Topologically Extremal Real Surfaces in $\mathbb{P}^2 \times \mathbb{P}^1$ and $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$.

by Goo ISHIKAWA (石川 剛郎).

Department of Mathematics, Faculty of Sciences, Nara Women's University, Nara 630, Japan.

From a general viewpoint we illustrate a method of construction of surfaces in $\mathbb{P}^2 \times \mathbb{P}^1$ and $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ defined over \mathbb{R} having topologically extremal properties. Precisely we show that for each d, e and r there exists an M-surface A in $\mathbb{P}^2 \times \mathbb{P}^1$ (resp. $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$) of degree (d,r) (resp. (d,e,r)) such that the projection $\mathbb{A} \longrightarrow \mathbb{P}^1$ has the maximal number of real critical points. The construction of M-surfaces in \mathbb{P}^3 by 0.Ya.Viro is also made more clear.

0. Introduction.

Harnack [H] pointed out that the number of components in the real locus of a curve in \mathbb{P}^2 of degree d defined over \mathbb{R} does not exceed 1+(1/2)(d-1)(d-2) and, for each d, there exists a non-singular curve in \mathbb{P}^2 of degree d defined over \mathbb{R} , the real locus of which has exactly 1+(1/2)(d-1)(d-2) components.

Hilbert in his 16th problem proposed to investigate

topological restrictions for hypersurfaces in \mathbb{P}^n of fixed degree defined over \mathbb{R} .

One may regard an real algebraic function as an one-parameter family of hypersurfaces defined over \mathbb{R} , and it is natural to investigete topological restrictions for hypersurfaces in $\mathbb{R}^n \times \mathbb{R}^1$ of fixed degree defined over \mathbb{R} .

Let $A \in \mathbb{P}^n \times \mathbb{P}^1$ be a real hypersurface of degree (d,r), that is, the zero-locus of a polynomial $\sum_{0 \le i \le r} F_i(X_0, \dots, X_n) \lambda^{r-i} \mu^i$,

where F_i ($0 \le i \le r$) is a real homogeneous polynomial of degree d. Consider the projection $\varphi \colon A \longrightarrow \mathbb{P}^1$. Our main object is the topology of real locus A_{iR} of A and singularities of the restriction $\varphi_{iR} \colon A_{iR} \longrightarrow \mathbb{RP}^1$ of φ to A_{iR} .

We denote by $P_t(X,K)$ the Poincare series of a space X over a field K with indeterminate t, and by s(f) the number of critical points of a function $f\colon X\longrightarrow R$ from a n-dimensional manifold to an one-dimensional manifold.

If $A \in \mathbb{P}^n \times \mathbb{P}^1$ is non-singular, then the diffeomorphism type of A is determined by (d,r). For example,

$$P_{1}(A,K) = \begin{cases} \chi(A) & (n:even), \\ \\ 2(n+1)-\chi(A) & (n:odd), \end{cases}$$
 for any K ,

$$\chi(A) = (n+1)(1-d)^n r + 2(\frac{(1-d)^{n+1}-1}{d} + n+1), (cf. 1.6).$$

We call A generic if A is non-singular and $\varphi\colon A\longrightarrow P^1$ has only non-degenerate critical points.

If A is generic, then $s(\varphi) = (n+1)(d-1)^n r$ (cf. 1.6). By Harnack-Thom's inequality ([G]), we have an uniform estimate:

$$\begin{cases} P_{1}(A_{\mathbb{R}}; \mathbb{Z}/2) & \leq P_{1}(A; \mathbb{Z}/2), \\ s(\varphi_{\mathbb{R}}) & \leq s(\varphi). \end{cases}$$

In this note from a general viewpoint we show the following

Theorem 0.1. For n = 1, 2 and for each (d,r), the estimate (0.0) is sharp, that is, there exists a generic real hypersurface of $\mathbb{P}^n \times \mathbb{P}^1$ of degree (d,r) attaining both equalities in (0.0).

Notice that in the case r=1 Theorem 0.1 is proved in [I]. A finer result is obtained in the case n=1. For $A \subset \mathbb{P}^1 \times \mathbb{P}^1$, we denote by $\pi \colon A \longrightarrow \mathbb{P}^1$ the projection to the first component.

<u>Proposition 0.2</u>. For non-singular real curves $A \subset \mathbb{P}^1_X \mathbb{P}^1$ of degree (d,e) such that both φ , π have only non-degenerate critical points, there exists the sharp estimate:

$$P_1(A_R; Z/2) \le 2 + 2(d-1)(e-1),$$
 $s(\gamma_R) \le 2(d-1)e, \quad s(\pi_R) \le 2d(e-1).$

Now let us formulate a general theorem which implies Theorem 0.1.

