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 Topologically Extremal Real Surfaces in

Pxpt  and pixpixpl.

by Goo ISHIKAWA (ﬁilw )ﬂlﬁﬁ ).

Department of Mathematics, Faculty of Sciences, Nara Women's

University, Nara 630, Japan.

From a general viewpoint we illustrate a method of

construction of surfaces in P°xPL  anda pt

xmlxwl defined over
R having topologically extremal properties. Precisely we show
that for each d, e and r there exists an M-surface A in

2, L 1, .1

P xP (resp. P xP XPl) of degree (d,r) (resp. (d,e,r)) such

1 has the maximal number of real

that the projection A — P
critical points. The construction of M-surfaces in P3 by

O.YaTViro is also made more clear.

0. Introduction.

Hafnack [H] pointed out that the number of components in the
real locus of a curve in P2 of degree d defined over R does
not exceed 1+(1/2)(d-1)(d-2) and, for each d, there exists a
non-singular curve in P2 of degree d defined over R, the

real locus of which has exactly 1+(1/2)(d-1)(d-2) components.

Hilbert in his 16th problem proposed to investigate
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topological restriétions for hypersurfaces inb P of fixed
degree defined over R.

One may regard an real algebraic funétion as an one-
parameter family of hypersurfaces defined over (R, and it is
natural to investigete topological restrictions for ﬁypersurfaces
in anwl of fixed degree defined over R.

1

Let A < P%ip be a real hypersurface of degree (d,r), that

is, the zero-locus of a polynomial E; Fi(XO,...,Xn)Ar—axi,
Osi<r

where F. (0<igr) is a real homogeneous polynomial of degree d.

Consider the projection P: A —> El. Our main object is the

topology of real locus %ﬁ of A and singularities of the

restriction Y: AR-——+!RP1 of ¢ to Ap.

We denote by Pt(X,K) the Poincare series of a space X
over a field K with indeterminate t, and by s(f) the number
of critical points of a function f: X — R from a
n-dimensional manifold to an one-dimensional manifold.

If A CIPQQPl .is non-singular, then the diffeomorphism

type of A 1s determined by (d,r). For example,
X(a) ‘ (n:even),

Pl(A,K) = ' : for any K,
| 2(n+1)- X(A) (n:o0dd),

n+l

X(A) = (n+l)(1-a)"r + 2((1"d3 =3 +n+l), (cf. 1.6).

We call A generic if A is non-singular and §: A —pl

has only non-degenerate critical points.
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If A is generic, then s(f) = (n+1)(d-1)"r (cf. 1.6).
By Harnack-Thom's inequality ([G]), we have an uniform

estimate:

P, (Ag32/2) < Pi(A3Z/2),

((0.0) s(P) < s(p).

In this note from a general viewpoint we show the following

Theorem 0.1. For n =1, 2 and for each (d,r), the

estimate (0.0) is sharp, that is, there exists a generic real

1

hypersurface of P xP - of degree (d,r) attaining both equalities

in (0.0).

Notice that in the case r =1 Theorem 0.1 1is proved in
[IT]. A finer result is obtained in the case n = 1. TFor
A C P%(Pl, we denote by TU: A ——+ Wl the projection to the

first component.

Proposition 0.2. For non-singular real curves A C.T%:Pl

of degree (d,e) such that both ¥, T have only non-degenerate

critical points, there exists the sharp estimate:

Pl(AR;Z/2) g 2 + 2(da-1)(e-1),

s(fp) < 2(a-1e,  s(M) < 2d(e-1).
Now let us formulate a general theorem which implies

Theorem 0.1.
-3-



Let S ©be a real complex surface (cf. 2.1), C C S be a

real curve possibly with singularities. A non-singular component

E of qR C SR is an oval (resp. an empty oval) if there exists
an embedding 1i: D2~-———>)S[R such that i(DDz) = E (and that
i(int D2) N\ Cp, 1s empty).

Let S be compact, L a real holomorphic line bundle (cf.

S

0’

2.6), s 1

M-sections of L (ef. 2.7).
Consider the following condition (*):

(#1) The zero-loci (so)O and (sl)O are both connected

and of genus g. _
« 2

% : ;

(*11) (sy), and (s;), intersect in <cl(L) ,[S1) points
in %R' |

%544 ) = ‘ ;

(#¥1ii) The real locus of (sos1 0 (so)ok/ (sl)o has

2g empty ovals.

