goooboooogn
O 5930 1986 0 58-76

58

A Foundation of Analogical Reasoningﬁ
Analogical Union of Logic Programs

By

Makoto Haraguchi and Setsuo Arikawa

Research Institute of Fundamental Information Science
Kyushu University 33
Fukuoka 812, Japan

~Abstract

This paper presents a theoretical foundation of analogi-
cal reasoning in which problem domains are represented by
logic programs. ~Conceptually based on Gentner's structure
mapping analogy, we formally define the analogical reasoning
in terms of logic programming. Then, introducing the notion
of analogical wunion, we characterize the reasoning in the
deducibility from the analogical union. Based on this
characterization, a general framework of analogical reasoning

is also presented so that we can deal with various constraints
for analogy.

59

1. Introduction

Based on some analogy between two or more domains in
question, we often reason some unknown facts and knowledges to
solve the problem concerning the domains. The reasoned facts
are not necessarily true, however, the analogy under which the
facts are reasoned gives an evidence showing that the fact may
be true. Generally we must have rich enough knowledges of
domains to percéive a suggestive analogy. Hence the power of
analogical reasoning depends on the amount of knowledges about
tﬁe domains and also depends on the power of deducing
knowledges. From this viewpoint, we present in this paper a
formalism of - analogical reasoning in terms of deduction.
Among possible systems of deduction, we consider in this paper
a logic programming system based on Horn logic, since we now
have a powerful computer system to perform it.

To give the formalism of analogical reasoning, the first
problem 1is to precisély define the notion of analogy, even
though the formalism cannot deal with our ambiguous and mys-
terious uses of analogy. ~Generally an analogy is a partial
likeness between two or more domains, and the analogous
domains can be regarded as the same one in some aspects: ‘To
view the different domains same, we must have a correspondence
between the domains. Under this correspondence, some aspects
of domains can be considered same. Hence, if we try to for-
malize the notion of analogy, we have to give the following:

| (1) Represéntation language to describe the domains.

(2) An interpretation (semantics) of the representation.

(3) A definition of possible correspondences between the
domains. |

(4) A definition of which aspects of domains can be con-
sidered same under the possible correspondence.

Based on Polya[8], Gentner{3] and Winston[9,10], we
define in this paper a formal analogy which is a relation of
terms with the identification of facts. We assume that the
domains are represented by logic programs which are finite

60

sets of definite clauses, and also assume that the programs
are interpreted as their least Herbrand models. Under this
assumption, our correspondence between the domains is a rela-
tion'of terms which satisfies the following axiom:

Axiom : for each n-ary function symbol f (n= 1),
f(Xy,..-.Xp) ~ f(Yq,....Yy) < X1 ~ Yq seees Xy ™ Y,
where ~ 1is a predicate symbol to denote the relation of
terms, and the terms denote elements in the domains. Then our
formal analogy consists of the relation of terms and a set of
paired facts (ground atoms) which are identical except for ~ ..
Thus the paired facts are compatible in the sense that they
have the same predicate symbol. This definition is concep-
tually based on Polya's clarified analogy: "Two systems are
analogous 1if they agree in clearly definable relations of
their respective parts", where the systems and the parts cor-
respond to logic programs and terms, respectively. ;

The second problem is to define the process of analogical

reasoning. For this purpose, we consider in this paper the
Winston's analogy-based reasoning[10], in which "similar"
‘reasons are assumed to lead to "similar" effect. Introducing

the notion of rule transformation, we formally define the
analogy-based reasoning in terms of 1logic programming, and
then precisely define the set of ground atoms reasoned by
analogy. |

Since we give the formalism of analogical reasoning in a
system which performs deduction, the reasoning has some logi-

cal aspect. S50 the third problem is to .characterize the
reasoning in terms of deduction. For this purpose, we intro-
duce the notion of analogical union of logic programs. The

analogical wunion of programs Pl and P2 is itself a logic

- program which has copies of Pl and Pz, and has some definite

clauses concerning the predicate ~ . Then we show that ground

atoms are reasoned by analogy iff they are logical con-
sequences of the analogical union. o