Let S be a real complex surface (cf. 2.1), C \subset S be a real curve possibly with singularities. A non-singular component E of $G_R \subset S_R$ is an <u>oval</u> (resp. an <u>empty oval</u>) if there exists an embedding i: $D^2 \longrightarrow S_R$ such that $i(\partial D^2) = E$ (and that $i(int D^2) \cap C_R$ is empty).

Let S be compact, L a real holomorphic line bundle (cf. 2.6), s_0 , s_1 M-sections of L (cf. 2.7).

Consider the following condition (*):

- (*i) The zero-loci $(s_0)_0$ and $(s_1)_0$ are both connected and of genus g.
- (*ii) $(s_0)_0$ and $(s_1)_0$ intersect in $(c_1(L)^2,[S])$ points in S_R .
- (*iii) The real locus of $(s_0s_1)_0 = (s_0)_0 \cup (s_1)_0$ has 2g empty ovals.

We denote by \mathbb{P}^1_1 the real complex curve $(\mathbb{P}^1, \mathcal{T}_1)$, where \mathcal{T}_1 is the complex conjugation (cf. 2.3). Fix a pair of M-sections λ , μ of $\mathcal{O}_{\mathbb{P}^1_1}(1)$ such that $(\lambda)_0 \neq (\mu)_0$.

Denote by $\psi \colon SXP_1^1 \longrightarrow P_1^1$, $\xi \colon SXP_1^1 \longrightarrow S$ the projections. For a transverse section s of $\xi L \otimes \psi \mathcal{O}_{P_1^1}(r)$ (cf. 1.3), denote

by $\varphi: (s)_0 \longrightarrow \mathbb{P}^1_1$, $\pi: (s)_0 \longrightarrow S$ the restrictions of projections. Then, associated to s, there is a natural section of $\text{Hom}(T(s)_0, \Psi^*T\mathbb{P}^1_1)$ defined by the tangent map of φ .

Theorem 0.4. Let S be an M-surface with connected real part S_R , L be a real holomorphic line bundle with a pair s_0 , s_1 of M-sections of L satisfying the condition (*). Then, for any r, there exists an M-section s of $\{*L\otimes \psi*\mathcal{O}_1(r)\}$ over $SX \ \mathbb{P}^1_1$ near $s_0 \otimes \lambda^r$, which associates an M-section of $Hom(T(s)_0, \varphi*TP_1^1)$ defied by the projection $\varphi: (s)_0 \longrightarrow \mathbb{P}^1_1$.

Explicitely, s can be taken in a form

$$\begin{split} &\sum_{0 \leq i \leq r} \xi_i s_i \lambda^i \mu^{r-i}, \quad \text{where} \quad s_i = s_0 \text{ (i:even), } s_i = s_1 \text{ (i:odd)} \quad \text{and} \\ &\xi_0, \xi_1, \dots, \xi_r \quad \text{are real numbers with} \quad 1 = \xi_0 \gg |\xi_1| \gg \dots \gg |\xi_r| > 0. \end{split}$$

Remark 0.5. A sufficient condition for the existence of a pair of M-sections satisfying (*) is given in section 4. Theorem 0.4 with this sufficient condition implies immediately Theorem 0.1 in the case n = 2.

Putting $S = \mathbb{P}^1 \times \mathbb{P}^1$ $(= \mathbb{P}^1_1 \times \mathbb{P}^1_1)$ and $L = \mathcal{O}_{\mathbb{P}^1}(d) \otimes \mathcal{O}_{\mathbb{P}^1}(r)$ over S, we have

Corollary 0.6. For non-singular real surface $A \subset \mathbb{P}^1 \times \mathbb{P}^1$ of degree (d,e,r) such that $Y \colon A \longrightarrow \mathbb{P}^1$ has only non-degenerate critical points, there exists the sharp estimate:

$$\begin{cases} P_{1}(A_{\mathbb{R}}; \mathbb{Z}/2) \leq 6 \text{der-4de-4er-4rd+4d+4e+4r,} \\ s(\varphi_{\mathbb{R}}) \leq (6 \text{de-4d-4e+4})r. \end{cases}$$

From Theorem 0.4, it naturally arises the following general problem:

Problem 0.7. Let E be a real holomorphic vector bundle over a real complex manifold. Give a criterion for the existence or the non-existence of M-sections of E.

Lastly we intend to clearfy the construction of M-surfaces in $\mbox{\em P}^3$ by Viro [V].

