goooboooogn
0 5930 1986 O 145-167

| | 145

CLASSIFICATION AND TRANSFORMATIONS
OF BINARY
RELATIONSHIP RELATION SCHEMATA

Isamu KOBAYASHI
TR 7 N/ B

SANNO Institute of Business Administration
School of Management and Informatics
Kamikasuya 1573, Isehara, Kanagawa 259-11, JAPAN

August, 1985

[ABSTRACT] In contrast to Relational Model that deals only with flat
relations, models 1like Entity-Relationship Model, Network Model and
Hierarchical Model make distinctions between entity relations and
relationship relations. Distinctions between these two types of relatioans
are.usua;ly‘gerceived intuitively, However, to establish a formal -basis
of data translations among different data models, it seems necessary
to describe such distinctions in a precise manner. In this paper,
relationship relations are defined as those on which relationship
rules hold. Binary relationship relations are of special - importance
because these can be regarded as correspondences and also as directed
graphs. . Cardinality of correspondences, and acyclicness and connectedness
of . directed graphs are important properties of binary relationship
relations. With these properties taken into consideration a classification
of binary relationship relation schemata can be established. Finally,
four lossless transformations between two groups of bimary relatiouship
relation schemata are described. These play important roles in data
translations among different data models and also in devising physical
representation of binary relationship relations.

[KEYWORDS AND PHRASES] Classification of relationship relations, data
model, data’. translation, relationship relation, schema transformation.

146

1. INTRODUCTION

Relational Model [COD 1970] deals only with flat relations. It is not
aware of any distinction between entity relations and relationship relations,
In contrast, models 1ike Entity-Relationship Model [CHE 1976], Network Model
[BAC 1974] and Hierarchical Model [TSI 1976]_make distinctions between these
two types of relations. In practical database design, such distinctions can
often be perceived very intuitively. Therefore, many database besigners prefep’
the latter type of data models to the Relational Model, in particular, as a
tool to be used in an early stage of database design. However, to establish
a formal basis of data translations among various data models and hence among
various database management systems, it seems necessary to describe these 7

distinctions more precisely. In this paper, a_formal definition of relation-
ship relations in terms of relationship rules is presented first. |

Among relationship relations, binary relationship relations are of special
importance. This is because a binary relationship relation can be regarded as
a correspondence also as a directed graph [KOB 1975a],VCardiha]ity of the cor-
respondence, and acyclicness and connectedness of the directed graph are im-
portant properties. A classification of binary relationship relations in terms
of several rules is presented next. ‘ _

Finally four lossless schema transformations regarding binary relationship
relation schemata are described. In a previous paper [KOB 1986], the author
presented four basic lossless schema transformations that frequently appear
in various parts of database theory. In relation to binary relationship rela-
tion schemata, four additional lossless schema transformations become neces-
sary. These play imbortant roles in data translations among data models and
hence among database management systems, and also in devising physical rep-
resentation of binary relationship relations.

For the four basic schema transformations (selection/union trans.orrat1on,
projection/natural-join transformation, encode/decode transformation and unset/.
set transformation) and rules for these transformations being lossless, readers
are requested to refer the previous paper [KOB 1986].

2. RELATIONSHIP RULES AND RELATIONSHIP RELATIONS

First let us consider what relationships are. Let P be a relation schema
corresponding to a three-position predicate symbol P. A tuple (u,v,w) in a
relation P in P represents an atom P(u,v,w}. Assume that a rule

147

VuVvVw(P(u,v,w)>9(v))
holds, where &(v) is intérpreted as v standing for a member of a power set of
a Cartesian product. If a functional dependency -
YuVvVv Y ((P(u,v,w)AP(u,v' ,w))ov=v")
holds, then an unnest transformation (a special unset transformation) defined
by |
P(u,v,w)AB(v,x)+Q(u,x,w)
‘is applicable to P where B(v,x) is to be interpreted as x being a component
of v. On the obtained relation schema Q, a rule
Yu¥xYw(Q(u,x,w)=8'(x))
"holds, where ¢'(x) is interpreted as x standing for a member of a Cartesian
product. If a functional dependency
YuVvv Yu¥w ((P(u,v,w)AP(u,v' ,w'))ov=v"')
holds on P, then a multivalued dependency
Yu¥xVx V¥ ' ((Q(u,x,w)aQ(u,x",w'))oq(u,x,w'))
holds on Q. In this case, a projection transformation def1ned by
Q(u,x,w)+R(u,x)
and .
Q(u,x,w)>S(u,w) v
can be applied to Q and two relation schemata R and S are obtained. If x stands
for a pair (y,z), then a deproduct transformation (a special encode transfor=
mation) defined by ‘
R(u,x)+T(u,y,z)
can be applied to R and a relation schema T is dbtained, Finally, if a func-

tional dependency

.VuV 4 VV 2'((T(u,y,z)aT(u',y,z)):z z') - _ [::l

' unn&st

holds on T, then a projection transformation defined by
T(u,y,z)+U(u,y)
and
T(u,y,z)+V{y,z)
is again applicable to T. Eventually we have obtained
three relation schemata S, U and V by a series of Toss-
less schema transformations. It can be seen that a rule
VuVyawdz(U(u,y)>(S(u,w)av(y,z)))

is -generated after these schema transformations have Figure 1: Generation of a
relationship re]at1on u.