According to the previous studies of analogy, some sSeman-

tic constraints are often required to the relation denoted by

61

~ Such semantic constraints can be expressed by some addi-
tional axioms for ~ . As an example of such a constraint, we
consider the problem of analogy as a partial identity
(Héraguchi and Arikawa [6]). Then the constraints for ~ can
pe described as a first order theory. Also the analogy is ac-
tually a model for the theory. Based on this observation, we
give a general framework of analogical réasoning so that it
can deal with various constraints for analogy.

In Section 2, we briefly review the notion of structure-
mapping analogy presented by Gentner[3]. In Section 3, we
define our formal analogy and the reasoning based on it. In
Section 4, we introduce the notion of analogical union, and
characterize the reasoning in the deducibility from . the
analogical union. In Section 5, we give a general framework
of analogical reasoning.

2.. Structure-mapping analogy

Before we define the formal analogy, Wwe briefly review
the notion of structure-mapping analogy introduced by
Gentnerf[3]. Her paper is concerned with the question of what
makes some analogies useful in scientific thinking and others
useless or harmful. To answer the question, she has con-
sidered the structure-mapping analogy between complex systems
in order to characterize analogical models wused in science,
such as Rutherford's comparison of the atom to the solar
system.

The structure-mapping analogy consists df a base system B
(known domain), a target system T (domain in inquiry) with the
following properties:

(P1) The target system T is described in terms of the
base system B.)

(P2) The objects in B are mapped on those in T, allowing
the predicates of B to be applied in T.

Thus the structure-mapping analogy asserts that identical

operations and relationships hold among non-identical objects.
This assertion agree with the Polya's clarified analogy[8]:
"Two systems are analogous if they agree in clearly definable -
relations of their respective parts."

Gentner has also assumed a "propositional network" of ob-
ject nodes to represent knowledges in the domains. Given such
a representation, she describes the structure-mapping analogy
from the base system B to the target system T as follows:

(Al) There exists a mapping M of the nodes by, ..., by of
B into the (different) nodes t;, ..., t, of T.

(A2) The mapping is such that substantial parts of the

n

relational operational structure of B apply in T: that is,

many of the relational predicates that are wvalid in B must

also be valid in T, given the node substitutions dictated by M:
TRUE[F(bi,bj)] implies TRUE[F(ti,tj)].

(A3) Relatively few of the valid attributes (the one- .
place predicates) within B apply validly in T:

TRUE[A(b;)] does not imply TRUE[A(t;)].

It should be noticed that the assertion A3 is wused to
specify the relationship between B and T is one of analogical
relatedness and not "literal similarity". Also the mapping M
in Al is required to be a one-to-one correspondence of object
nodes.

On the other hand, Winston[9,10] has designed an analogi-
cal reasoning system in which each domain is internally repre-
sented by a network of frames. The analogy he has considered
is a pairing of frames with the agreement of slot values of
frames. Here the frames represent objects in the domains.
The agreement of relation-slot values just coincides with the
assertion AZ2. However the agreement of attribute-slot values
may violate the assertion A3.

The purpose of the present paper is to formalize the
analogical reasoning in terms of deduction as unrestrictedly
as possible. Hence we do not require the assertion A3. Also
we do not assume that the mapping M in Al is one-to-one.
Moreover both Gentner[3] and Winston [9,10] has considered the

63

notion of higher-order relational predicdtes to characterize
analogies. However they are extra-logical. Hence we consider
in this paper only relational predicates among elements in the .
domains.

Now we state the outline of the formalism preséented in
this paper:

(01) The source and the target systems are represented
py logic programs, and are assumed to be the least models
defined by the programs. The validity of relational predi-
cates 1is logical in the sense that the predicates are logical
consequences of the programs. Moreover each object (node) in
the propositional network representétion corresponds to a
ground term. '

(02) The mapping M between the domains is defined by a
pairing of ground terms, and is not necessarily one-to-one.