Theorem 0.8.(Viro) For non-singular real surfaces A in \mathbb{P}^3 of degree d, there exists the sharp estimate:

$$P_1(A_{IR}; \mathbb{Z}/2) \le d^3 - 4d^2 + 6d.$$

Let X_0, X_1, X_2, X_3 be homogeneous coordinates of \mathbb{P}^3 . Put $\mathbb{P}^2 = \{X_3 = 0\}$, $\mathbb{P}^1 = \{X_3 = X_3 = 0\}$ and $\mathbb{P}^1 = \{X_0 = X_1 = 0\}$. Let $\mathcal{P}: \mathbb{P}^3 - \mathbb{P}^1 \to \mathbb{P}^1$ be a projection. Fix a tubular neighborhood $\mathbb{P}^1 \to \mathbb{P}^1 \to \mathbb{P}^1 \to \mathbb{P}^1$ is empty.

Observe that for each d there exist M-sections s_0,\ldots,s_d of $\mathcal{O}_{\mathbb{P}^2}(0),\ldots,\mathcal{O}_{\mathbb{P}^2}(d)$ near $X_2^{\ 0},\ldots,X_2^{\ d}$ respectively such that $(s_i)_0$ and $(s_{i+1})_0$ intersect in i(i+1) points in \mathbb{RP}^2 , the real locus of $(s_is_{i+1})_0$ has (1/2)(i-1)(i-2)+(1/2)i(i-1) empty ovals $(0\leq i\leq d-1)$ and $\mathcal{V}|(s_i)_0$ has (i-1)i real critical points $(0\leq i\leq d)$. Naturally each s_i is extended to a section s_i of $\mathcal{O}_{\mathbb{RP}^3}(i)$ $(0\leq i\leq d)$.

Put $s = \sum_{0 \le i \le d} \xi_i X_2^{d-i} \widetilde{s}_i \in H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(d))_{\mathbb{R}}$, and $A = (s)_0$.

Take real numbers ξ_0, \dots, ξ_d to be $1 = \xi_0 \gg |\xi_1| \gg \dots \gg |\xi_d| > 0$ and of appropriate signs.

 $\P_{\rm IR}\colon {\rm A_{\rm IR}}^{-{\rm U}} \longrightarrow {\rm RP}^{\rm l} \quad {\rm defines} \ {\rm a} \ {\rm vector} \ {\rm field} \quad \S' \quad {\rm over} \quad {\rm A_{\rm IR}}^{-{\rm U}}.$ §' is extended to a vector field § over ${\rm A_{\rm IR}}$ with finite singularities.

Denote by $s^+(3)$ (resp. $s^-(3)$) the sum of positive (resp. negative) indices of singular points of 3, and put $t_i = \dim H_i(A_R; \mathbb{Z}/2)$ (i=1,2,3). Then we see

$$s^{+}(\S) \ge d + (1/3)d(d-1)(d-2),$$

 $s^{-}(\S) \ge (1/3)(d+1)d(d-1) + (1/3)d(d-1)(d-2).$

Thus $\chi(A_{1R}) = s^{+}(3) - s^{-}(3) \ge d - (1/3)(d+1)d(d-1)$. On the other hand $t_0 + t_1 \ge 2 + (1/3)(d-1)(d-2)(d-3)$. Hence we have

$$P_{1}(A_{|R}; \mathbb{Z}/2) = t_{0} + t_{1} + t_{2}$$

$$= 2(t_{0} + t_{2}) - \chi(A_{|R})$$

$$\geq d^{3} - 4d^{2} + 6d \quad (= P_{1}(A; \mathbb{Z}/2)).$$

By Harnack-Thom's inequality, all equalities are hold.

The author would like to thank J.J.Risler for helpful suggestions, Takashi Matsuoka for informing the existence of [P] and M-h Saito for valuable comments.

- 1. Preliminary: Complex Topology.
- (1.0) Let X be a complex manifold, $\pi \colon E \longrightarrow X$ a holomorphic vector bundle and $s \colon X \longrightarrow E$ a holomorphic section. Put $(s)_0 = \{x \in X \mid s(x) = 0\}$.

Denote by H the complex vector space $\operatorname{H}^0(X,E)$ of totality of holomorphic sections of E over X, and by PH the projectification of H.

Put $Z = \{(x,[s]) \in X \times PH \mid s(x) = 0 \}$ and consider the projection $\Phi \colon Z \longrightarrow PH$. Then s is transverse if and only if Z is non-singular along $\Phi^{-1}[s]$ and Φ is submersive over [s] In particular, for transverse sections s, $s' \in H$, $(s)_0$ and $(s')_0$ are diffeomorphic.