We denote by [l

1 the real complex curve (Pl,Ti), where

Tl is the complex conjugation (c¢f. 2.3). Fix a pair of
M-sections X,}{ of (7 (1) such that (). # gu) .
Wl 0 0
1

Denote by l%: SXP}~——*-P%, 3 SXP%—-ﬁ-S the projections.

For a transverse section s of 3*L6§¥*691(r) (ef. 1.3), denote
' P
1

by ¢ (s)o———? Ei 5 7t:'(s)0———? S the restrictions of

projections. Then, associated to s, there is a natural section

of Hom(T(s)O,T*TP%) defined by the tangent map of ¥ .
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Theorem 0.4. Let S be an M-surface with connected real
part %R’ L be a real holomorphic line bundle with a pair

sq> 51 of M-sections of L satisfying the condition (¥).

Then, for any r, there exists an M-section s of %L ®+*(9 l(r')

Tl

over vSXlPi near s0® Xr, which associates an M-section of
Hom(T(s)O,‘F*TP%) defied by the projection ¢: (s)o‘——9 @%.

Explicitely, s can be taken in a form
i, r-i B .. _ . ‘
Oé%;r g484A 07, where s; = s, (i:even), s; = s; (i:odd) and

£gs €558 :arevreal numbers with 1 = 50351211 ?...S>[£J 7 0.

Remark 0.5. A sufficient condition fbr the existence of a
pair of M-sections satisfying (¥) is given in section 4.
Theorem 0.4 with this sufficient condition implies immediately

Theorem 0.1 in the case n = 2.

Putting S = fPlx[Pl (= lPllel) and L = (7 .(d)®0_ (r)
I "1 Pl El

over S, we have

Corollary 0.6. For non-singular real surface A < pxpixpt

of degree'(d,e;f) such that $: A -——»Tl has only non-degenerate

critical points, there exists the sharp estimate:

Pl(ﬁR;Z/Q) < 6der—ude—uer—ﬂrd+ﬂd+ﬂe+hr,

s(?ﬁ) < (6de-Ld-lbe+l)r.
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From Theorem 0.4, it naturally arises the following general

problem:
Problem 0.7. Let E be a real holomorphic vector bundle
over a real complex manifold. Give a criterion for the existence

or the non-existence of M-sections of E.

Lastly we intend to clearfy the construction of M-surfaces

in ®3 by Viro [V].

Theorem O.8.(Viro) For non-singular real surfaces A in

p3 of degree d, there exists the sharp estimate:

: 3 a2 |
Pl(AlR,Z//Z) < ..d‘ - ud’ + 6d.

Let XO’Xl’X2’X3 be homogeneous coordinates of IP3. Put

= {x3=x3=vo}‘ and A = §X0=X1=0}- |

1

Let ¢: P3-¢ —P' be a projection. Fix a tubular neighborhood

U of 4 4in 3 such that TAPY 1is empty.

Observe that for each d there exist M-sections Sgs---84
0

of &2(0),.;.,w2(d) near X, ,...,X
P | P ~
2

(Si)o and (si+1)0 intersect in i(i+l) points in RP", the

2d respectively such that

real locus of (Sisi+1)0 has (1/2)(i-1)(i-2) + (1/2)i(i-1)

empty ovals (0g<i<d-1) and ?l(si)o has (i-1)i real critical
points (0gig¢d). Naturally each s; 1s extended to a section E;
of ( (i) (0gigd).
93 -
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_ S~ d-i~ 0,03 -
Put s = ng . EiX2 sy € H (P, 6;3(d))ﬁ, and A = (s),.

([7aN

Take - real numbers EO,...,Ed to be 1 = EO?>{th$>-§-5>|2615>0

and of apropriate signs.

fgt Ag=U — RPL

defines a vector field ' over Ap-U.
3t 1s extended to a vector field 3§ over %R ~with finite
singularities. '

Denote by s+(3) (resp. s (3)) the sum of positive (resp.
negative) indices of singular points of 3§, and put

by = dim Hi(ﬁR;Z/2) (i=1,2,3). Then we see

ST 2 a+ (/3aca-1)(a-2), |
ST(3) 2 (1/3)(a+1)d(a-1) + (1/3)d(a-1)(d-2).