_projection

been applied in a proper sequence. Figure 1 shows the

148

whole transformation process. If a functional '
dependency
Vuvwvw' ((S(u,w)aS(u,w'))ow=w') o e _u“d
holds on S, three relation schemata S, U and V. Egggger§;a§§;g;agrag g:d V.
can be illustrated in the Entity-Relationship '
Diagram shown in Figure 2. In addition, an inclusion dependency
Vyvzau(V(y,z)sU(u,y))
holds. An inclusion dependency
Vuvway (S(u,w)=U(u,y))
holds only when
Yuvv¥w(P(u,v,w)ov=@)
holds on P.
In general a rule of the form
VX VX,y.. VX VYEZ,97,.. .82 (R(x 1%p2-- .,xn,y)
:U](X],Zl)AUZ(XZ,ZZ)A .AU (x »2.)))

n*“n’"n '
is called a relationship rule prov1ded that functional dependencies

Vx Vszzk((Uk(xk, k)AUk(Xk,Zk))DZ Zk)

holds on QJ’EQ’ . ,U Here, U],gz, U are not necessarily mutual]y dis-
joint. A re]ationsth rule may appear after repeatedly applied projection
transformations to one or more relation schemata, or may be given a priori

at the initial stage of database design. If such a rule holds, the relation
schema R is called a relationship relation schema and a relation R in R is
called a relationship relation. Tuples in a relationship relation are some-
times called relationships. The above gives a formal basis of notions regard-
ing relationship relations, which have been discussed in a more intuitive and

informal manner until today [CHE 1976].

3. CLASSIFICATION OF BINARY RELATIONSHIP RELATIONS
Let R be a binary relationship relation schema between two relation sche-

mata U and V, that is, functional dependencies

VxVuVu' ((U(x,u)aU(x,u’))su=u’),
and

vy ((V(y,v)av(y,v'))av=v’),
and a binary relationship rule

VxVy3ulv(R(x,y)>(U(x,u)aV(y,v)))
hold over R, U and V. For simplicity, let us define that

149

Q](x)aauu(x,u)
and :
0, (y)zavV(y,v).

Then the relationship rule can be rewritten as

Vx7y(R(x,y)=(@(x)ad,(y))).

Such binary relationship relation schemata are particularly important
because a binary relationship relation R in R can be regarded as a correspon-
dence between U in U and V in V, and also a directed graph whose nodes are
tuples in UuV and arcs are tuples in R can be considered. Cardihality of the
correspondence, and acyclicness and connéctedness'of the directed graph are
imporfant properties of the given binary relationship relation. Next let us
classify binary relationship relation schemata with reference to these prop-
erties.

First let us describe four important propekties of binary relationship
relation schemata in the form of rules holding on them. The first two are
functional dependencies
(FD) forward dependency: VxVyVy'((R(x,y)aR(x,y'))oy=y'),
and : .

(BD) backward dependency: VxVx'Vy((R(x,y)AR(x',y))3x=x')‘
To describe the last two rules certain recursively defined predicate symbols
become necessary, which were not necessarily introduced in defining algebraic
and functional transformations [KOB 1986].
(AC) acyclicness: VxVy(R(x,y):~eR(y,x)),

where OR(x,y) is recursively defined by

Op(x.y)=R(x,y)vaz(0p(x,2) AR(z,y)).
(CN) connectedness: VXVY((Qj(X)AQZ(Y))DFR(X,Y)),

where PR(x,y) is recursively defined by

F(x,¥)ZR(x,¥)VR(y ,x)vaz(Tp(x,2)A(R(z,y)vR(y,2))).

The forward dependency states that any relation R in R is a many-to-one
correspondence from {x|2yR(x,y)} to {y|ZxR(x,y)}. As a directed graph it can
Wnot contain forward branches. The backward dependency states that any relation
R in R is a one-to-many correspondence from {x|ZyR(x,y)} to {y|&xR(x,y)}. As
a directed graph it cannot contain any backward branches. Sometimes a finer'
specification for the cardinality of correspondence can be made by giving a
rule containing an aggregaté function. For example, to specify that any ele-
ment in {x|ZyR(x,y)} is corresponding to not less than u and not more than v

150

elements in {y|[¥xR(x,y)}, a rule
Vx(us(z3y;3R(x,y))onesv)
can be given, where (I;y;R(x,y))one is the aggregate function which summarizes
constant 1 for all y satisfying R(x,y), that is, counts elements y satisfying
R(x,y). If the both forward and backward dependencies hold, any relation R ‘in
R becomes a‘one-to-one'correspondence. The third rule states that any relation
R in R contains no circuits as a directed graph. The last rule states that it
is connected as a directed graph.
Let x2y be defined by
xzyzx;yveR(x,y). |
The relation > becomes a partial order on {x|Zy(R(x,y)vR(y,x)} if and only if
the acyclicness holds. It becomes a full order if and only if all the forward’
and backward dependencies, acyclicness and‘connectedness hold.
Binary relationship relation schemata can be classified according to
which rules holding on them. A binary relationship relation schema is called
a pillar schema if all the forward dependency, backward dependency, acyclicness
and connectedness hold on it. It is ,
called a colonnade schema if the for- <:> (:> ‘

ward dependency, backward dependency

and acyclicness hold on it. A binary (i>

relationship relation schema is called (%)

a tree schema if the backward depen-

dency, acyclicness and connectedness ‘ (%} (i) (:) : k f

hold on it. It is called a forest
schema if the backward dependency and
acyclicness hold on it. It is possible

pillar coloannade tree

to define a backward tree schema and a
backward forest schema by replacing
the backward dependency with the for-
ward dependency. All other binary re- .
lationship relation schemata are call-
ed network schemata. A network schema
is said to be oriented if the acyclic- _ (:>
ness holds on it. It is said to be forest netvork

connected if the connectedness holds Figure 3: Various types of
on it. There are several other combi- binary relationship relations.