(03) The identical relationships among non-identical ob-
jects are defined to be the syntactic identity except for the
pairing in 0O2.

3. Reasoning based on formal analogy

we define in this section the formal analogy and the
reasoning based on it. Since we assume that domains in gues-
tion aré representéd by logic programs, we first give some
necessary definitions concerning logic programs.

A definite clause is a clause of the form

A < Bl,...,Bn (n= 0),
where A and Bj are positive literals. We call the definite
clause a rule. A logic program is a finite set of rules, and

is simply called a program.

Since a program P is a set of clauses, any model for P
can be considered as the corresponding Herbrand model. For
instance, see [7]. ~ Every Herbrand model for P has the same
domain U(P), called the Herbrand universe, and the same mean-
ing of function symbol appearing in P. U(P) is defined to be

64

the set of all ground terms whose symbols appear in P. The
meaning of n-ary function symbol f is defined to be a function
A [lty,. .. tnlsf(ty, ..., ty)] = U(P)D — U(P).

We also need the notion of Herbrand base. The Herbrand
base B(P) of a program P is defined as ‘
B(P) = { p(ty,..-.,ty) | p is a n-ary predicate symbol
appearing in P, and tj € U(P)}.
An element of B(P) is called an atom (ground atom).
Then, each Herbrand model(interpretation) is specified by
a subset of B(P). According to the model intersection.
property[l], the intersection of all Herbrand models for P is
also a model for P. This model is called the least model for
P, and is denoted by M(P).
Proposition 3.1. ({1,7]) M(P) is the set of all ground

atoms which are logical consequences of P.

According to Proposition 3.1, we take M(P) as the formal
meaning of P, and call an element in M(P) a fact. In what
follows, we consider only the Herbrand models, simply called
models.

We define the correspondences Qf analogy by a pairing of

elements in domains.

Definition 3.1. Let Pl and Pz be logic programs. A
finite =subset of U(Pl) X U(Pz) is called a pairing of terms.
For a pairing ¢ , we define the set ¢ * to be the smallest set
satisfying the following properties:

(3.1) ¢ € o7,
(3.2) if <ty, t'y>, ..., <ty t'> € 6 F
then <f(tq,...,tp), f(t'q,...,t')> € ¢ 7
where f 1is a function symbol appearing in
both P; and P,. '

As mentioned in the introduction, we must give the
definition of which aspects of domains can be considered same
under a pairing ¢ . We define it by a syntactic identity ex-
cept for the pairing ¢ . ‘

Definition 3.2. For a pairing ¢ , two ground atoms a €
B(P1) and a ' € B(P,) are said to be identified by $, 1if (1)

65

o and @ ' are compatible, that is, they can be written as
a = p(tl,...,tn),
@' = p(t'y,....t'n),
for some predicate symbol p, and (2) @« and a ' are syntacti-
cally same except for the pairing ¢ , that is,
ty, t'y> € é *. This case is denoted by a ¢ a '.

Since our domains under consideration are least models
M(Pq) and M(P5), ¢ defines a relation ID(P{,P5;¢) of facts
as follows:

ID(Pq,Py;d) =
{ Ka ,a '> | a € M(Py), @' €M(Py), a ¢ a }.

When we say that a pairing ¢ is an analogy, we generally
require some constraints for ¢ . However, as a first step, we
consider that the set ID(P;,Pq; ¢) represents the aspects of
domains which can be viewed the same under the pairing ¢ . We
give 1in Section 5 a general framework to cope with various
constraints for analogy.

Now the analogical reasoning we consider 1s stated as

follows:

Assume that, in Py, the premises B8 ,,...,8 , logically
imply a fact a . Also assume that the similar premises B8
l',...,B n'-hold in Pz. Then we reason an atom « ' similar to
a .