Thus  X(Ag) = 5" (§) - s7(}) 2 d - (1/3)(d+1)d(d-1). On the
other hand tO + tl Z 2 + (1/3)(a-1)(d-2)(d-3). Hence we have
Pi(AR32/2) = g + &) + &

206y + t,) - Xag)

2 a3 - 4a® + 6a (= P (A;2/2)).

By Harnack-Thom's inequality, all equalities are hold.

The author would like to thank J.J.Risler for helpful
suggestions) Takashil Matsuoka for informing the existence of

[P] and M-h Saito for valuable comments.
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1. Preliminary: Complex Topology.

(1.0) Let X be a complex manifold, f: E—>X a
holomorphic vector bundle and s: X ——> E a holomorphic sectionf

Put (S)O = {kéiX ls(x) = 0}.

We call s transverse if s 1is transverse to the zero

section § C E, that is, for any s G(s)o, s*TXXﬁiTS(X)E = ?s(x)l

If s 4is transverse, then (s)O is a complex submanifold
of X.

Denote by H the complex vector space HO(X,E) of
totality of holomorphic sections of E over X, and by PH the
projectification of H.

Put 2z = §{(x,[s]1)€ XXPH |s(x) = 0 f and consider the
projection ﬁ: Z—> PH. Then s 1is transverse if and only 1if
Z 1is non-singular along f‘l[s] and 9 is submersive over [s

In particular, for transverse sections s, s'¢& H,'

(s), and (s'), are diffeomorphic.

(1.1) Let S(EHO(X,E) be transverse. Put Z = (S)O.

Then we have an exact sequence

0 > TZ ,TX[Z-——% E|l, —> 0,

Z

of complex vector bundles. Therefore ct(TX[Z) = Ct(TZ)Ct(E’Z)

for Chern polynomials. The Chern classes of TZ are calculated

y ) ct(TXIZ)
y the formula ct(TZ) = — "2  (cf. [FI).
' ¢, (E)p).

~® -~
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(1.2) Let L be a holomorphic line bundle over a complex
manifold 'V of dimension n. Let Z Dbe the zero-locus of a

transverse section of L. Then by (1.1),

Xz = < X nde vy cey It v,

it+j=n+l
For example, if dim V = 2, then
X(2) = ey (TV)e, (L) - ey (L), VD).
Furthermore, if Z 1is connected, then

A2y =1+ (172)Keq (12 = e (LYeg (TV),[VI).

(1.3) Let R Dbe a non-singular curve of genus g. Denote

by $: VXR — V and %: VXR —> R the projections. Put

L' = }*L@*//*(;OR(r)' over VXR for each r. Let A C VXR be
the zero-locus of a transverse section of L'.

Then  X(A) = {f,[V]), where

P= re (TV) + 2 ((J+L)r+2g-2)c, (TV) (~c (1)),
n i+j=n,j>0 *

as an element of ‘Hzn(V;Z).

For example, if dim V = 2, then
X(n) = <<rc2(TV) - (2r+2g-2)c, (TV)e (L) + (3r+2g-2)c,(L)7,

[viy.

(1.4) Example. Let C,C' and C" be non-singular curves

-9-
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of genus g,g'  and g" respectively. Puﬁ X =CXC'xcY, and
denote projections by D;sP5 and p3‘ to €,C' and C" )
respectively. Let A <X be the zero-locus of a transverse
section of L' = p ¥(),(d)® p,* C,(d5a>p3*4%"(d"). Then X(a)y is
equal to 6(d-1)(d'-1)(a"-1) + (2+4g")(a-1)(d'-1) +

(2+hg) (a'-1)(d"-1) + (2+hg')(a"-1)(da-1) + (2+bg'g")(a-1) +
(2+Ug"g)(ar-1) + (2+Ugg')(d"-1) + 6 - U(g+g'+g") +

b(gg'+g'g"+g"g).

