as program flowcharts with binary branches.

We relate the approximate running time of the algorithm
given in [5] withinvthe case of acyclic alternate graphs of
finding a maximal path cover.

Concerned with the ap?roximate time complexity, we’calgulate

. . . . Lo : 3]
recursively defined {functions which increase less than A for

any t > 1, but more than An.

2. Preliminary definitions.
Definition. Let G=(V,E) be a digraph. Edges (u,v) and
{w,x) in E are alternateiy adjacent, denoted by (u,v)y~{(w,x), if

they are distinct and u=w or v=x.

ul{=w; u : '
v X) v{(=x)

Fig.1 (a) Fig.1 (b)

14

The symbol & denotesrthe reflexi?e and transitive closure of
~ . Edges e and e' are alternately equivalent if eXe'. A graph
G=(V,E) is alternate if e®e' for any edges e and e'.

We assume that our alternate graph satisfies next two
conditions.

(1 The indegree of any node is no more than 3 and thg
outdegree of any node is no more than 2.

(2) Graphs are acyclic even if we neglect the direction of
arrow.

"We also assume that there is one special node of
outdegree # 0 called a root and the graph is called a rooted
altetnate graph.

We wifl evaluate the approximate running time, assuming each
non-isomorphic rooted alternate graphrto appear under the same

probability.

=) y =) T =<
Let G1 (Vl,El;, G2 (VQ,E2),...,GH .Vn,En) be subgraphs of
i :" ') \J \/ \J =.' ___’ s Loy
a digraph G={(V,E). If Vl V2 s Vn vV and vi,qvj ¢f1#1),
then P={G1,G2,...,Gn} is a partition of G. Each subgraph is
called a comppnent(bluck). The partition P is a path cover if
each Gi(ié n) satisfies either
(i3 Gi is connected and there is a vertex disjoint path ele2
.. {1213 in G, such that {e,,e.,...e,}=E, , or
1 i 1 1 i

(ii) G, is a point, that is, Gi=<{v}>,¢) (veEV).,

For a path cover P={G G2,...,Gn} aof a graph G=(V,E), GiP

1 3
denotes the graph G(Pi= GIUG'?V...UGn
The path cover P is maximal, if for any path cover Q,

#E-E{(P))<#®(E~-EQ)),that is #E(P)>#E(Q).

3

3.

/ ¥

/%
VE:
/%
/%
/%

/%
/&

/%

Algorithms of finding a maximal path cover.
procedure ALTSEARCH(v,vs,flag,G,H)
comment alternate trace with backward modification
data G:: input; an alternate dag, initially the
vertices ih G are marked "UNCOVERED" or
"COVERED", and "UNVISITED"™ or "VISITED".
v ! input; a vertex in G, the current trace starts
ffom V.
Vs : input; the trace originally started from vS
flag : input; the indicator whether the output tree
is alreédy modified backward, initially
flag is marked "UNMODIFIED".
H‘: output; a spanning out tree of G
do mark v "VISITED" ;
iterate while vertex u remaining in OUTLIST(v, G)
marked "UNCOVERED" do
add (v,u) to H ; mark u "COVERED" ;
iterate while vertex w remaining in INLIST(u,G)
marked "UNVISITED" do
if (there is no vertex x (xX#u) in OUTLIST(w,G) .or.
there 1is the vertex x(x#u) in OUTLIST(w,G) marked
"COVERED") .and. flag is marked "UNMODIFIED" then do
call ALTMODIFY(W,VS,P,G,H) i
mark flag "MODLFIED" od ;

call ALTSEARCH(w,'vS,flag, G, H) od od od

procedure ALTMODIFY(ve, vg, P, G, H)