It should be noticed that the reasoning stated in the
above is coﬁceptually due to Winston's analogy-based
reasoning[10] based on the causal structures of domains.
Since our Similarity between M(P;) and M(Pz) is the set
ID(Pl,P2;¢ }, we restate the statement above as follows:

Let B 1,.;.,B n 1in M(Pq) 1logically imply a in Pq..
Moreover assume that there exist B l';...,B n in M(P,5) such
that B j¢ B j' for all j. Then we reason an atom a¢ in B(Pz)

such that a ¢ a '.

66

The reasoned atom @ 1is not necessarily a logical con-
sequence of Pz. Hence the reasoning go beyond a deduction.
As mentioned in the introduction, our goal is to describe the
reasoning in terms of deduction. For this purpose, we need
the following definition:

Definition 3.3. Let

Ry = (a < B q,...,B),
Ry = (@' < Bq'.....,8,")
be two ground rules‘(n 2 1) whose symbols are all appearing

in Pl and Pz, respectively. Let ¢ and Ij be a pairing and an.
Herbrand interpretation of P;, respectively. Then the rules
R, and R, are called ¢ -analogous w.r.t. I, and Iy, if B j €
I,, 8 j' €1Ig, @ ¢ a ', and B j¢ B j'+ In this case, Ry (Rp)
is called a ¢ -analogue of Ry (Ry) w.r.t. ¢ .

We call the act of converting Rl into Rz, or Rz into Rl,
a transformation of rules. In what follows, we represent the

transformation by the following schema:

where @ ¢ @ ', B ;6 B ', B3 € I;, B ;' €I, and the dotted
line shows . that the upper rule is transformed into the lower
rule. Using this schema, we can represent the reasoning we
consider as follows:

A <« Bl s e e ey Bﬂ— (0)
a <« /31 s e e ey 'BD
—————————————————————— (¢ .M(P1).M(Py)
il" :Bn' a'(——Bl', y/sn_'__)
a ' s
where A < Bl,...,Bn is a rule in Pl, 6 is a ground substitu-
tion to obtain a logically true ground rule a < B 1,...,5 n
and the last real line shows modus ponens. Thus the analogi-

cal reasoning is a combination of the usual deduction and the
rule transformation. This schema is called fundamental.
Generally reasoning 1is a process of applying inference

67

rules to derive some facts. Hence it is natural to consider a

- process in which the rule transformation and modus ponens are

applied consecutively. For instance, consider the following
example:
Example 3.1. Let Pl and P, be the following programs:
Py = { p(a,b) =,
a(b) <, r(b) =<,

s(b) = q(b), r(b)},
{ p(a’,b") =,

r{(b') =< }.
Then we have the following fundamental schema:

Py

__________________ (¢ ,M(Py),M(P5))

p(a',b") g(b') < p(a',b')
q(b") ,
where ¢ = { <a,a'>, <b,b'> }. g(b') is not a logical con-
sequence of Pz. However we assume that we can make use of
a(b'), as if it is a fact, to derive some new atoms further.

According to this assumption, we can derive s(b'), since

s(b) < a(b), r(b) _ :
-------------------- (¢ ,M(Pq1),M(P5)VU {q(b')})

q(b'), r(b') s(b') < qg(b'), r(b")
s(b')
is a fundamental schema. Thus our assumption above allows a
.monotonic exXtension of models for P2. We precisely define
this extension. ' -
Definition 3.4. ° For a given pairing ¢ , we define a set

Mi(*) for i=1,2 as follows:

M; (*) = U, M(n),

M; (0) = M(Py) = { @« € B(P;) I P; - a 1},

Mj(n+l) = { a € B(P;) | Ry(n)U Mij(n)UP; + a 1},

where S F~ ¢ denotes.that 7 is a logical consequence of S,
Rj(n) is the set of all ground rules which are ¢ -analogues of
ground instances of rules in Pj (j# i) with respect‘to Mj(n)
and My (n).