(1.1) Let $s \in H^0(X,E)$ be transverse. Put $Z = (s)_0$. Then we have an exact sequence

$$0 \longrightarrow TZ \longrightarrow TX|_Z \longrightarrow E|_Z \longrightarrow 0,$$

of complex vector bundles. Therefore $c_t(TX|_Z) = c_t(TZ)c_t(E|_Z)$ for Chern polynomials. The Chern classes of TZ are calculated

by the formula
$$c_t(TZ) = \frac{c_t(TX|_Z)}{c_t(E|_Z)}$$
 (cf. [F]).

(1.2) Let L be a holomorphic line bundle over a complex manifold V of dimension n. Let Z be the zero-locus of a transverse section of L. Then by (1.1),

$$\chi(z) = \langle \sum_{i+j=n+1} (-1)^{j} c_{i}(TV)(c_{1}(L))^{j+1}, [V] \rangle.$$

For example, if $\dim V = 2$, then

$$\chi(z) = \langle c_1(TV)c_1(L) - c_1(L)^2, [V] \rangle.$$

Furthermore, if Z is connected, then

$$X(Z) = 1 + (1/2)\langle c_1(L)^2 - c_1(L)c_1(TV), [V] \rangle.$$

(1.3) Let R be a non-singular curve of genus g. Denote by $\S: V \times R \longrightarrow V$ and $\oint: V \times R \longrightarrow R$ the projections. Put $L' = \S*L \otimes \not+ *\mathcal{O}_R(r)$ over $V \times R$ for each r. Let $A \subset V \times R$ be the zero-locus of a transverse section of L'.

Then $\chi(A) = \langle f, [V] \rangle$, where

$$f = rc_n(TV) + \sum_{i+j=n,j>0} ((j+1)r+2g-2)c_i(TV)(-c_1(L))^j,$$

as an element of $H^{2n}(V;\mathbb{Z})$.

For example, if $\dim V = 2$, then

$$\chi(A) = \langle rc_2(TV) - (2r+2g-2)c_1(TV)c_1(L) + (3r+2g-2)c_1(L)^2,$$
[V]>.

(1.4) Example. Let C,C' and C" be non-singular curves

of genus g,g' and g" respectively. Put $X = C \times C' \times C''$, and denote projections by p_1, p_2 and p_3 to C,C' and C'' respectively. Let $A \subseteq X$ be the zero-locus of a transverse section of $L' = p_1 * \mathcal{O}_C(d) \otimes p_2 * \mathcal{O}_{C'}(d') \otimes p_3 * \mathcal{O}_{C''}(d'')$. Then X(A) is equal to 6(d-1)(d'-1)(d''-1) + (2+4g'')(d-1)(d'-1) + (2+4g'g'')(d-1) + (2+4g'g'')(d-1) + (2+4g'g'')(d''-1) + (2+4g''g'')(d''-1) + (2+4g''g''') + (2+4g''g'''+g'''g'').

(1.5) In (1.3), denote by $\varphi: A \longrightarrow R$ the projection to $\varphi: A \longrightarrow R$ the pro

as an element of $H^{2n}(V;Z)$.

For example, if $\dim V = 2$, then

$$\langle c_2(\xi), [A] \rangle = r \langle c_2(TV) - 2c_1(TV)c_1(L) + 3c_1(L)^2, [V] \rangle$$
.

(1.6) Let A be a non-singular hypersurface of $\mathbb{P}^n \times \mathbb{P}^1$. of degree (d,r). Then $\chi(A) = \langle c_n(TA), [A] \rangle$ is equal to

$$(n+1)(1-d)^n r + 2(\frac{(1-d)^{n+1}-1}{d} + n+1).$$

If $\varphi: A \longrightarrow P^1$ has only isolated critical points, then $s(\varphi) = \langle c_n(\text{Hom}(\text{TA}, *\text{TP}^1)), [A] \rangle$ is equal to $(n+1)(d-1)^n r$.

(1.7) Let A be a non-singular irreducible projective variety of dimension n. Then $H_{\mathbf{i}}(A;\mathbf{Z})$ is torsion free for all i, and rank $H_{\mathbf{i}}(A;\mathbf{Z})$ is equal to 0 (i\neq n, i:odd), 1 (i\neq n, i:even), $n+1-\chi(A)$ (i=n, n:odd), $\chi(A)-n$ (i=n, n:even).