/%

comment subprocedure that modifies a spanning out forest

*/

10

7%k

/%

/%

H «n ALTSEARCH
data ves G .H are the same 1n ALTSEARCH */
Vol input ; a vertex in G, « moditicatio. ot %/
ALTMODIFY starts from "encountered” vertex s/
ue to "starting” vertex vs. %/
P ! work ; the semipath from VS to ve in the trace Q/
of ALTSEARCH. %/

do v:=ve;

let P be the alternate semipath from v(5 to ve in the current

edge trace by ALTSEARCH(v ,vS ,flag , G, H)

call ALTBACKWARD(ve . vS, P ,G ,H)» od

procedure ALTBACKWARD(v | Vs P ,G ,H}

/* caomment subprocedure of ALTMODIFY %/
/% data v : input ; backward modification currently starts */
/% from v */
/% VS s input ; terminal vertex of backward modificatiun, */
/% which is the starting vertex of ALTSEARCH */
/% P : input/work/ouiput ; the alternate semipath from %/
A% Vg to v in the trace of ALTSEARCH %/

Fox G : input ; the "input"™ graph */
/% H ¢ input / output ; the spanning out forest to be */
/% modified _ %/

do find the edge e in P vf the form (v, u)

.
3

add (v, u) to H ;

b

find the edge in P of the form {w, u) (vEw)

delete (w, ur from H ;

/% initially (w, u) is in H

17

call while w#vs
ALTBACKWARD (w, Vs’ P-(w, w)dv, u), G, H;:

od;

Qutline of these algorithms.

From the starting vertex,. do the depth first search (dfsi’,
marking going away edges till having reached a terminal vertex of
nutdegree=1 or a loop completing vertek uvf outdegree=0. If it is
the first time of the flag being "UNMODIFIED"™, then come back on
the semipath to the originally starting vertex, deleting going
away edgeg and markingvcoming back edges and continue dfs marking

going away edges. If it is not the first time then continue dfs‘

Theorem 1. Algorithm ALTSEARCH obtains a maximal path cover of
a dag with unbounded indegrees and the outdegrees bounded by two

in 2 x m worst time and 1.5 x m average time.

4. Mean length of alternate graphs.

Definition. The mean length of returning semipaths of any
rooted alternate graph G is defined by
VEE piarkqia) : p(a)=1/2k , and K 1is the number of brénches on
atleaf of G the semipath from root to a, such that each
of outdegree=1

subalternate graph having which as the root has
at least one leaf of Uutdegree=1 s gqfa) is the length of this
semipath.
The mean iength of returning paths of n-node alternate

graphs is defined by SML(n)/NAL(n), where NAL(n)is the number of

all n-node rooted alternate graphs satisfying conditions (1) and

e

(2), and SML(n>) is the total sum of mean lengths - of returning

paths of these n-node alternate graphs.

?roposition 1. Let NALT(n,k) be the number of n-node alternate
graphs whose roots are terminal and the number of leaves of
outdegree=1 are K. And SMLT(n,k) be the total sum of mean
lengths of returning paths of these n-node alternate graphs.
NALT(n) be the summation of all NALT{(n,k), -and SMLT(n) be the

summation of all SMLT{(n,k). Then next equations hold.

(3> NALT(n,Kk)=¢(E E + ;E) NALT(j,i)NALT(1,h)
j+l=n-2 i+h=k j=1l,i+h=k .
04j«l Osigk O<ich

+NALT{n/2-1,k/2){NALT(n/2-1,k/2)+1}/2
NALT(0,0)=1,NALT(1,0)=0,NALT(1,1)>=NALT(2,0)=1,

NALT(2,13=0.

¢4) NAL(n,k)=(> > o+ >)NALT (j, i)NALT(1,h)
j+l=n+l1 i+h=k j=1,i+h=k
24i<1 0<i<k 0<i<h

+NALT({n+1)/2,k/2){NALT((n+1)/2,k/2)+1}/2

(5) SMLT(n,k)=2 xNALT(n,k)+ _> SMLT(j,k)NALT(I,0)
v : J+l= -2
n-

14 2

G e
nA

> SMLT(J,l)NALT(l h)
-2 i+h=k

+SMLT{(n/2-1,k/23}/2

SMLT (0, 0)=8MLT(1,0)=0

(6) SML{n,k)=SMLT(n,k)+ 2_ SMLT(j,KINALT(1,0)
j+1=n+1
1< j< n

oD > SMLT (5, 1)NALT (1, h)
+1=n+1 i+h=k |
é_} __Sn"l 0 \1 ~k

=]

13

+SMLT((n+1)/2,K/2)}/2

If we add one more condition of the Dutdegrée of every
terminal node being one, and limit uuf discussin‘tu this class
of alternate graphs, then equations of NALT{(n), NAL{(n), SMLT(n),
SML{(n) become simpler. And in this case we obtain the proof of
these four equations increasing larger thanAn but less than A"
for any t >1. This may give us some knowledge abouf upper bounds
of SML(n)/NAL(n).