151

nations of these four rules but only those mentioned above are important in

database environment. A binary relationship relation is called a pillar, col-

onnade, tree, forest or network according to what type of schema it belongs.

Figure 3 shows various types of binary relationship relations.

If for @1 and @2
Vx (<9, (x)v~,(x))
holds, that is,
Vx¥uVy (~U(x,u) v~V (x,v))

holds, then the relation schema R is said to be irrecursive. If R is irrecur-
sive, any relation U in U and V in V do not intersect. Otherwise R is said to

be recursive. For a recursive relationship relation schema, a rule

VxVuVv ((U(x,u)aV(x,v))ou=v)
is assumed in addition to functional dependencies

VxVuVu' ((U(x,u)aU(x,u'))ou=u')
and

VxVvVv ! ((V(x,v)AV(x,v'))ov=v').

If an irrecursive forest schema R satisfies the rule

Vyax(2,(y)aR(x,y)),
then R is called a hierarchy schema with respect to a pair
of predicate symbols (@1,¢2). Relations in a hierarchy sche-
ma are called hierarchies. The last rule can be written as

YyVvEx(V(y,v)=R(x,y)),

which is an inclusion dependency. Figure 4 shows a hierarchy.

The network model [BAC 1974] basically deals with hi-
erarchies. A hierarchy is represented by an arrow in the
Bachman Diagram. Shown in Figure 5 is a hierarchy R con-
necting U and V. In database management systems based on
CODASYL DBTG proposal [CDS 1971] a hierarchy is defined by
a SET command. Asserting the last inclusion dependency is
optional in these systems.

Let R, (k=1,2,...,m) be hierarchy schemata each with
respect to (Q]k,¢2k). If rules

ZX(¢11(X)D(“°22(X)A”¢23(X)A°"A“°2m(x)))’

X(¢]k(x):(¢]](x)v¢2](x)yé22(x)V...v@z(k_])(x)))

for k=2,3,...,m, and
Tx(~0; (x)v~2,(x))

V-J- .

Figure 4:
A Hierarchy.

Figure 5: Bachman
Diagram represent-
ing a hierarchy.

152

for izj, hold, then {R;,R,,...,R} is called a hierarchically structured sch-
ma. A set of hierarchies in a hierarchically structured schema is called a
hierarchical structure.

Let D,. be the set {xléij(x)}. The first rules states that DyynD, =
(k=2,3,...,m). By the definition of hierarchies, D11 does not intersect VPR
either. The second rule states that for k22 at least one of D]ch]],D]chZ],
D]kCDZZ”"’DIkCDZ(k-]) holds. (Exactly one of them holds due to the third
rule.) The third rule states that 05130995 -+ -30p (and D]]) are mutually
disjoint. Let {D',Dé,...,DA} be the set obtained from {011’012""’Dlm’021’
022""’02m} by eliminating Dij if there is a set qu for which DijCqu' Let
R(DL,D¢) stands for a
hierarchy schema Buv
whose origins are in
DQ and destinations
are in(D& exist. Then
the above three rules
can be interpreted as
R becoming a tree. The
relation corresponding
to R is called the hi-
erarchical skeleton of

skeleton

Figure 6: A hierarchical structure and its skeleton.

the given hierarchical-
1y structured schema. Figure 6 shows a hierarchical structure in a hierarchi-
cally structured schema and its skeleton.

The hierarchical model [TSI 1976] deals with hierarchical structures.
Since hierarchical structures very frequently appear in various business ap-
plications, certain special treatments of such structures were devised in most

of the database management systems developed in early days.

4. GRAPH TRANSFORMATIONS
Let us next discuss four basic graph transformations .each transforms a
group of relationship relation schemata into another group of relationship

relation schemata, and vice versa.

4.1. CONNECT/DISCONNECT TRANSFORMATION
Given two separate colonnades, it is sometimes possible to connect them

153

and generate a single colonnade, 1ossless1y. This transformation is very sim-
ple but plays important roles in transforming complicated relationship rela-
tions into simples ones.

4.1.1. TRANSFORMATION RULES

mm——

Let R and S be corresponding to two-position predicate symbols R and S,

respettively, and each represent-a colonnade. Assume that two one-position
predicate symbols @1 and ¢2 are given. The bidirectional transformation de-
fined by
(6TF1) R(x,y)+T(x,y),
(61F2) S(x,y)»T(x,y),
(6181) T(x,y)ad;(x)+R(x.y),
and
(6182) T(x,y)AQZ(x)+S(x,y), _
'is called the connect/disconnect transformation or simply the Gl-transforma-
tion.

Obviously, this is a special case of union/selection transformations
(the reverse of selection/union transformation). However, it is of special
importance when applied to colonnades.

4.1.2. RULES FOR THE TRANSFORMATION BEING BIJECTIVE
In the previous paper [KOB 1986], we have already seen rules necessary
for a union/selection transformation being lossless. Two alternative sets of
rules exist. In this special case, one is composed of
(6101) Vx(~a;(x)v~¢,(x)),
(6111) ¥x¥y(R(x,y)=#,(x)),
(6112) Vx¥y(S(x,y)=9,(x)),
and
(G1I7) ¥x¥y(T(x,y)=(8; (x)ve,(x))).
The second set can be obtained by replacing the rule (G101) with two rules
(6113) VxVy((R(x,y)a,(x))>S(x,y)),
and
(6114) xvy((S(x,y)ad;(x))=R(x,y)).
We have assumed that relations in R and S are colonnades. Three more ru]es
(6115) vxVx'Vy((R(x,y)aS(x",y))ox=x"),
(G116) vay(R(x,y):~e(R’S)(y,x)),