10

68

The following proposition asserts that our extension of
least model M(P;) to M; (*) 1s admissible.
.Proposition 3.2. For each i, M;(*) is a (Herbrand) model

for Py.

To prove this proposition, we need operators to give the
fixpoint semantics of logic programs[1,7]. Let P and Pow(S)
be a possibly infinite set of ruies and the power set of a set
S, respectively. Then we define an operator

T(P). : Pow(B(P)) — Pow(B(P))
as follows: For a set I € B(P), a € T(P)(I) iff there ex--
ists a rule A < Bl,...,Bn (n2 0)in P and a ground substitution
6 such that A8 = a and Bje €I for all j.

Proposition 3.3. ([1]) For a 1logic program P and a
(Herbrand) interpretation I of P, the following conditions are
equivalent: |

(1) I is a model for P.
(2) T(P)(I) € I.
(3) T({C})(I) € I for any rule C in P.

- Proof of Proposition 3.2. Let A < By,...,B, be a rule
in Pi and 6 be a ground substitution such that Bje € Mi(*).
Since M;(*) = U M;(n), there exists a natural number N such

that Bje € M; (N). Hence Mj(N) U P; F AG , and therefore
A6 € M;(N+1) € My (*).
Hence T(Pi)(Mi(*)) S M;(*). Thus, according to Proposition
3.3, Mi(*) is a model for Pj.
From this proposition, our extension Mj(*) of M(P;) is
admissible in the sense that Mi(*) is a model for Pi' In the

next section, we give a more logical characterization of Mi(*).

4. Analogical union of logic programs

In this section, we introduce the notion of analogical
union and. study a 1logical aspect of'analogical reasoning.
Since we use the transformation of rules to derive atoms in
Mi(*), they are not necessarily logical consequences of Pi:

11

69

However the relation ¢ * of terms gives a correspondence be-
tween Herbrand universes, and the transformation is performed
based on this correspondence. Hence we first program ¢ *, and
then program the transformation to characterize M; (*).

First we need a predicate symbol ~ . to denote the cor-
respondence defined by ¢ *, and also need the following rules:

For each pair <t,t'> in ¢ , t ~ t' <.
For each function symbol appearing in both P, and Py,
f(Xq,...,%3) ~ £(Yq,...,Y,)
, < Xy~ Yy, Xy Y,
The set of these rules is denoted by PAIR(¢). Then the fol-

lowing proposition is easily proved.
Proposition 4.1. For a pairing ¢ , .
<t,t'> € ¢ * iff PAIR(¢) F t ~ t'
As Clark([2] has introduced the notion of completion of a

logic program to justify the use of negation as failure rule,
we 1introduce the notion of analogical wunion of two logic
programs to justify the use of the transformation of rules.
The analogical union of Pl and P, is itself a logic program
which has copies of Pi and has some additional definite

clauses to perform the transformation. Each predicate symbol
'appearing in the copy of Pi has an index i to designate that
the symbol comes from Pi- For simplicity, we replace each

predicate symbol p in P; with pj. ;

The definite <clauses to justify the transformation
precisely describe the use of transformation to derive atoms.
Formally, with each rule

p(tl,...tn) < ..., 4q(sq,..-8¢), ...
in Py, we associate the following clause:
Po(Wq, ..., Wy)
ty ~ Wy, » th ™~ Wh,
S1.~ Vq, » Sx ~ Vg,
ql(sl’ ’Sk)’
Ao (Vq, Vi)

12

70

where Wi and Vj are introduced variables not appearing P, nor
Psy. Similarly, with each rule

p(tq,...,th) = ..., a(sq,...,8¢),
in P,, we associate
pp(Wy,. ... W) <
Wy ~ tq,..., Wy ~ t,,
Vi ~ si,.‘., Vg ~ sy
qz(sl,...,sk),
aq (V1. ..., Vi),

Definition 4.1. Let P; and P, be logic programs. Let ¢.
be a pairing. The analogical union of Pl and Pz, denoted by
P,¢ P,, 1is the collection of definite clauses associated with
each rule in Py (i=1,2) together with PAIR(¢).

