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Examples of Algebraic Surfaces with q = 0 and p_ £ 1 whi
are Leocally Hypersurfaces 9
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§ 1. Introduction
Algebraic surfaces with g = p, = 0 have been studied
through pluri-canonical mappings in various papers

(€3, 5, 10, 11, 9, 12, 1, 21 ). The purpose of this note is
to give examples of algebraic surfaces with g = 0 and pg £ 1
fraom the viewpoint of the singularity theory.

Let M be a compactification of an affine surface M

which is defined by

- ,a b c.d e _
(1.1 | glw) = Wiws ot WoNg +owg 4 1 =0
where a > b , ¢ > d and
(1.2) a+b2c+dze>0,

This simple class of algebraic surfaces contains many



10(?

interesting algebraic surfaces. The the fundamental group

n, (MY isg alwavs a finits cyclic group ({73 Y, In particu-
lar, the irregqularity q(M) iz zern for such M, In our previ-
ous paprer [8]1, we have sgzstudied rational ar KZ2-zurfaces

five minimal! <eurfaces of the above type with p_ £ 1 which

are known surfaces. our method gives a differant approach to

them,

In § 2, we study a canonical wavy of the compactifica-

tion M of M through the toroidal embedding theorv.

In § 3, we study three alé_braic surfaces 1 ﬁ? and
ﬁ3 with g = p_ = 0. El and ﬁ3 ars known as an Enrigues sur-
face ana a Godeaux Surface.-ﬁz iz a minimal surface with
nl(ﬁz) = 2Z/3Z, e = 12 and K2 = 0 where K is a canonical

divisor and e is the Euler characteristic

4 5

= 0 and P, = 1. M, satisfies that K = 2, e = 22 and

nl(M4) = 7/27.
and e = 23,

In § 4, we study two minimal surfaces M, and M_ with q
2

_— 2
MS is a simply connected surface with K* = 1
M, E4 and HS are surfaces of general type.

There are systematical studies by Todorov for M4 and M.

(f11, 121 5.

§2. Compactification
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Unless otherwise gctated, we use the same notatinns as
4 a,, 259

in [7, 81 throughout thisg paper. Let £.72) = § 2,00 2y

- i=1 *
he a homogeneous polynomial, We assume that
A. = (a 1 -»-,aid) (1 = 1, 4) gpin a three-zimplex Z,
4y
Let £(zY = £.(z) + ¢ zy for a gufficiently large N and let
- i=1
1 . ) ’ .

v = f *(0), Then V has an isolated singular peint at the
origin and the Newton boundary T(f) is non-dagenerate, Let

. . ¥ . .
' (f) be the dual ¥Newton diagram and let T be a simplicial
subdivision., Let n : V » V be the aszociated rezclution of

- ‘ ¥
V. For each strictly positive wvertex Q of =X with
dim A{Q) 2 1, there is a corresponding exceptional diviscr
4

E(Q) of the above resolution ([7] ), Let P = “(1,1,1,1).
Then A(P) = % and E(P) 1is the surface in which we are

interested. The bhirational class cf E(P) does not depend on

either the choice of N or on Z*Wbut depends only on f_(z)

Let Pl""' P4 be the vertices of E* which are adjacent to P

and dim A(Pi) 2 2, We assume that A(P.,) N

in

is the triangle

with vertices Aj for 4% 1. We' also assume that Z 1is
canonical around P on each triangle T(P,Pi,pj) in the sense
of [71, The fundamental group Kl(E(P)) is a finite cyclic

group by Theorem (7.3) of (71,

Let M be the affine algebraic surface in C3 which 1is
defined by
b 2
(2.1 glw) = w?w3 + w%”g + wg +1 =0

where a > b and ¢ > d and
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(2.2) ' a+b2c+d2e>0,

As the homogeneous polynomial f_(z), we take

(2.3 | - ,a b, _c.dh e_i, a+b
where
(2.4> a+b=c+d+h=1¢e+1i.
We will show the following.