154

and
(6117) vxvy(S(x,y)>~0(p 5)(¥:x)),
are necessary for relations in T being colonnades, where G(R S)(x,y) is recur-

1

sively defined by '
O(r,s) (Xs¥)FRYIVS(x,y)vaz(ep oy (x,2)a(R(z,y)vS(z,¥))).
Since R becomes acyclic if (G116) holds and S becomes acyclic if (G117) holds,
the last two rules are a little stronger version of the acyclicness on a single
schema. ,
To show that T becomes a colonnade schema if and only if R and S are co]~:
onnades and these three rules hold, it is sufficient to prove the forward de- |
pendency, backward dependency and acyclicness on T are rewritten into forward é
and backward dependencies on R and S plus (G1I5), (G1I6) and (G117) by the :
backward transformation. We can use several propositions applicable to trans-
forming rules. The forward dependency ”
vxvyVy ' ((T(x,y)aT(x,y'))=y=y")
is transformed into
VxVyVy ' (((R(x,y)vS(x,y))A(R(x,y')vS(x,y')))=ay=y"'),
which is equivalent to
vxvyVy ' ((R(x,y)AR(x,y"))oy=y")a¥xVy¥y ' ((R(x,y)aS(x,y"))2y=y")
AVxVyVy ' ((S(x,y)aS(x,y'))ay=y").
If (G101) holds, R(x,y) and S(x,y') cannot hold at the same time. If (G113)
ho]ds whenever R(x,y) and ¢2(x) hold then S(x,y) holds. Since Qz(x) holds
if S(x,y) holds, R(x,y') also holds in this case. In both cases, the second
term is not necessary. Therefore, the first term, which is the forward depen-
dency on R, and the third term; which is the forward dependency on S, remain.
A little different situation exist for the

backward dependency ll XGI xll xsi
VxVx' ((T(x,y)AT(x"',y))ox=x"). "ZI *7 v | x ¥
This is transformed into X34 xyp xg ¥
v Wy ((R(x,y)AR(x))ox=x") S S
ATV ((R(X,y)AS(x ", y))x=x!) L ; l
AVXYX ! Yy ((S(x,y)AaS(x',y))ox=x"). s "5
In this case, all three terms are significant. R S : T
The first term is the backward dependency on R, ° 19, (x) . - :0,00
the third term is the backward dependency on S, Figure 7: A connect/d1s-

and the second term is (G1I5). It is easy to see connect transformation.

10

that the acyclicness

vxvy (T(x,y)>~8;(y,x))

on T is rewritten into

Vxiy ((R(.y)vS(x,9))2~0 p 5y (¥5x))
over R and S, from which rules (G1I6) and (G117) can be obtained.
Figure 7 shows an example of Gl-transformations.

4.2. TRIM/GRAFT TRANSFORMATION
In many cases, a forest is represented by a binary tree, or a hierarchi-

cal list. Devising such representation can be regarded as schema transforma-
tions from a pair composed of a forest schema and a colonnade schema into a
pair of two colonnade schemata.

4.2.1. TRANSFORMATION RULES

Let R be a forest schema corresponding to a two-position predicate symbol
R, and S and T be colonnade schemata corresponding to two-position predicate
symbols S and T, respectively. The bidirectional transformation defined by
(G2F1) R(x,y)A~Ez5(z,y)+T(x,y),
(6281) T(x,y)+R(x,y),
and
(G2B2) T(x,z)Aes(z,y)+R(x,y)
is called the trim/graft transformation or simply the G2-transformation. The
last transformation rule contains a recursively defined predicate symbol Og-
This rule can be rewritten as
(62B2') R(x,z)AS(z,y)R(x,y)
if the transformation rule is permitted to be applied recursively. Any rela-
tion S in S remains unchanged by the transformation.

4.2.2. RULES FOR THE TRANSFORMATION BEING BIJECTIVE

For the G2-transformation being lossless, several rules must hold over
R, S and T in addition to the backward dependency and acyclicness on R, and
the forward and backward dependencies and acyclicness on S and T. Rules to
hold over R and S are
(G211) VxVyVZ((R(X,y)AR(X,Z))DrS(y,Z)),
and ,
(G212) Vszix(PS(y,z):(R(x,y)AR(x,z))).

11

156

Rules to hold over S and T are ‘ '
(6211) ¥xVyvz(~S(x,z)v~T(y,z)), x//:f\\¥
and -
(6212) vyvzax(S(y,z)=(S(x,y)vT(x,y))). ¥/\& ; \&

A colonnade can be regarded as a col-

/o

/ ® \
lection of several pillars. The first two
rules state that S in S is a collection of > B 5
pillars each linking destinations of arcs in
"R in R with the common origin. The last two
state that the origin of any arc in S in § Figure 8: A trim/graft

transformation.

should be the destination of an arc in S in
Sor T in T but not the both. It is easy to prove that the forward transfor-
mat1on becomes injective if and only if the first two rules hold, while it
becomes surjective if and only if the last two rules hold. Figure 8 shows an
example G2-transformation.