Example 4.1. Let

P; = { p(a,.b) <,
p(f(X),b) < p(X,b) },
Py = (p(f(c),d) < 1},
] { a,f(c)>, <b,d> }.
Then the analogical union Pl¢ P, is
{ pr(a,b) =,
Py (£(X),b) < pp(X,b),
Po(Wy,Wy) < £(X) ~ Wy, b ~ Wy,
X -~ Vl’ b ~ sz
p1(X,Db),
Pa(Vy.Vy),
po(f(c),d) <,
a~ f(c) <,
b~ d< ,
f(X) ~ f(Y) <« X~ Y }.

The reasoning defined in Section 3 is now characterized
by the least Herbrand models for the analogical union.

Theorem 4.1. M(P1¢ Py) = M'q(*) U M',(*) U ¢ vt
where

M'y(*) = { py(ty,.-.oty) | p(ty,...,th) €M5(*)},
¢ '* = { s~ t | PAIR(¢) +F s ~ t }

In what follows, we rename each predicate symbol p in Pi

13

71

with pj. Hence we can identify M; (*) with M';(*). Also we
identify ¢ * and ¢ '*, according to Proposition 4.1.
Proof of Theorem 4.1. First we show
M(P1¢ Py) © Mj(*) U My(*) U ¢ *.
Let M(*) denote My(*) U My(*) U ¢ * . Since M(P;¢ Py) is the
least model, it suffices to prove that M(*) is a model for Pl¢

Py In the proof below, we assume for the sake of simplicity
that each rule in Pi is an assertion of facts or has a single
literal in the body. Suppose that

CO : pz(wl,,wn) « tl ~ Wl, RN tn ~ wn,
’ Sl ~ Vl’ ey Sk ~ Vm,
qy(s1,...,8p),
qZ(Vl’---yVm) .
is in P1¢ P2. From the definition of analogical union, the
rﬁle
Cl . pl(tl,...,tn) - ‘ql(,sl,...l,sm) |
should be in Pl' Also wj and Vk never appear in Cl' Let 6

be a ground substitution such that
tje ~ W;0 (all j),

s;@ ~ vie (all i),
ql(sle ,...,sme),
ap(Vq6 ,...,V0)
are in M(*). Clearly tje «fwje and sie ~'vie are in ¢ *, and
ql(slé yooe.8p0) € Mp(*),
do(Vq6 ,...,Vp0) € My(*).
Hence there exists a natural number N such that
ql(slB yo.280) € Mq (N),
(V86 ,...,Vp0) € My(N).
Hence the rule
Cq pz(wle ,..,,wne) <« qz(vle ,...,vme)
is a ¢ -analogue of
pl(tlé voeeatpn®) < qq(s96 ,...,8,0),

which is an instance of rule C; in Py, with respect to M, (N)

and MZ(N). Thus Cy € Ry(N) (Definition 3.4) and therefore
Ry(N) U My(N) F p(Wi0 ,...,W,0).