Theorem (2.5). The exceptional divisor E(P) iz a
smooth compactification of ﬁ;

Proof. To prove the assertion, it suffices to show
that there exists - a three dimensional simplex

g = (P501,02,93)~in =¥ such that the defining equation of

. ]
ECP) in c’ = {y,,=01%nc} is - equal to

grev. Py be the wvertices of =
which are adjaceﬁt to P and dim A(Pi) 2 2 as before. It is

g(yoi’YGZ'yoj) = 0. Let P

easy to see that P, = “(1,0,0,0) and P, = ©(0,1,0,0) modulo
Z <P>, We assume that Py = t(O,a,B,r) modulo Z <P>. By the

definition, P3 satisfies the following,.

(2.86) b = ca + d8 + hr = (a + b)r < ef + ir.
Note that
(2. =

2.7) det (PP, P, =1

and




(2.8) det (P’Pl'p2'P3) =8 - 7

Here B8 — ¥ 1is strictly positive by the ineguality of (2,982
and (2.4). Thus we can take Ql = Pl, Q2 = p2 and

(2.9 Qy = (P, + 3P, + eP,y + ePY / (B8 - 1)

where 3, € and o ars integers such that
0 £8, ¢, 8 < (8 -17v) as in Lemma (2.8) of [7]. 1f we
replace Pi by Pi’ = Pi + n.P for some integer n., d and ¢ do

i
not change but only € changes in (2,9), Thus the defining

equation of E(Q) in C; does not change. See also the argu-

ment below. Thus we may assume that P, = t(l,D,0,0) and

1
{-
P, = “(0,1,0,00 and Py = Y0 «.B8.7). Then the integrity of

Oj implies that

(2.10) 8 + 8 = ¢ + a + 8

1]
™

+ 8 =0 modulc B8 - 7.
Let
_ L,a'. b’ c’. .4 e’ _
h(yo) = Yg1¥53 * Yg2Ys3 t Vo3t 1 =20

be the defining equation of E(P) in Cg. Then we have

a’ = pl(Ai) - d(Pl) = a,

o
1

Q3(A1) - d(Q3) =da / (B - 1),

’

c’ = Pz(AZ) - d(PZ) = c

dr

Q3(A2) - d(03) = ¢C / (B - T),

e’ = Q;(Ay) - d(Qg) = (P5(RAy) - d(P)) / (B - 7).
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By (2.4) and (2.6), we have the following equalities,

[}

(2,115 ’ b(8-7r)

[}

ar an

(2.12) clr-a)

dg-r).

o
1}
o7
ol
~
N\
w
i

)

Ba / (B8 - r) modulo a by (2,10

1l

ra / (B - r) medulo a

1]

b modulo a by (2.11),

As 0 £ b” < aand b < a by the definition this implies

b’ = b. Similarly we have

d” = ¢c / (B - 7)

(8 - a) ¢ / (8 - ) modulo ¢ by (2.10)

(yr —a) c / (8 - 1) ‘modulo c

d modulo ¢ by (2.12).
As 0 £ d”" < c and d < c, we have that d° = d. Finally

e’ = (p3cn3) - dP)Y / (B - 7) = e.

3

Thus we have shown that h(w) = g(w), which completes the

proof,

Hereafter we denote E(P) by M. 1In §3 and §4, we study



algebraic surfaces M with p_ £ 1. The details of the calcu-

lation for Kz, e(M) and nlfg) we refer to [7] and [813.

I3

-

Remark (2.13), Let ' be the simplex in R™ with ver-
tices (a,0,b), (0,c.d), (0,0,e) and (0,0,0). Let v', ..., v&
be the other possible 'integral points in 7. Let

k
gt(w) =glw) + §F t. w

and let My be defined by g,(w) = 0. Let U be the Zariski
open set which is defined by the union of t € Ck such that
gt(w) is globally non-degenerate in the sense of [6]. Then
{Mt} (tel) can be compactified simultaneously with M = MO

and the complex manifold ® which is the union U Et gives a
tel

— i
k-dimensional deformation of M, We call {w” } the embedded
monomials of g(w). All the numerical calculations for M

which follow in §3 and §4 remain true for it'

§ 3. Surfaces with g = pq = 0.