P e B ® w . - ...

ey S > 3

4.2.3. COMBINATION OF A G1- AND A G2-TRANSFORMATION
Since a hierarchy schema R is a forest schema, the trim transformation
defined by
R(x,y)~~225(z,y)+T(x,y)
can be applied if a colonnade schema S satisfying
Vx7y¥z((R(x,y)AR(x,2))>Tg(y,2))
and
Vy¥Vz2x(rg(y,2)>(R(x,y)AR(x,2)))
is given. It can be seen that such a colonnade schema S can be defined when-
ever a hierarchy schema R is given. In this case, two predicate symbols &,
and ¢,, for which
Vx(~9; (x)v~2,(x))
holds, are defined. Then two additional rules
VXV.V(R(X;.Y)D(.q’] (X)A‘I’z(Y))
and
Vy&x(e,(y)=R(x,y))
holds on R, and, in accordance, two additional rules
Vxy(S(x,y)2(2,(x)ad,(y)))
and :
VxVy(T(x,y)a(0; (x)ad,(y)))

12

157

hald on S and T, respectively. In consequence, the connect transformation de-
fined by ' ' '

S(x,y)+U(x,y)
and
- T(x,y)-U(x,y)
can be applied to obtain a single colonnade schema U. This schema satisfies
all the forward dependency, backward dependency and acyclicness, and also two
ru]es' '

vxvy(U(x,y)=2,(y))
and

vx¥yaz(U(x,y)>(U(z,x)ve;(x))).

Conversely when a colonnade schema U satisfies these rules, then applying

the disconnect transformation defined by

U(x,y)aeq(x)+T(x,y)
and

U(x,y)a,(x)>S(x,y),
followed by the graft transformation defined by

T(x,y)+R(x,y)
and

T(x,z)a85(z,y)-R(x,y),
the original hierarchy schema R is reconstructed.

The G2-transformation provides a means to convert a forest schema into a

pair of colonnade schemata. A hierarchy schema is a special forest schema for
which the above combination of G1- and G2-transformations provides a means to

convert it into a single colonnade schema.

4.3. DISASSEMBLE/ASSEMBLE TRANSFORMATION :

Any relationship relation schema can be decomposed into several hierarchy
schemata. First let us show a schema transformation that transforms a binary
relationship relation schema of any type (can be a network schema) into two
hierarchy schemata. |

4.3.1. TRANSFORMATION RULES ‘
Let R be a binary relationship relation schema on which a relationship

rule '
VxVy(R(x,y)n(¢]1(X)A¢]2(¥))

13

158

e st

holds. Assume that a two-position function symbol f is given. Let S and T be .

two hierarchy schemata with respect to (Q]],éz) and (@12,¢2), respectively.
The transformation defined by
(G3F1) R(x,y)»S(x,f(x,y)),
(G3F2) R(x,y)»T(y,f(x,y))
and
(6381) S(x,2)aT(y,z)>R(x,y)
is called the disassemble/assemble transformation or simply the G3-transfor-
mation.
The importance of this transformation is at the point that R can be a
binary relationship relation schema of an arbitrary type, while both S and
T are hierarchy schemata.

4.3.2. RULES FOR THE TRANSFORMATION BEING BIJECTIVE
For the G3-transformation being lossless, a rule

(G301) VxVx'VyVy ' ((@(x)ad11(x")a0,(y)ad 5 (y ")af(x,y)=f(x",y"))a(x=x"ay=y"))
must be satisfied. This rule states that the function F itself is an injection

defined on
{x[&g (x)Ixly[21,(¥)}.
Any value standing for the pair (x,y) can be used as the function value. It
will be obvious that the transformation is bijective if and only if above rule
holds.
For the obtained schemata S and T being hierarchy schemata with respect
to (¢11,¢2) and (@12,¢2), respectively, two additional rules
(6302) ¥x(~(21(x)vey,(x))v~e,(x)),
and
(6303) Va¥y((07(x)ady5(y))28,(£(x.y)))
must be satisfied. The rule (G302) is equivalent to
Vx(~0 (x)v~2,(x)) aAVxVy (~0 , (x)v~2,(x)).
It will be easy to see that S and T become hierarchy schemata if and only if
(G302) and (G303) hold.
There is no rules to hold on R, except the relationship rule mentioned
previously, that is, R can be a binary relationship relation schema of any

pre. On the other hand, S and T are hierarchy schemata. This means that re]a-‘

tionship rules
VxTy(s(x,y)2(2;(x)22,(y)))

14

159

and | _ :
VW (T(x,¥)2(8,(x)a25(y))), 5

and inclusion dependencies L fen & /Y
Vy3x(,(y)=5(x,y)) R : RV

e Y ¢ [.

and : . ! S
Vyax(8,(y)oT(x,y)) 20 e 181,0) | ° 8y

must hold. Figure 9 shows an example. ' 3§ emeees > T

63-transformation. Figure 9: A disassemble/assemble
transformation. '
&;3'3' DISASSEMBLING IRRECURSIVE AND RECURSIVE RELATIONSHIP»RELATION SCHEMATA

Assume that R is a relationship relation schema on which the relationship

rule :
VxVyVz 88y (R(x,y,z)>(U(x,u)AV(y,v)))

holds. Transformation rules can be generalized for dealing with such cases.
Rules for the forward transformation are

(G3F1') R(x,y,w)>S(x,f(x,y)),

. :

(63F2") R(x,y,w)+T(y,f(x,y)) v v —

and '

(63F3') R(x,y,w)-W(r(x,y)w).