(1.5) In (1.3), denote by $: A ——> R the projection to F

Put  § = Hom(TA,f*TR). Then <c (3),[A1) = <1,IVI), where

(-1 3T (341)e, (TV) (=eq (L)),

itj=n

-~
n

as an element of H-T(V;Z).

For example, if dim V = 2, then

Cen(D),IAT) = e, (TV) - 2¢  (TV)e (L) + 3eq(L)°, (V1.

(1.6) Let A be a non-singular hypersurface of PnXlPl.

of degree (d,r). Then X(A) = <cn(TA),[A]>> is equal to

n+l

-1
3 + n+l).

(n+1) (1-a)"r + 2(2=9)

Ifr ¢ A———}IPl has only isolated critical points, then

s(P) = c_(Hom(TA, *7p1)),[A1> 1s equal to (n+l)(d-1)"r.

(1.7) Let A Dbe a non-singular irreducible projective
variety of dimension n. Then Hi(A;Z) is torsion free for
all 1, and rank H, (A;Z) is equal to 0 (in, i:odd), 1 (i#n,
i:even), n+l- X(A) (i=n, n:odd), X(A)-n (i=n, n:even).

~-10-~
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(1.8) If A is a simply connected compact complex surface,
then P, (A3K) = P_ (A,K), ‘and P, (A3K) = P_j(A3K) = X(a) for
any field K.

2. Preliminary: Real Topology.

(2.1) A real structure on a complex manifold X 1is an

anti-holomorphic involution tT: X —>X. The pair (X,T) is

called a real complex manifold. Two real complex manifolds

(X,T), (X',t") aré isomorphic if there is an isomorphism
f: X —X! of complex manifolds satisfying 6¢T = T ¢
(ef. [S]).
(2.2) Let (X,T) be a real complex manifold. We’denoté

by XR the space Xt of fixed points of T in .X, and call

it the real locus of X (with respect to T).

(X,T) 1is a M—ménifdld if Pl(XR;Z/z) = pl(x;z/z)r (cf.
[G]). A M-manifold (X,T) of dimension 1 (resp. 2) is called
a M-curve (resp. M—surface).

(2.3)l Example. The'number of equivalence classes of real
structures on P" ~is one if n is even and two if n is odd
(cf. tF], p.240).

" The anti-holomorphic involution t':)P2m+1F——» E2m+l

=X Xnsteaot=X 7 gives a real structure not

om+1’ Xom
equivalent to the usual real structure defined by the complex

2m+1 om+l _ p2mtl
4 T2m+ 1 0 (IP s

. 2m+1 2m+1
! =

conjugation (IP ). We often denote by IP

~11-
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Then P°™ and Eim+1 are M-manifolds, but mgm+1 is

not a M-manifold.

Ve .
(2.4) From properties of Poicare series, we see

Lemma. Let (X,T§, (X',T'): be M-manifolds. Then

(X1 x', TldT')y and (XXX', TXT') are also M-manifolds.

(2.5) Lemma. Let (X,T) be a M-surface with Hy(X;2/2)

=0 and Hy(Xg;%/2) T 2/2. Then X(X) + X(Xg) = b.

Proof. P_y(X37/2) = Py (X;2/2) = Py (Xp32/2).
P1(Xgs2/2) + P (Xp32/2) = 2(dim Hy(Xp;32/2) + dim H,(Xg32/2))

b,

(2.6) Let M: E—> X be a holomorphic vector bundle over
a real complex manifold (X,T). A real structure of 7 1is a
real structure T: E —>E of E as a complex manifold (cf.

2.1) such that RoeT = wai and the restrictlon Tx: EX-——> ETIX)

to each fiber (x & X) is conjugate linear.

We call the triple E = (7T3T,T) a real holomorphic vector

bundle (c¢f. [A]). Notice that the restriction 'RB: QR — &R
to the real locus of T 1is a real vector bundle.

A holomorphic section s & HO(X,E) of E is real if
Tosft'i = 8, that is, s & HO(X,E)'R with réspect to the

anti-holomorphic involution S — TosoT ™+

-12-
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(2.7) Definition. A holomorphic section s of a real

holomorphic vector bundle over a real complex manifold (X,T)
is a M-section if s 1is transverse, real and the zero-locus

(s)y € X with restricted T is a M-manifold.