In this section, we will study three minimal algebraic

surfaces X, , M, and Mj with q = Py = 0. M, is known as an
Enriques surface and ﬁ3 is a Godeaux surface. EZ is a
minimal surface with n,(M.) = Z/3Z , e(M,) = 12 and K% = 0.

172
Here K is a canonical divisor and e(ﬁz) is the Euler charac-

teristic,

(I) Let My = o gl(w) = 0 } where
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gl(w) = W1W§ + wqwg +wg 1
_ 4.3 JA 2. L L6 7. - .

Then fA(z) = Z423 + 2,237, *+ z4z, + zy is the correfpond;“g
homogeneous polvnomial. We may take P, = t(0,1,7,3) and
P. = Y0, -1,-6,-2). As det (P,P,,P,) = det (P,P,,P,) = 2,
4 1772 27 4

e rti =2 T = S+ : )
we need two vertice 13 (P P1 + P3) / 2 on T(P,Pl,P3_

.94) respectively. Here we

. . . * . .
are only congidering vertices of T which are adjacent to P,

We denote the divisor E(P) N E(Pi) in E(P) by C(Pi) etc,

I
: *
Let o = (P'pl'P2'R) be the fixed three-simplex of T where

= (
R 1391 + P

meromorphic two form on El = E(P) which is defined by

5 + p3 + P)Y / 4 = t(1,1,2,1). Let w be the

dysq A dYgp A dygy /7 day(y D

w

on Co and K = (w), By § 9 of [7]1, we get
(3.1) K = 2C(P,) + C(T,,) - 2C(P3) - C(T,,),
(3.2) K2 = 0, e(f,) = 12 and (M) = 2/2Z.

Let p : ﬁl > El be the universal covering and let

?34
be the rational function on ﬁl which 1is defined by
n*(z4 251). Then we have that
(3.4) (¢34) = 2K

Thus there 1is a rational function % on ﬁi such that
1

- *
¢2 = p*¢34. Then it is easy to see that ¥ p w is a nowhere

vanishing two-form on ﬁl‘ This implies that ﬁ1 is a K3-

surface and ﬁl is called an Enriques surface. (See Griffiths
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(41, P.541 for the standard way of the constructicon of a

Enriques surface.)
vi i
g,(w) has 6 embedded monomials w vhere {v°} (i=1, 8)

-------

are (0,1,1), ¢0,2,1), ¢1,0,1),¢1,2,2), (2,0,2) and (2,1,2),

(I1) Let M2 = { gz(w) =03} c C3 where

| 9.6 2
(3.5) gz(w) = wiws 4 wow3 oWy + 1
_ 9.6 . .3.2.10 , _ _14 . _1S |
Then fA(z) = 2324 * Zozaz, +ozaZy 4 Z . and
f.
Py = °(0,0,5,2) and P, = "(0,-2,-14,-5), e

+ = 72 7 f= a hi =
det (P,Pl,P4) = 3, we need a vertex T14 (P4 + P1 + 2P) / 3

on T(B,D, DB, Let G = (P,Pl,PZ,E) where
R = (P3 + 2P1 + 2P2 + P) / 3. Then we have
(3.6) K = 7C(P,) + 2C(T,,) - 2C(P,), K% = 0,
(M = M o
(3.7) e‘Mz) 12 and ni(Mz) x Z/37.
As (¢34) = 9C(P4) - 3C(P3) + 3C(T14), 3K is linearly
equivalent to 3C(P4). This easily proves that EZ is
minimal.
vi i
gz(w) has 10 embedded monomials w where {y°} ( 1 =