Propositibn 2. Let NALT(n5 ber fhe number of‘ n-node
alternate graphs whose roots are ferminal nodes and-SMLTfn) be

the total sum of mean length of these n-node ‘altefnate graphs.

Then next equations hold.

n-2 .
(7) NALT{2n)=>_ {NALT(2n-2-i)NALT{i)}+NALT(n-1) {(NALT{(n-1)+1}/2
i=0
(n>2)
n-1
NALT(2n+1)=:Z;NALT(En—l—i)NALT(i)
i=0
(n>1)

NALT(0)=NALT(1)>=NALT(2)=1
n : :
(8) NAL(2n)="> NALT(2n+1-i)NALT(i)
i=1 |

n . . :
NAL(2n+1)=:E; NALT(2n+2-i)NALT(i)+NALT(n+1) {NALT(n+1)+1}/2
i=1 : ‘ :

2n-3 - »
(9) SMLT(2n)=SMLT(2n-2)+{> SMLT(2n-2-i)NALT(i)+SMLT(n-1)}/2
i=1 | | e

+2%NALT (2n) 0 (n 2 1)

. 2n~-2
SMLT(2n+1)=SMLT(2n-1)+ > SMLT(2n-1-i)NALT(i)/2

+2%NALT (2n+1) (nz21)

SMLT (0)=8MLT(1)=0

2n-1
(10) SML(Zny=8SMLT(2n)>+{ > SMLT{(2n+1-i)NALT(i)}/2
i=2
2n
SML(2n+1)=SMLT(2n+1)+{ > SMLT(2n+2-i)NALT(i)+SMLT(n+1)}/2
i=2

5. Evaluations of previous sequences (7)-(10).

Lemma. For any t>1 and A>1, there exists some N such that for
any n>N, following three conditions hold,
a) logA n < n
, te, . {
b) (6n+l) >(6n-1) +1
. N A . t , \ t Lt .
¢) {(3n+i) +(3n-i-1) "} -{(3n+i-1) +(3n-i) "} >0 (i>0)

>1 (3n>i»n).
proof. a) Since for any n>N n<An R
then IogA n < n.
b) Trivial.

¢) Consider the next function,

, . i 1)
f{x)=(3n+x) +(3n-x-1) 0¢ x < dn-1,
Then £ (x=t{3n+x) " 1o(an-x-1 1y 5 0.
and £ (m=t{dn 1 -2n-1 8y 5 tsnt T a o2ty 1 for any non .

Therefore (3n+i) +(3n-i-1)° ={(3n+i-1) +(3n-1i) %}

= f(i) - £<{i-1) > 1 (i > n).
Theorem 2. Previous sequences defined by equations (7)-(10)

i
increase larger than An but less than An for any t » 1.

proof. Comparing with Fibonacci sequence, we can verify

. . n
easily that these four sequences increase as large as A at Jeast,

() First we prove NALT(n) > 0(a™.
assume that NALT(n) =O(An) for some A>U. Then there is soame ¢>0,
and for any ¢ > 0, there exists a number N such that f{for any

n > N, ¢ - < NALT(n)/a" < ¢ + ¢

NALT (4n+1) = NALT(4n-13)+ NALT(4n-2)+...+NALT{3n-1)NALT(n)+...
+NALT(2n)NALT{(2n-1)
> NALT(3n-1)NALT(n)+...+NALT{(2n)NALT(2n-1;

s(n-13at i en 62,

4n+1 2

Then NALT(4n+1)/A =(n—1)(c—g)2ﬁa“> c+e.

This is a contradiction. "Su NALT(n) > O(An).