This implies that p(wle ,...,wne) € My(N+1) & Mz(*)ﬁ Hence

14

72

T({Cp})(M(*)) & M(*). :
For a rule in Pl¢‘P2 with pl(Xl,...,Xk) as the head, we can
give a completely similar proof. For a rule C in Pi c P1¢'
Pz, Proposition 3.2 has already proved that T({C}) (M(*)) <
M(*). Hence, according to Proposition 3.3, M(*) is a model
for P1¢ Py.
Conversely we must show that
M(*) = Mj(*) U My(*) U ¢ *c M(P19 Po).
According to Proposition 4.1 and the definition of Pl¢ Pz, it
suffices to prove
My(*) U My(*) = U, (My(n) U Msy(n)) & M(Py¢ Py).
We prove that Mi(n) c M(P1¢ Po) for i=1,2, by the induction
on n. Suppose first that n=0. Then M; (0) = M(Py). So the
result is trivial. Next suppose that, for some n > 0, Mj(n) <
M(Pl¢ Pz) holds for i=1,2. By the definition,
| Mp(n+l) = M(Py(n)), ~
where P,(n) = Ry(n) U My(n) U P,. Since M(P5(n)) 1is the
least model for Pz(n), we show that
My (n+l) = M(Py(n)) & M(P{9 Py)
by proving that M(P{¢ P,) 1is a model for Py(n). To prove
this, it suffices to verify that, for each C in Pz(n),
T({C})(M(P14 Py)) & M(P14 Py).
Case 1: C € My(n) € Py(n). By the induction hypothesis
and the fact that C is a ground atom, we have
T({C}) (M(P14 Py)) = {C} € My(n) €& M(Py4 Py).
Case 2: C € P, & Py(n). Since P, € P;¢ P,, the result
is trivial.

Case 3: C = (a' < B "1,.-.,8 'k) € Ry(n) < Po(n).
By the definition of Rz(n),.there exists a rule
) Cl A = Bl,..:,Bk
in Pl and a ground substitution 8 such that
Ble ,...,Bke € My(n),
B '1,'..,,8 'k € Mz(n),
A6 ~ a ', Bje ~ B 'j (all j).

Since Msy(n) < M(P1¢ Ps), T({C})(M(Pl¢ Po)) = { a ' }. For
the sake of simplicity, we assume that k=1, and write C and,Cl

15

73

as follows:
Cy & pp(s) < qp(t),
C ¢ po(s') < qo(t'),
where a '=p(s'), s6 ~s', t6 ~1t', qq(té)€ M;(n) and gyp(t")
€ My(n). From the definition, P;¢ P, has
Co ' DPo(W) <= s~ W, t ~ V, gq(t), qz(V) ,
where the variables W and V never appear in s nor t. Let
o =68 U (W< sg', V= t' }.
Then, by the induction hypothesis, we have
q(to) = qp(t6) € My(n) € M(Py¢ Py),
az(Ve) = qg(t') € Mp(n) € M(Py4 Py).
Hence, by the definition of T({Cz}), we have
@ ' = Dpy(s') = pp(Wo) € T({Cy})(M(P1¢ Py)).
Since C, € P,¢ P,, this implies that a ' € M(P;¢ P,).
As a result, we have proved that My(n+l) < M(P1¢ Po).
M (n+l) & M(Pl¢ Pz) is similarly proved. Hence we pave
Mi(n) U My(n) & M(Pq¢ Py) for all n. This completes the
proof. ' '

5. General Framework of analogical reasoning

Based on the results of previous sections, we present in
this section a general framework of analogical reasoning.
Definition 3.4 formalizes the process of analogical reasoning,
given the underlying pairing ¢ . Also Theorem 4.1 logically
characterizes the reasoning in the deducibility from the
analogical union.

Hence, once some pairing is "detected", the problem of
analogy can be solved in the framework of deduction. On the
other hand, it is leaved as an important problem to describe
the notion of analogy detection. Here the problem of analogy
detection 1is to find. a pairing which satisfies certain'
constraihts. As discussed ©before, the only constraint
required so far is

16

74

Ag @ T(Xq,....Xy) ~ £(Yq,....¥y) <
X1~ Y9, oo, Xn'~' Y, -
As mentioned in Section 2, Gentner[3] has required that a pos-
sible pairing of analogy is one-to-one.
Definition 5.1. ([6]) For programs Pl and Pz, a pairing

o is called a partial identity if ¢ * is a one-to-one rela-
tion of terms. '
If we require that ¢ 1is a partial identity, we need the

following new axioms:

Ay ¢ X =Y~ X~ Z,Y~ Z,

Ayt X =g Y« Z~X,7Z~Y ,
where =4 is a predicate symbol to denote the identity relation
on each Herbrand universe. Due to Clark[2], the following
theory, denoted by EQj, 1s sufficient for =; to denote the
identity relation:

1. ¢ # i d, for all pairs of distinct constants c, d in Pi°~

2. f(Xq,...,Xp) #4 8(Yq,...,Y),
for all pairs of distinct function symbols f, g in P;.
5. f(Xq,....X3) # 4 ¢,

for all pairs of constant ¢ and function f in Pi.
4. t[X] # i X, for each non-variable term t[X] in P;.