1,...,10 ) are (1,0,1), (2,0,2), (3,0,2), (4.0.3), (6,0,4),

(0,1,1>, 2,1,2>, (3,1,3), (5,1,4) and (1,2,2),

(IT1I) Let M3 = {g3(w) = 0 } where

(3,8) 9y(w) = u’
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_5.3 5_2. 7, L8 = ¢ 7
Then fﬁ(z) = zy23 * zhz5z, + 24z, + 2z, and Py (0.,1,8,25
and P, = %(0,-1,-7,-2) Let ¢ = (P,P, P, R) where

R = (P3 + 3P1 + 2P2 + 2P) / 5. Then we have

(3.9 K = 2C(P,) - C(P,), K2 = 1,
(3.10 e(¥,) = 11 and My = /57

As 3K ~ C(P,) + 2C(P,), Ea is minimal by Lemma (4.23) of
[817. ﬁ3 is a Godeaux surface. See [10, 513, M, is iso-
morphic to the surface in Example (7.12) of ([71.

g3(w),has 8 embedded meonomials wvl where {vi} (i=1,..;,8)
are (1,0,1), (3,0,2>, <(0,1,1), ¢1,1, 1>, (2,1,2), (0,2,1),
(2,2,2) and (1,3,2), As 8 is the dimension of the moduli
space of the GodeaUx surface ([57 Y, it is possible that our

deformation is complete. We do not discuse this in this

paper.

§4, Surfaces with g = 0 and pg =1

In this section, we will study three minimal surfaces
E4 , ES and ie with g = 0 and py = 1.
(IV) Let M4 = { g4(w) = 0 } where
- .83 4 2
(4.1) g4(w) = w3 + WoWag + W4 + 1.
: - ,8.3 L4.2_5 L .10 11
Pa = t(0,—1,’11,3) and P4 = t(0,0,—S,—l). We need three ver-
C 1 2 3 ,
tices T13, T13 and T13 on . T(P,Pl,P3) where

T%:} = (P3 + 3P1 + P) / 4 and etc.. Let 0 = (P,Pi,PZ’R) where
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R = (P3 + 3P1 + 4P2 + 5P) / 8. Then we have

4.2) K = C(P4), K® = 2,
(4.3 e(M ) = 22 d M) = 7
(4.,3) 4) and nl(M4) ~ 2/27
Thus pq = 1 and §4 is minimal. It is known that there i3 an
algebraic surface S with gq = Pg = 0 and n,¢(8Y =~ 7/47 ([10]
Y, We do not know whether our surface E4 is the double
cover of surh a surface S or not,

vi i
g4(w) has 11 embedded monomials w where {vy°} C 1 = 1, ...,

’

11 ) are (1.,0.1), (2,0,1), (4,0,2), (5.0.2) (0,1,1)

J2), (4.1,2),€0,2,1), €(2,2,2) and (1,3,2).

(V) Let MS = { gglw) = 0 } where
£4,7) gS(W) = wgwg + W% + W% + 1
Then f,(2) = z?z§ + zgzz + z%zi + zio and P, = t(0,2,5,2)

ot g e ol 2
and P4 = 7(0,-3,-4,-1)., We need two vertices T13 and T13 on
T(P,Py Py where Ti; = (P + 2P + P) / 3. We  take
o = (P,Pi,PZ,T%a) and by an easy calculation, we have

- 2 _

(4.8 K = C(P4), K™ =1,
(4.9) e(Mc) = 23 and (M) = {1},

gs(w) has 14 embedded monomials which correspond to (0,0,1),
(1,0,1), (1,0,2), (2,0,2>, «(3,0,2), 3,0,3>, (4,0,3),
(0,1,0), ¢0,1,1>, ¢1,1,1>, «(2,1,2>, «(3,1,2>), (0,2,0) and

(1,2,1). There are beautiful studies by Todorov for ﬁ4 and
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