The 1rest three sequences have the same properties since they
increase larger than NALT(n).

t
iio Let NALT(n}=O(An)y for some t>1. Then for any > 0 there

exists some N such that for any n > N,

t o t
NALT (n) /A" < c+¢ ,and for some n > N, c¢-§ < NALT (n)/A".

i , : : 1
Let M=max {NALT(i)/A' i=0,1,...,N}. Then NALT(i) <M%A' .

NALT{6n+1)=NALT(6n-1)+NALT(6n-2)+.. . +NALT(5n-1)NALT(n)+...

+NALT (3n)NALT(3n-1)

(6n-1) t+0 _1yt t . RPN | t
Clowg smealOMTLY 0 a0l e e gy 280720 (D
+...+A(4n~1)t+{2n)?+éi4n-2)t+(2n+1)t+.‘6+A{3n)t+(3n_l)t).
»y b t t t
- 2 3 ‘ . - N
Since A(4n 2) +(2n+1) + {3n) +{(3n 1V}

A

t t
-3 {
<(n—1)A(4n 23 7 +{2n+1)

©
(¥

, _ I T t
=AlugA(n 1)*A(4n 2) +(2n+1)

S S t
<An lA(4n 2) +(2n+1) ’

ca g bt
NALT (6n+1)< A\Sn 1)7+07+1 for any n > N.

t
Then NALT(n) # OCA™), and it is easily shown that

t
NALT (n) < O(A™ .

n n
Next , NAL(2n) =3 NALT(2n+1-i)NALT(i) <3 NALT(2n+1-i)NALT(i)
i=1 i=0
=NALT(Z2n+3)
Then NAL(2n) < NALT(2n+3). Similarly NAL(2n+1) <{ NALT(2n+4).

t
Then NAL(n) = O(NALT(n)) < 0(A").

t t
The same argument shows that SMLT(n) < O(An) and SML(n) < O(An)

for any t > 1.
This theorem sugests that SML(n)/NAL(n) increases slowly, or
nt—n
less than O(A y for any t > 0.
6. Numerical evaluation.

According to numerical examples below, SML(n)/NAL(n)

(equations (6:,(3)) seems tu increase less than O(log n).

n; NAL(n7; SML(n); SML(n)/NAL(n);
{SML(n)/NAL(n)}/log n;
20 15229 8§9992.0 5.90925 1.97255
10 1.64596E+09 1.29418E+10 7.86272 2.13146
60U 2.46558E+14 2.13401E+15 8.658520 2.11394

11

03

80 4,.28494E+19 3.89030E+20 9.07898 2.07186

100 8.10934E+24 7.57691E+25 9.34345 2.02890
120 1.62203E+30 1.54489E+31 9.52439 1.98943

These evaluations give thé Conjecturé thét’the' appréximate
running time of algorithm ALTMATCH on alternate graph of node n
satisfying conditions (1) and (2) is bounded by

n+log n

7. Concluding Remarks.

Our next aims are at first deleting the condition of
terminal node and extending to the class of 2-n bounded graphs
Then deleting acyclicness. The method we take in the evaluation
of order of recursively defined functions may be also useful to
determine the order of some other those functions, and we will
be able to get some conditions of reéursively defined functions

which tell us the bound of increasing.

References.

1. T. B. Boffey, The linearization of flowcharts, BIT 15 (1975),
141 - 150.

2. F. T. Boesch and J. F. Gimpel, Covering the points of a
digraph with point-disjoint paths and its application to code

3. S. Iwata, Programs with minimal goto statements, Inform.

Contr. 37 (1978)

12

[41]

T. Yaku, A linear time algorithm that obtains a maximal

matching for graphs, Memoire of the RIMS Koito Univ. 353 (1979),

{in Japanese)

6. T. Yaku, Partition of graphs into chains of the minimum block

number, Proc. Facul. §gi;llghgl Univ. 18 (1983), 41 - 44.
7. K. Uemura, T. Yaku, Complexity of Path covering probliems in
Acyclic Alternate Graphs, Memouire o¢f ithe RIMS Kyoto Univ 556

(1985), 240-249.

13