(2.8) Remark. Two real holomorphic vector bundles are
isomorphic as real holomorphic vector bundles if and only if
they are isomorphic as holomorphic vector bundles.

On En, any holomorphic line bundle has a structure of real

holomorphic line bundle.
(2.9) Poincaré-Hopf-Pugh formula (cf. [P]).

Let M be a compact C* manifold of dimension n with
boundary oM.

A tangent vector § to M at a point x, of M is
external if deO(§) is positive for some C* function f

defined in a neighborhood U of such that £ 1(0) = 2MNU,

%0
f takes negative values in (M-3M)N\U and df[?M/\U does not

vanish (figure 1):

external

Let v: dM——> TM[M be a C*> section over M to the

tangent bundle TM.

s



Assume that (a): for each XOiEBM, v(xo) # 0.

First put MO = M. Next put

Moo= §X<E?M v(x)l is external},

- VT = -
and put Ml Ml , and BMl M1 Ml'.

Inductively, if Mk is a €™ manifold with boundary 9Mk
(k20), then put

Mo = fxedm | (VIQMK)(X) is external w.r.t. Mk% ,

Mgy = Mpyq" and M0 = My - M 0",

Assume that (b): Mk is a C™ manifold with boundary DMk,
(k = 1,2,...,n-1).

Lemma. Let v satisfy two assumptions (a), (b) stated
above. Then for any c* extension w: M —>TM with isolated

singularities, we have

‘ n .
(c): ind w = .ZO (—1)1X(Mi).
l= B

Remark. (0) We adopt the following definition of index of
a vector field: Let Xq M be an isolated singular point of w:
Take a system'of coordinates XyseeesX, centered at X4 and
write locally

w(x) = al(X)(B/Bxl) +...+ an(x)(9/2xn).

Define indxow = dego(—a), where a = (al,...,an).

~1h4-
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Then put ind w = §:indx w, where the sum runs over isolated
singular points X of w.

(1) If 9M is empty, then (c¢) is the Poincaré—Hopf's
formula.

(2) For a C* vector field w over M with only isolated
singular points, there exists a non-negative QN function
f: U—>R with the following properties:

(1) £71(0) = M. (i1) For any sufficiently small £ 0,

wlf~1(2) satisfies two assumptions (a), (b).

3. Non-linear systems of real sections.

In this section we prove Theorem 0.4.

In the situation of Theorem 0.4, put 2 (Sr)o Q’(si)o

(ogigr), s = 0 € s Mutl ana (7). (s¥)),. Denote
0Ligr ' ‘ , :
-~ (r) (r) _ - o des
by 54 (resp. ti ) (1i=0,1,2) the number of real critical

points of ¢ = %IA(r) of index 1 (resp. dim Hi(A(r) 3%/2)).

Identify HM(S;Z) with % by the fundamental class [S].

(3.1) Proof of Theorem 0.4. By (1.2), g(Z) is equal to

1+ (1/2) (e (L)% - ¢q(L)ey (TS)).
Let N be %R minus the interiors of 2g(Z) empty ovals.

Put M = {(x;)\,/t()éA(r)]R ]s(r_l)(x;)\,/l)l 26, XGN} for a

positive number § with |€ . I»§»>|e|> 0. Then M is a C°

-15-
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manifold with boundary such that X(M) = XKSR) - 2g(2).
Set w = grad%ﬁlM. Then, with respect to w, X(Ml) is

equal to cl(L)2 (ef. 2.9) and M2 is empty. Thus we see
index w = X(M) - X()) = X(sp) - 2e(2) - o (1),

Thefefore on M, the number of critical point of ﬁR of
index 1 is not less than -index w ='cl(L)2 + 2g(Z) - XK%R).

Thus we have

5.7 s 1) 2 a0 (192 - ep (Lo (TS) - X(sp) + 2,

+s (r) . (so(r_l)+s2(r"l)) 2 2e(2)

e (1) - ¢y (Lycy (T8) + 2,

So we have

s, (7 r(2e (L) = ¢ (LYe (TS) - X(8g) +2) ... (1),

(r) (r)

5007 + s, > rle (1)° - ¢ (L)e (T8) +2) ... (2).