- (1.8) If A is a simply connected compact complex surface, then $P_t(A;K) = P_{-t}(A,K)$, and $P_1(A;K) = P_{-1}(A;K) = \chi(A)$ for any field K.
 - 2. Preliminary: Real Topology.
- (2.1) A <u>real structure</u> on a complex manifold X is an anti-holomorphic involution $\tau: X \longrightarrow X$. The pair (X,τ) is called a <u>real complex manifold</u>. Two real complex manifolds (X,τ) , (X',τ') are isomorphic if there is an isomorphism $f: X \longrightarrow X'$ of complex manifolds satisfying $f: T = T' \cdot f$ (cf. [S]).
- (2.2) Let (X,T) be a real complex manifold. We denote by $X_{\mathbb{R}}$ the space X^{T} of fixed points of T in X, and call it the <u>real locus</u> of X (with respect to T).
- (X,T) is a <u>M-manifold</u> if $P_1(X_R; \mathbb{Z}/2) = P_1(X; \mathbb{Z}/2)$ (cf. [G]). A M-manifold (X,T) of dimension 1 (resp. 2) is called a M-curve (resp. M-surface).
- (2.3) Example. The number of equivalence classes of real structures on $I\!P^n$ is one if n is even and two if n is odd (cf. [F], p.240).

The anti-holomorphic involution $\tau': \mathbb{P}^{2m+1} \longrightarrow \mathbb{P}^{2m+1}$ defined by $\tau'[X_0:X_1:\ldots:X_{2i}:X_{2i+1}:\ldots:X_{2m}:X_{2m+1}] = [-\overline{X}_1:\overline{X}_0:\ldots:-\overline{X}_{2i+1}:\overline{X}_{2i}:\ldots:-\overline{X}_{2m+1}:\overline{X}_{2m}]$ gives a real structure not equivalent to the usual real structure defined by the complex conjugation $(\mathbb{P}^{2m+1}, \tau_{2m+1})$. We often denote by $\mathbb{P}_0^{2m+1} = (\mathbb{P}^{2m+1}, \tau_{2m+1})$.

Then ${\mathbb P}^{2m}$ and ${\mathbb P}^{2m+1}_1$ are M-manifolds, but ${\mathbb P}^{2m+1}_0$ is not a M-manifold.

(2.4) From properties of Poicare series, we see

Lemma. Let (X,T), (X',T') be M-manifolds. Then $(X \perp \!\!\! \perp X', T \perp \!\!\! \perp T')$ and $(X \times X', T \times T')$ are also M-manifolds.

(2.5) <u>Lemma.</u> Let (X,T) be a M-surface with $H_1(X;\mathbb{Z}/2)$ = 0 and $H_0(X_R;\mathbb{Z}/2) \cong \mathbb{Z}/2$. Then $\chi(X) + \chi(X_R) = 4$.

Proof. $P_{-1}(X; \mathbb{Z}/2) = P_{1}(X; \mathbb{Z}/2) = P_{1}(X_{|R}; \mathbb{Z}/2).$ $P_{1}(X_{|R}; \mathbb{Z}/2) + P_{-1}(X_{|R}; \mathbb{Z}/2) = 2(\dim H_{0}(X_{|R}; \mathbb{Z}/2) + \dim H_{2}(X_{|R}; \mathbb{Z}/2))$ = 4.

(2.6) Let $\pi\colon E\longrightarrow X$ be a holomorphic vector bundle over a real complex manifold (X,T). A real structure of π is a real structure $T\colon E\longrightarrow E$ of E as a complex manifold (cf. 2.1) such that $\pi\circ T=\tau\circ\pi$ and the restriction $T_x\colon E_x\longrightarrow E_{\tau(x)}$ to each fiber $(x\in X)$ is conjugate linear.

We call the triple $E = (\pi; T, T)$ a <u>real holomorphic vector</u> bundle (cf. [A]). Notice that the restriction $\pi_R \colon E_R \longrightarrow X_R$ to the real locus of π is a real vector bundle.

A holomorphic section $s \in H^0(X,E)$ of E is <u>real</u> if $T \circ s \circ \tau^{-1} = s$, that is, $s \in H^0(X,E)_{\mathbb{R}}$ with respect to the anti-holomorphic involution $s \longmapsto T \circ s \circ \tau^{-1}$.

- (2.7) <u>Definition.</u> A holomorphic section s of a real holomorphic vector bundle over a real complex manifold (X, T) is a M-section if s is transverse, real and the zero-locus $(s)_0 \subset X$ with restricted T is a M-manifold.
- (2.8) Remark. Two real holomorphic vector bundles are isomorphic as real holomorphic vector bundles if and only if they are isomorphic as holomorphic vector bundles.