5. X.] =i Yj <« f(Xl,...,Xn) =i f(Yl,...,Yn),
for each function f in Pj.
6. X =i X. '
7. f(Xl,.‘..,Xn) =i f(Yl,...,Yn) « Xl =. Yl,...,Xn =i Yn,

i

for each function f in Pi' :

8. p(Yl"""Yn) « Xl =i Yl,...,Xn =i,YI1’ p(Xl,...,X
for each predicate p in Pj.

)

Then the constraint for ¢ to be a partial identity is

written as the following theory CT(¢):
CT(¢) = EQp YV EQy U {Ag, Ay, A} U ¢ .

Then 1t 1is clear that ¢ 1is a partial identity iff CT(¢) is
consistent. It should be noticed that a model for CT(¢) can
define a partial identity. In other words, the analogy we
desire is a model for the theory CT(¢). Based on this fact,
we now give a general framework of analogical reasoning.

17

75

Problem of analogy detection: Given P; and Pz, find a pairing
¢ such that CT(¢) is consistent.

Once the problem above is solved, we proceed to the next
step, due to Theorem 4.1:

Problem of feasoning based on the pairing: Given Pl, Pz and

¢ , deduce some "useful" information from the analogical union

Py ¢ P, with respect to ¢ .

The authors[6] has already given a effective solution to
the problem of analogy detection, previded that the cor-
responding pairing is a partial identity. Even when we make
CT(¢) to be an another constraint rather than the partial
identity, our framework based on the analogical union still

stands to describe analogical reasoning.

6. Concluding remarks

We have presented in this paper a formalism of analogical
reasoning in terms of logic programming based on Horn logic.
Since we cannot deal with negative literals in the definite
clauses, we have not paid attention to the uses of negative
informations. However we can make use of them to reject some
"wrong" analogies. In fact, the negative informations are
described as fofmulas, and added to the theory CT(¢) in order
to/make ¢ not define a wrong analogy. Also the search space
of possible pairings is reduced if we consider such a theory.
From this viewpoint, a. theory of analogical reasoning which
deals with negative informations is under developing.

18

16

References

[1] Apt, K.R. and van Emden, M.H. (1982): Contribution to the
theory of logic programming, JACM, 29, 3, 841-862.

[2] Clark, K.L. (1978): Negation as Failure, in Logic and
Databases, H. Gallaire and J. Minker (Eds.), Plenum Press, New
York, 293-322. ' ‘ '

[3] Gentner, P. (1982): Are scientific analogies metaphors?,
in Metaphor: Problems and Perspectives, D.S. Miall (Ed.), The
Harvester Press, Sussex, 106-132.

[4] Haraguchi, M. and Arikawa, S. (1985): Analogical reason-
ing based on the theory of analogy, Res. Rept. Inst. Fund.
Inform. Sci. Kyushu Univ., No. 105.

[5] Haraguchi, M. (in press): Analogical reasoning using
transformations of rules, Bull. of Infor. Cybernetics, 22.

[6] Haraguchi, M. and Arikawa, S. (in prep.): Analogical
reasoning based on the partial identity between least Herbrand
models.

[7] Lloyd, J.W. (1984): Foundations of 1logic programming,
Springer-Verlag.

[8] Polya, G. (1954): Induction and analogy in mathematics,
Princeton University Press.

[9] Winston, P.H. (1980): Learning and reasoning by analogy,
"CACM, 23, 689-703.

[10] Winston, P.H. (1983): Learning new principles from
precedents and exercises, Artificial Intelligence, 19, 321-350

19