By (2.5), X(S) + X(%R) = 4. Hence we have

s(fp) = () 4 sl(r) + s2(r)

2 r(3e (L)% - 20 (L)ey (TS) + e (TS)) e (3).

By (1.5), equalities in (1), (2) and (3) hold. Thus

we have

_ (r) (r)

;((%R) = s, - 8y + s2(r)



wn
o

- r(—cl(L)2 - e (TS) + ) ).

On the other hand, becanse of the existence of ovals, we
have

6,7 4 £, ) g D) g

. , =Dy 5 2g(2),

2

0o 46, 2 2.

Thus we have

0,7+ 6, Ty 2g(z)(r-1) 4 2 e (5).

Therefore, by (4), (5) and (1.3), we have

(r) - (r) (r)
ty Ty ty By t,

2(t, (r) 4 ¢ (r)) X(Ag)

Py (AR;32/2)

nv

(3r-2)e; (L)? - (2r-2)eq (L)e, (TS) + rc2<Ts)‘

Pl(A;Z/2) ... (6).

By Harnack-Thom's inequalty Pl(ﬁR;Z/Z) < Pl(A;Z/2).
Hence equalities in (5) and (6) hold. This completes the proof

of Theorem 0.4.

(3.2) Example. Let us consider the case S = P2. Let A

be a non-singular surface of P2X\P1 of degree (d,r). Then

2 4 3(d-1)°(r-1).

X(a) = P (A;2/2) = 3 +4d ,
If ¢: A ——4991 has only isolated critical points, then

s(¢) = 27 Fo () = 3(a- 1)°r, where H(¥) is the Milnor number
X €A

of ¥ at x.

-17-



Proposition. Let A C E’2><|Pl be a non-singular real

surface of degree (d,r) such that ?: A-——>1P1 has only

isolated critical points. Then we have the sharp estimate

2

P (Ag;2/2) € 3+ a° + 3(a-1)°(r-1),

(Ag) g 3(a-1)°r.

Example. Let A = iAF + ﬁG/ [AzﬂjeﬂPlf be a bencil of

real plane curves in Pz of degree 4.

A = (OF 46)y C P°x P1 1s non-singular if and only if
(F)0 and (G)0 intersect transversely in EZ. If A is

non-singular, then A ;,@2#_@2#,,;#_92, In this case, if (F)O

d2
and (G), intersect in k poiﬁts (ng§dg, ksd‘(mod. 2)), then
AR ~ # BPZ. Thﬁs A 1s an M—surfacé if and only if k = d2.
1+k.

L. Construction of M-curves in a surface.

Let S be a compact real complex surface, L, L' real
holomorphic line bundles, s, s' \M—seétions of L, L'
respectively. |

Put C = (s)O and C' = (s')o.' Assume that C and C°
are both rational and CC' = <<cl(L)cl(L‘),[S]:> 2 0. (This

assumption for S is rather restrictive (cf. [BPV], Proposition
v.4.3).
Consider the following condition:

~-18-~



(¥*) For any effective divisor o on C of degree CC'
with suppX £ C,, there exists a real section s"¢ HO(S,L')‘R

such that (s")y|C = « .

Theorem 4.0. Under the condition (¥¥), for any natural

numbers. d and e, Laqﬂ)L'Qe has an M-section near s®d¢x)s‘Oe

in HO(S,ﬁ&dGDL'Qe)m. Furthermore, if CC' is positive, then

ﬂgdGDL'Ge has a pair of M-sections near satisfying

(¥) (cf. Introduction).

Corollary 4.1. If ¢ > 0, then under the condition (¥¥)

for C' = C, for any natural number d, L“X)d has an M-section
®
near s d. Furthermore, 1if C2 is positive, then *E®d has
®d

a pair of M-sections near s satisfying (¥).

2

(4.2) Example. (1) S =P, L = L' = 692(1) (This
P

corresponds to the Harnack's method).

(2) s=p° L=1"=(,(2), C=C': areal ellipse
e

with qR # @ (This corresponds to the Hilbert's method) .

(3) s=pixpl, L=L = 0% (VBP0 (D).

(4) s

1 1 _ ¥ = *
[P™X {P7, L = p, 4;1(1), L' = p, q;l(l) (This
is used to show Proposition 0.2 and Corollary 0.6},
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