The backward transformation rule i3 S T S| |°

(G3B‘I ') S(X ’Z)AT(.V ,Z)AW(Z ,W)‘)'R(X Q.V:W) . ' a4 a4

Now 211> ¥y and %, are defined as W w
q’]] (X) EHUU(X ,U) ’ irrecursive fecutsive
¢]2(y)§3vV(y,V) : Figure 10: Hierarchies obtained

and ‘ from irrecursive and recursive

relationship relations.
8,(2)=%wH(z). P

Then S can be regarded as a hierarchy schema defined between U and W, while T
a hierarchy schema defined between y!;nd W. If R is irrecursive, any relation
U in U does not intersect any relation V in V. This is not the case if R is
recursive. Let UuV be a relation schema whose relations are UuV for U in U and
Vin V. Then both S and T can be regarded as hierarchy schemata between UuV
and W. Illustrated in Figure 10 are Bachman Diagrams corresponding to these
two cases. ‘

543.4 DISASSEMBLING N-ARY RELATIONSHIP RELATION SCHEMATA
The GB-transformation‘canvbevextended to that which disassembles an n-ary

15

160

relationship relation schema into n hierarchy schemata. Let R be an n-ary
relationship relation schema on which a relationship rule
VX]VXZ...VXnYyizlﬁgz...ﬁzn(R(x],x2,...,xn,y)
D(U](x]’ZI)AUZ(XZ’ZZ)A'”Aun(xn’zn)))
holds. Transformation rules for the extended G3-transformation are
(G3F1") R(xl,xz,...,xn,y)+sk(xk,f(x1,x2,...,xn))
for k=1,2,...,n,
(63F2") R(x],xz,...,xn,y)+w(f(x],x2,...,xn),y),
and
(G381") S (x ,Z)ASZ(X JZ)A. . .AS (x ,z)Aw(z,y)+R(xT,x2, ,xn,y).
Rules (G30]), (6302) and (G303) should be extended to
(6301") Vx]inVxZsz Vx vxn((&b”(x])/\@n(x])A¢>]2(x2)/\¢]2(x2)/\ A2q (%)
Adq o (XP)AF(X] 5%00 05X)=F (X! 15X3see05%1))2 (X=X} AX5=X 5 ceenx =X1))
(G302") V3((~(<I>”(x)vd>]2(x)v...vcb]n(x))v~d>2(x)) :
and :
(G303") Vklvxz...vxn((éll(x])A@lz(xz)A...A@ln(xn))3¢2(f(xl,Xz,---,xn))),
respectively, where v
Q]k(xk)sizkuk(xk,zk).
This transformation disassembles any n-ary relationship relation schema
into n hierarchy schemata §4’§2""’§n plus a relation schema W.
Note that the disassembling is applicable even for n=1. This implies that
if an inclusion dependency
VxVyRu(R(x,y)oU(x,u))
and a functional dependency
VPu¥u ((U(x,u)AU(x,u*))su=u")
hold, then R can be decomposed into a hierarchy schema S and a relation schema
W generated by rules '
R(x,y)»S(x,f(x)),
and
R(x,y)-W(f(x),y).
The Tatter representation is a little more complicated than the former but S
explicitly specifies the one-to-many correspondence from U onto W.

4.4. INTEGRATE/DISINTEGRATE TRANSFORMATION
 The connect/disconnect transformation connects two separate colonnades
into a single colonnade, and vice versa. A Tittle different transformation

16

161

that also generates a single colonnade from two separate colonnades and vice
yersa can be devised. Each of two colonnades to be combined is that obtained
from a hierarchy and a colonnade by the trim transformation followed by the
connéct transfdrmation.

.4.1. TRANSFORMATION RULES

PLEL B

Assume that three one-position predicate symbols ¢ @2'and ¢5 are given.
For three colonnade schemata R, S and T corresponding to two-position predicate
symbols R, S and T, respectively, the transformation defined by
(64F1) R(x,y)a2;(x)>T(x,y),
(64F2) R(x,y)a~2zS(x,z)-T(x,y),

(6G4F3) S(x,y)+T(x,y), ey i S
(G4F4) R(w,y)Ae (w,x)A~825(x,2)+T(x,y), ;f : éfi:;__+1
(G481) T(x,y)w](X)-*R(x,y), x‘f‘;‘z’g ;5 g %y
(6482) T(x,y)Ad,(x)ad,(y)>R(x,y), ; T
(G483) T(x,y)A¢3(y)+S(x,y), - R > 8 ;

and : 0:9,(x) o:9,(x) @ :9;(x)

(6484) T(w,y)no(undyly)norlx.wdady(x) ciore 11: A integrate/disintegrate
N"EZ(@T(X Z) A @T(W Z)A¢2(Z)) transformation. '
+R(x,y) ,

is called the integrate/disintegrate transformation or simply the G4-transfor-

mation. The transformation rules are apparently very complicated; however, it

can be understood by an example transformation shown in Figure 1T.

4.4.2. RULES FOR THE TRANSFORMATION BEING BIJECTIVE

First, for ®1s & and ¢35, @ rule
(6401) Vx((~2 (x)v~@,(x))A(~0,(x)v~ <I>3(x))A(~<D3(X)V~<I>] (x)))
must hold. This implies three predicate symbols 9, %, and @5 are mutually
exclusive.

On R and S, in addition to the forward and backward dependencies and acy-
clicness, rules ' ‘
(6411) ¥xVyZz(R(x,y)>(R(z,x)ve;(x)),

(6412) VxVy(R(x,y)28,(y)),

(G413) VxVyiz(S(x,y):(S(z x)va,(x))),
(6414) VxVy(S(x,y)=5(y))

and

17

162

(6415) Vy¥zAx((S(y,z)ad,(y))=R(x,y)) «
must hold. On T, in addition to forward and backward dependenc1es and acyc]1c-
ness, rules

(G417) VxVyEz(T(x,y):(T(z,x)v¢](x))),

(6412) Vxvy((T(x,y)ad;(x))20,(y))

and ,

(6413) vxvy(T(x,y)a(2,(y)ves(y)))

must hold. It will be easy to see that the transformation becomes b13ect1ve if
and only if all these rules are satisfied. |