On \mathbb{P}^n , any holomorphic line bundle has a structure of real holomorphic line bundle.

(2.9) Poincaré-Hopf-Pugh formula (cf. [P]).

Let M be a compact C^{∞} manifold of dimension n with boundary ∂M .

A tangent vector to M at a point x_0 of M is external if $df_{x_0}($ $\}$) is positive for some C^{∞} function f defined in a neighborhood U of x_0 such that $f^{-1}(0) = 2M \cap U$, f takes negative values in $(M-2M) \cap U$ and $df/2M \cap U$ does not vanish (figure 1):

external

Let $v: \mathfrak{Z}M \longrightarrow TM \mathfrak{D}M$ be a C^{∞} section over $\mathfrak{D}M$ to the tangent bundle TM.

Assume that (a): for each $x_0 \in \partial M$, $v(x_0) \neq 0$.

First put $M_0 = M$. Next put

$$M_{\gamma}' = \{x \in \partial M \ v(x) | \text{ is external}\},$$

and put $M_1 = \overline{M_1}$, and $\partial M_1 = M_1 - M_1$.

Inductively, if $\,^{M}_{k}\,$ is a C $^{^{\text{No}}}$ manifold with boundary $\,^{2M}_{k}\,$ (k $\geq\!0),$ then put

 $M_{k+1}' = \{x \in \partial M_k \mid (v/\partial M_k)(x) \text{ is external w.r.t. } M_k \}$

$$M_{k+1} = \overline{M_{k+1}}$$
 and $\partial M_{k+1} = M_{k+1} - M_{k+1}$.

Assume that (b): M_k is a C^{∞} manifold with boundary $\Im M_k$, (k = 1,2,...,n-1).

Lemma. Let v satisfy two assumptions (a), (b) stated above. Then for any C^{∞} extension $w\colon M\longrightarrow TM$ with isolated singularities, we have

(c): ind
$$w = \sum_{i=0}^{n} (-1)^{i} \chi(M_{i}).$$

Remark. (0) We adopt the following definition of index of a vector field: Let \mathbf{x}_0 M be an isolated singular point of w. Take a system of coordinates $\mathbf{x}_1, \dots, \mathbf{x}_n$ centered at \mathbf{x}_0 , and write locally

$$w(x) = a_1(x)(\partial/\partial x_1) + \ldots + a_n(x)(\partial/\partial x_n).$$

Define $\operatorname{ind}_{x_0} w = \operatorname{deg}_0(-a)$, where $a = (a_1, \dots, a_n)$.

Then put ind w = $\sum ind_{x_0} w$, where the sum runs over isolated singular points x_0 of w.

- (1) If 3M is empty, then (c) is the Poincaré-Hopf's formula.
- (2) For a C^{∞} vector field w over M with only isolated singular points, there exists a non-negative C^{∞} function $f: U \longrightarrow IR$ with the following properties:
- (i) $f^{-1}(0) = 2M$. (ii) For any sufficiently small $\ell > 0$, $w | f^{-1}(\ell)$ satisfies two assumptions (a), (b).
 - 3. Non-linear systems of real sections.

In this section we prove Theorem 0.4.

In the situation of Theorem 0.4, put $Z = (s_r)_0 \cong (s_i)_0$ $(0 \leq i \leq r), \quad s^{(r)} = \sum_{0 \leq i \leq r} \mathcal{E}_i s_i \lambda^i \mu^{r-i} \quad \text{and} \quad A^{(r)} = (s^{(r)})_0. \quad \text{Denote}$ by $s_i^{(r)}$ (resp. $t_i^{(r)}$) (i=0,1,2) the number of real critical

points of $\varphi = \psi | A^{(r)}$ of index i (resp. dim $H_1(A^{(r)}, \mathbb{Z}/2)$).

Identify $H^{4}(S;\mathbb{Z})$ with \mathbb{Z} by the fundamental class [S].

(3.1) Proof of Theorem 0.4. By (1.2), g(Z) is equal to $1 + (1/2)(c_1(L)^2 - c_1(L)c_1(TS))$.

Let N be $S_{\mathbb{R}}$ minus the interiors of 2g(Z) empty ovals. Put M = $\left\{(x; \lambda, \mu) \in A^{(r)} \mid |s^{(r-1)}(x; \lambda, \mu)| \geq \delta, x \in N\right\}$ for a positive number δ with $|\mathcal{E}_{r-1}| \gg \delta \gg |\mathcal{E}_r| > 0$. Then M is a C^{∞}

manifold with boundary such that $\chi(M) = \chi(S_R) - 2g(Z)$.