4.4.3. CONVERTING A HIERARCHICALLY STRUCTURED SCHEMA INTO A COLONNADE SCHEMA
Let (54,52} be a hierarchically structured schema, where R, is a hierar-

chy schema with respect to (@]],QZ]) and R, is that with respect to (¢12’®22)°

According to the definition of hierarchically structured schemata, there can

be two cases:
(CASE 1) VX(¢]2(X)D¢]](X)) holds,
and
(CASE 2) Vx(élz(x)DQZ](x)) holds.
ObviousTy in the first case, Bq and Bz.can be combined into a single hierarchy
schema by defining

¢](x)5¢]](x)
and
¢2(x) ¢2](x)v¢22(x)
As already seen, this hierarchy schema can be transformed into a s1ng]e col--
onnade schema. In the second case, Ry and R, can be transformed into colonnade
schemata S and T, respectively. It is obvious that the above integrate trans-
formation is applicable to these two colonnade schemata. In both cases, there--
fore, a hierarchically structured schema with two components can be transform-
ed into a single colonnade schema losslessly. It will be easy to show that a
hierarchically structured schema with.more than two components can be trans-
formed losslessly into a single colonnade schema by applying this procedure
repeatedly. Note that this transformation can be applied to a forest schema to
obtain a colonnade schema but it is, in general, a lossy transformation be-
cause the backward transformation is impossible.

5. BRIDGING GAPS AMONG DATA MODELS

18

163

Data models can be classified into two major categories. Data models in
the first category do not make distinctidns between entfty and relationship
relations. Information Algebra [CDS 1962], Relational Model [COD 1970], Ex-
tended Set Theory [CHI 1977] and Infological Model [SUN 1974] fall into this
category. There can be variouskdatabase'schemata based on these models for
representing very same world. Data tranélations among equivalent schemata can
be described in terms of four basic transformations (algebraic and functional
transformations) presented in the previous paper [KOB 1986].‘

Data models in the second category make distinctions between entity and
relationship relations. Entity-Relationship Model [CHE 1976] deals with n-ary
relationship relation schemata, while Information Space Model [K0B 1975a,
1975b] deals only with binary relationship relation schemata but of any type.
Network Model [BAC 1974] can handle hierarchy schemata and some special pil-
lar/colonnade schemata. More than two hierarchy schemata can be defined on a
single relation schema. Hierarchical Model [TSI 1976] deals only with hierar-
chically structured schemata but only one hierarchically structured schemata
can be defined on a single relation schema.

As mentioned in section 2, relationship relation schemata can be formally
defined in terms of relationship rules. Binary relationship relation schemata
are classified into several types according to which of the forward dependency,
backward dependency, acyclicness and connectedness holding on them. These
bridge the gap between data models in the first category and those in the sec-
ond category. :

Bridging the gap between Entity-Relationship Model (or Information Space
Model) and Network Model, the disassembling/assembling transformation can be
used. The definition of hierarchically structured schemata presented in sec-
tion 3 may bridge the gap between Hierarchical Model and Network Model.

In existing database management systems, various statements are provided
for defining relation schemata and rules holding on them. For example, in
DBTG-type systems; a FILE statement defines a relation schema, while a SET
statement defines a relation schema and also introduces two rules (re]ation-
Ship rule and backward dependency) to hold on it. Statements such as MANDATARY
and AUTOMATIC assert certain rules to hold on binary relationship relation
schemata. Making a precise correspondence between each statement and the de-
fined schema/asserted rules may provide deeper and clearer understanding of
data models and database management systems. It may‘also suggest a possjbili-_

19

164

ty of integrating deductive capability, possesed by PROLOG for example, into-
these database management systems.

Binary models such as Data Semantics [ABR 1974], DIAM [SEN 1973], Binary
Logical Association [BRA 1976] and Extended Semantic Model [HAI 1975] are
somewhat hybrid. A binary relation schema is sometimes dealt with as a flat
relation, and sometimes as a correspondence. Anyway, data translations between
these models and other models can be formally described using four basic schems
transformations and four graph transformations discussed in this paper.

6. PHYSICAL REPRESENTATION OF BINARY RELATIONSHIP RELATIONS

The connect/disconnect transformation, trim/graft transformation and in-
tegrate/disintegrate transformation have a special importance in devising phys-
ical representation of binary relationship relations. This is based on the fact

that a colonnade can be represented by a linear list.

Let R be a binary relationship relation schema on which a relationship

rule

VxVyauldv(R(x,y)>(U(x,u)aV(y,v))
holds. Here g_can be either recursive or irrecursive. Let p be a function sat-
isfying |

¥xVx' ((p(x)ap(x'))=x=x").
This rule implies that p is an injection. A typical example of such functions
is the memory address of the record representing the tuple (x,u). In this case,
p is called a pointer.

The 1ist representation of relations R in R can be regarded as the trans-
formation defined by .
(LF1) U(x,u)a~V(x,u)AR(x,y)-U" (x,u;p(y)),

(LF2) U(x,u)a~ayR(x,y)-+U'(x,u,1),

(LF3) V(x,u)aR(x,y)=V'(x,u,p(y)),

(LF4) V(x,u)a~ayR(x,y)+V'(x,u,1),

(LB1) U'(x,u,z)-U(x,u),

(LB2) V' (x,u,z)azz1sU(x,u),

(LB3) V' (x,u,z)+V(x,u),

(LB4) U'(x,u Z)AZ=L+R(X,p- (z)),

(LBS) V'(x,u,z)az=1+R(x,p" (z))

Note that backward transformation rules assume the funct1on p being a bijec-

tion. A rule

20

165

VXVUVU'VZVZ' (~U (x,u,z) vV (x,ut,2"))
always hold, that is, any relation U' in U' does not intersect any relation V' .
inV'.