Set $w = \operatorname{grad} \varphi_{\mathbb{R}} | M$. Then, with respect to w, $\chi(M_1)$ is equal to $c_1(L)^2$ (cf. 2.9) and M_2 is empty. Thus we see

index w =
$$\chi(M) - \chi(M_1) = \chi(S_R) - 2g(Z) - c_1(L)^2$$
.

Therefore on M, the number of critical point of $\mathcal{Y}_{\mathbb{R}}$ of index 1 is not less than -index w = $c_1(L)^2 + 2g(Z) - \chi(S_R)$.

Thus we have

$$s_{1}^{(r)} - s_{1}^{(r-1)} \ge 2c_{1}(L)^{2} - c_{1}(L)c_{1}(TS) - \chi(S_{\mathbb{R}}) + 2,$$

$$s_{0}^{(r)} + s_{2}^{(r)} - (s_{0}^{(r-1)} + s_{2}^{(r-1)}) \ge 2g(Z)$$

$$= c_{1}(L)^{2} - c_{1}(L)c_{1}(TS) + 2,$$

$$s_0^{(0)} = s_1^{(0)} = s_2^{(0)} = 0.$$

So we have

$$s_1^{(r)} \ge r(2c_1(L)^2 - c_1(L)c_1(TS) - \chi(S_R) + 2) \dots (1),$$

 $s_0^{(r)} + s_2^{(r)} \ge r(c_1(L)^2 - c_1(L)c_1(TS) + 2) \dots (2).$

By (2.5), $\chi(s) + \chi(s_R) = 4$. Hence we have

$$s(\varphi_{\mathbb{R}}) = s^{(r)} + s_1^{(r)} + s_2^{(r)}$$

$$\geq r(3c_1(L)^2 - 2c_1(L)c_1(TS) + c_2(TS)) \qquad \dots (3).$$

By (1.5), equalities in (1), (2) and (3) hold. Thus we have

$$\chi(A_{IR}) = s_0^{(r)} - s_1^{(r)} + s_2^{(r)}$$

$$= r(-c_1(L)^2 - c_2(TS) + 4) \qquad ... (4).$$

On the other hand, because of the existence of ovals, we have

$$t_0^{(r)} + t_2^{(r)} - (t_0^{(r-1)} + t_2^{(r-1)}) \ge 2g(Z),$$
 $t_0^{(1)} + t_2^{(1)} \ge 2.$

Thus we have

$$t_0^{(r)} + t_2^{(r)} \ge 2g(Z)(r-1) + 2$$
 ... (5).

Therefore, by (4), (5) and (1.3), we have

$$P_{1}(A_{R}; \mathbb{Z}/2) = t_{0}^{(r)} + t_{1}^{(r)} + t_{2}^{(r)}$$

$$= 2(t_{0}^{(r)} + t_{2}^{(r)}) - \chi(A_{R})$$

$$\geq (3r-2)c_{1}(L)^{2} - (2r-2)c_{1}(L)c_{1}(TS) + rc_{2}(TS)$$

$$= P_{1}(A; \mathbb{Z}/2) \qquad \dots (6).$$

By Harnack-Thom's inequalty $P_1(A_R; \mathbb{Z}/2) \leq P_1(A; \mathbb{Z}/2)$. Hence equalities in (5) and (6) hold. This completes the proof of Theorem 0.4.

(3.2) Example. Let us consider the case $S = \mathbb{P}^2$. Let A be a non-singular surface of $\mathbb{P}^2 \times \mathbb{P}^1$ of degree (d,r). Then $\chi(A) = P_1(A; \mathbb{Z}/2) = 3 + d^2 + 3(d-1)^2(r-1)$.

If $\varphi: A \longrightarrow \mathbb{P}^1$ has only isolated critical points, then $s(\varphi) = \sum_{x \in A} \mu_x(\varphi) = 3(d-1)^2 r, \text{ where } \mu_x(\varphi) \text{ is the Milnor number of } \varphi \text{ at } x.$

<u>Proposition.</u> Let $A \subset \mathbb{P}^2 \times \mathbb{P}^1$ be a non-singular real surface of degree (d,r) such that $\varphi \colon A \longrightarrow \mathbb{P}^1$ has only isolated critical points. Then we have the sharp estimate

$$P_1(A_R; \mathbb{Z}/2) \le 3 + d^2 + 3(d-1)^2(r-1),$$

$$(A_R) \le 3(d-1)^2r.$$

Example. Let $A = \{\lambda F + \mu G \mid [\lambda : \mu] \in \mathbb{P}^1\}$ be a pencil of real plane curves in \mathbb{P}^2 of degree d.