Functional dependencies

VXVuVu'vz¥z' ((U'(x,u,z)aU' (x,u',z'))>(u=u'az=z"))
and
VXVUVU'VzVz' ((V' (x,u,z)aV' (x,u',z'))o(u=u'az=z"))
hold if and only if R satisfies the forward dependency. Functional dependencies
VxVx'VuVu'Vz((U'(x,u,z)AU'(x',u',z)):(x=x'Au=u')),
and _
VXV 'Vuvu' vz (V' (x,u,2)AV ' (x',u',2))a(x=x"au=u')),
and a rule
YXVX'Vuvu'vz(~U" (x,u,z)v~V'(x"',u',z))
hold if and only if R satisfies the backward dependency. Finally, -two rules
VxVqu(U'(x,u,z):~A(p-](z),x))
and
VxVuvz(V' (x,u,2)>~A(p" 1 (2) ,x))
hold, where A(x,y) is recursively defined by
A(x,y)=BuV! (x,u,p(y)) vaudz(A(x,z)aV ' (z,u,p(y))),
if and only if B_satisfies the acyclicness. The above seven rules together
characterize the linear list representation. We have seen that the linear list
representation is possible if and only if R is a colonnade schema.

The trim transformation provides a means of representing a forest by two
pointers each comprising a linear list. If it is a hierarchy, the connect
transformation can be applied after the trim transformation, and.conseddent]y
it can be represented by a single pointer comprising a linear list. Futhermore,
the integrate transformation provides a means of representing a hierarchical
structure by a single pointer comprising a linear Tist.

It is possible to introduce additional transformations to append optional
pointers to obtain a bidirectional 1ist or a unidirectional or bidirectional
ring. If the colonnade schema to be represented is that obtained by applying
the trim transformation and connect transformation to a hierarchy schema R,

a backward pointer can be added by aﬁp]ying the list representation mentioned

above for R' defined by |
R'(x,y)=R(y,x).

These transformations can be considered as the foundation of physical repre-

21

166

sentation employed in existing database management systems based on Network
and Hierarchical Models,

7. CONCLUSION

Data translations among various data models and hence various database
management systems are important. Major difficulties in devising such data
translations are caused by the reason that various notions are described in
terminologies specific to data models. In particular, dealing with relation-

ships and related notions is not a simple problem,

In this paper, relationships and several related rotions have been for-
mally described using'rules’(constraints) holding on relation schemata. Also
four lossless schema transformations regarding binary relationship relation
schemata have been presented. These may bridge gaps among various data models
and database management systems. : ‘

List representation of binary relationship relations has been treated as
a certain (lossless) schema transformation. This approach may suggest that
some parts of the physical database organization problem can be dealt with as
schema transformation problems.

REFERENCES v
"[ABR 1974] J.R.Abrial, Data Semantics, J.W.Klimbie, and K.L.Koffman; eds.?
Data Base Management, pp.1-59, North-Holland, Amsterdam, 1974. }
[BAC 1974] C.W.Bachman, The Data Structure Set Model, Proc. ACM SIGMOD '74,
‘ pp.1-10, 1974.
[BRA 1976] G.Bracchi, P.Paolini, and G.Pelagatti, Binary Logical Associations -
in Data Modelling, G.M.Nijssen, -ed., Modelling in Data Base
Systems, pp.125-148, North-Holland, Amsterdam, 1976.
[CDS 1962] CODASYL Development Committee, An Information Algebra: Phase I
: report, Comm. ACM, Vo1.5; No.4, pp.190é204, 1962. ‘
[CDS 1971] CODASYL Data Base Task Group, April, 1971.report, ACM, 1971.
[CHE 1976] P.P.Chen, The Entity-Relationship Model: Toward a Unified View of
Data, ACM Trans. Database Syst., Vol.1l, No.1, pp.9-36, 1976.

122

[CHI

[COD

[HAI

[KOB 1975a]

[K0B 1975b]

[KoB

[SEN

[SUN

[TSI

19771

1970]

1975]

1986]

1973]

1974]

1976}

167

D.L.Childs, Extended Set Theory: A General Model for Very Large,
Distributed, Backend Information Systems, Proc. 3rd VLDB, pp.28-
46, 1977.

E.F.Codd, A Relational Model of Data for Large Shared Data Banks,
Comm. ACM, Vol.13, No.6, pp.377-387, 1970. ;
J.L.Hainaut, and B.Lacharlier, An Ektensibie Semantic Model of
Data Base Systems and Its Data Language, Proc. IFIP Congr.,
pp.1026-1030, North-Holland, Amsterdam, 1975.

I.Kobayashi, Information and Information Processing Structure,
Int. J. Infor. Syst., Vol.l, No.2, pp.39-50, 1975. ,
I.Kobayashi, DBTG Model, Relational Model and Information Space
Model of the Information Structure, Proc. 2nd USA-JAPAN Comp.
Conf., pp.329-334, 1975.

I.Kobayashi, Losslessness and Semantic Correctness of . Database
Schema Transformation: Another Look of Schema Equivalence, To
appear in Int. J. Infor. Syst., Vol.11, No.1l, 1986.

M.B.Senko, E.B.Altman, M.M.AStrahan, and P.L.Fehder, Data
Structures and Accessing in Data-Base Systems, IBM Syst. J.
Vol.12, No.l, pp.30-93, 1973. .

B.Sundgren, Conceptual Foundation of the Infological Approach
to Data Bases, J.W.Klimbie, and K.L.Koffman, eds., Data Base
Management, pp.61-96, North-Holland, Amsterdam, 1974.
D.C.Tsichritzis, and ‘F.H.Lochovsky, . Hierarchical . Data-Base
Management: A Survey, ACM Comp. Surv., Vol.8, No.2, pp.105-123,
1976.

23