 $A = (\lambda F + \mu G)_0 \subset \mathbb{P}^2 \times \mathbb{P}^1 \text{ is non-singular if and only if}$ $(F)_0 \text{ and } (G)_0 \text{ intersect transversely in } \mathbb{P}^2. \text{ If } A \text{ is}$ $\text{non-singular, then } A \cong \mathbb{P}^2 \# - \mathbb{P}^2 \# \dots \# - \mathbb{P}^2. \text{ In this case, if } (F)_0$

and (G) intersect in k points ($0 \le k \le d^2$, kand (mod. 2)), then $A_{\mathbb{R}} \cong \#_{1+k}^{1} \mathbb{R}^2$. Thus A is an M-surface if and only if $k = d^2$.

4. Construction of M-curves in a surface.

Let S be a compact real complex surface, L, L' real holomorphic line bundles, s, s' M-sections of L, L' respectively.

Put $C = (s)_0$ and $C' = (s')_0$. Assume that C and C' are both rational and $CC' = \langle c_1(L)c_1(L'), [S] \rangle \geq 0$. (This assumption for S is rather restrictive (cf. [BPV], Proposition V.4.3).

Consider the following condition:

(**) For any effective divisor $<\!\!<$ on C of degree CC' with supp $<\!\!<\!\!\leq C_{\mathbb{R}}$, there exists a real section $s'' \in H^0(S,L')_{\mathbb{R}}$ such that $(s'')_0 \mid C = \alpha$.

Theorem 4.0. Under the condition (**), for any natural numbers d and e, $L^{\otimes d} \otimes L^{\otimes e}$ has an M-section near $s^{\otimes d} \otimes s^{\otimes e}$ in $H^0(S, L^{\otimes d} \otimes L^{\otimes e})_R$. Furthermore, if CC' is positive, then $L^{\otimes d} \otimes L^{\otimes e}$ has a pair of M-sections near $s^{\otimes d} \otimes s^{\otimes e}$ satisfying (*) (cf. Introduction).

Corollary 4.1. If $C^2 \ge 0$, then under the condition (**) for C' = C, for any natural number d, $L^{\otimes d}$ has an M-section near $s^{\otimes d}$. Furthermore, if C^2 is positive, then $L^{\otimes d}$ has a pair of M-sections near $s^{\otimes d}$ satisfying (*).

- (4.2) Example. (1) $S = \mathbb{P}^2$, $L = L' = \mathcal{O}_{\mathbb{P}^2}(1)$ (This corresponds to the Harnack's method).
- (2) $S = \mathbb{P}^2$, $L = L' = \mathcal{O}_{1\mathbb{P}^2}(2)$, C = C': a real ellipse with $C_{1\mathbb{R}} \neq \emptyset$ (This corresponds to the <u>Hilbert's method</u>).
 - (3) $S = \mathbb{P}^1 \times \mathbb{P}^1$, $L = L' = p_1 * \mathcal{O}_{\mathbb{P}^1}(1) \otimes p_2 * \mathcal{O}_{\mathbb{P}^1}(1)$.
- (4) $S = |P^1 \times |P^1|$, $L = p_1 * \mathcal{O}_{|P^1|}(1)$, $L' = p_2 * \mathcal{O}_{|P^1|}(1)$ (This is used to show Proposition 0.2 and Corollary 0.6).

References.

- [A] M.F. Atiyah, K-theory and reality, Quart. J. Math., 17 (1966), 367-386.
- [BPV] W. Barth, C. Peters, A. Van de Ven, Compact Complex Surfaces, Ergebnisse der Math., 3-4, Springer-Verlag, 1984.
- [F] W. Fulton, Intersection Theory, Ergebnisse der Math., 3-2, Springer-Verlag, 1984.
- [G] D.A. Gudkov, The topology of real projective algebraic varieties, Usp. Mat. Nauk 29-4 (1974), 3-79.
- [H] A. Harnack, Über die Vielheiligkeit der ebenen algebraischen Curven, Math. Ann., 10 (1876), 189-199.
- [I] G. Ishikawa, The number of singular points in a pencil of real plane algebraic curves, Japanese J. Math., 11-2 (1985), 387-401.
- [P] C.C. Pugh, A generalized Poincare index formula, Topology 7 (1968), 217-226.
- [S] R. Silhol, Real abelian varieties and the theory of Comessatti, Math. Z., 181 (1982), 345-364.
- [V] O.Ya. Viro, Construction of M-surfaces, Funkt. Anal. Prilozhen., 13-3 (1979), 71-72.

(March.24.1986).