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1. Introduction

To understand the waiting time performance of time-shared systems,
we would like to analyze suitable queueing network models that embody
various scheduling strategies and that accurately reflect the structure
of real systems. With the current state of knowledge, however, it appears
that such queueing network models are difficult to solve analytically,
since they usually do not allow product-form solutions. (On the contrary,
there exists an accumulation of results concerning the waiting time

performance in infinite-source queueing models [6, 10, 11]; however, the

infinite-source assumption is said to be sometimes unrealistic [2].)
Therefore, as a second best alternative, we study a finite-source queueing
model (or sometimes called 'finite population' [11], machine interference'
[5], or 'machine repairman' model); we study the model with the hope that
solid understanding of the properties of the model will provide a basis

for the comprehension of more general environments.
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2. The model and the basic properties

The model studied here is a closed cyclic queueing network which
contains two service stations and an arbitrary but finite numbér, N, of
jobs, 1, 2, ..., N. The one service station has only one server
('processor') where  jobs may suffer queueing delays. The other service
station has multiple servers ('terminals'), each of which has one-to-one
correspondence with a job, where no job suffers queueing delays. Assume
that the mean service time for job j are 1/uj on the processor and 1/v
on the terminals, for j = 1, 2, ..., N. The service time distributions

are assumed to be exponential in Sections 2, 3 and 4.1.

Performance vectors Let Tj denote the average response time for job j,
j=1, 2, ..., N; the averége response time means the steady-state average
of the time period between the instant job j arrives at the processor

and the instant job j leaves the processor. Let T denote response time

‘T,.).

vector (Tl’ T2, ees Ty

Let Uj denote the utilization factor of the processor for job j,
j=1,2, ..., N (2?21 Uj = U, where U denotes the utilization factor
of the processor). Let U denote utilization vector (Ul’ U2, ey UN).
Naturally we have

UJ. = 1/[uJ.(TJ. +1/v)], j =1, 2, ..., N. _ (2.1)
Both T and U are performance vectors. Hereafter, however, we mostly refer
to U as the performance vector of the system.

We are interested in studying the system performance as a function
of the processor scheduling strategy. If, for a given scheduling strategy

S, the value of performance vector is U, we say that S achieves U. A

given performance vector U is said to be achievable if there exists a
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scheduling strategy S that achieves U.

Scheduling strategies considered We now define the class of scheduling

strategies to be useq at the processor. We impose the following two

restrictions on the scheduling strategies (see Kameda [9]):

(i) The scheduling strategies are work conserving.

(ii) The scheduling strategies use only information about the current
state and the past of the queueing process in making scheduling
decisions.

These conditions are satisfied by most scheduling strategies used in

practice, e.g. first come first served, preemptive and nonpreemptive

priority, longest and shortest expected remaining processing time first,
preemptive and nonpreemptive last come first served, processor sharing,

generalized processor sharing, etc.

Mixing strategies Suppose we are given a number of strategies‘sl, 82,

cens Sk. Consider a new strategy which, at the beginning of each busy

period of the processor, decides with probability pi that sequencing
decisions at the processor during that busy period are to be made according

to Si’ for i =1, 2, ..., k (Zk = 1). We call such a strategy the

1=1pi

mixing strategy for S SZ’ ..+, S, with parameters Pys Pgs e

1° k > Py

Note that the class of scheduling strategies we have already defined
above is closed under mixing operation. Hence, the mixing strategies
possess all of the properties implied by the assumptions on scheduling

strategies.

Basic properties of the model Now, we present basic properties of the
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model. We.define U(M) as follows:
U(M) 1/(Zn:0 n! ’Iznnjel rj) (2.2)

where M and I denote arbitrary sets of job indices, M denotes the size

of M, I denotes the size of I, and
r. = v/u.. o (2.3)
J J
Furthermore, note that the set of indices of all jobs in the model is

N. The following three properties concerning the model have already been

derived by Kameda [7, 9].

Property Al. 1In the finite-source queueing model, a given utilization
vector U is achivable by some scheduling strategy, if and only if U
satisfies the following condition:

z, U

jen U U(N), and (2.4)

szZ Uj < U(Z) for any non-empty proper subset Z of N, (2.5)

where U(N) and U(Z) are given by (2.2).

Property A2. Assume that job j is associated with a weight factor Cj’
for j ; 1, 2, ..., N. The sum C = zjeN CjUj is maximum, if and only if

job. j has preemptive priority over all other jobs that have the weight

factor lower than Cj’ for j =1, 2, ..., N.

Property A3. Consider an arbitrary utilization vector U which satisfies
(2.4) and, for all non-empty proper subsets of Z, (2.5). U.can be achieved
by a mixing preemptive priority‘strategy. The condition for a response
time vector T to be achievable is obtained directly from the above and

(2.1).

Having determined, for example, that U is achievable, there remains
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the question of what scheduling strategy should be used to.achieve it.-
One answer is provided by mixing strategies. The strategies to be mixed
and the parameters of the mix can be determined using standard linear
programming methods just like those shown in Coffman and Mitrani [4],
as follows.

Let us name the performance vectors of the preemptive:priority

disciplines Pl’ P2, ey PN‘ and reformulate the problem as follows:

Find N! non-negative numbers Pys Pys «++s Py all but N of which are .equal

to zero, such that

N! N!

T, 4 Py = 1 and p.P. =U. e (2.6)

zZ. P g

i=1 i“i-
We have N + 1 linear constraints, N of which are independent .(the vectors
Pi and U have only N - 1 independent elements because of the utilization
conservation law (2.4)), to which we wish to find a non-negative solution

such that at most N of the variablesvare nonzero. This can be solved

) and

by introducing N artificial variables 9 and q = (ql, Qos ==es gy

solving the linear program

N!
max zi:l P,

subject to the constraints P, >0 (i=1,2, ..., N!), dg >0, q >0,

N! N!

+ zi:l P; = 1 and q + 21:1 piPi = U (using only the first N - 1 elements

90
of P, and U) by the simplex method with the initial basis p; =0 (i =
1, 2, ..., NI), 4y = 1 and q = U. When an objective value of 1 is reached
(as we know it will be, if U is achievable), the corresponding p;'s dgfine
a mixing strategy which achieves U.

In the case where it is known that the equality holds in some of

the constraints, the total number of necessary and sufficient constraints

is greatly decreased as will be shown in Theorem 1.
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Theorem 1. Suppose that the equality in (2.5) is known to hold for an
arbitrary number, p, of distinct non-empty proper subsets of set N. Then

we can describe the subsets as Z s, Z

1 PLERREE Zp sugh that ZO cZ, c ...

1

c Zp c Zp+1 where ZO and Zp+1 denote an empty set and set N, respectively.

Then, the performance vector U = (Ul’ U2,‘..}, UN) is realizable if and
only if
Zjezi_zi—l Uj = U(Zi) - U(Zi—l)’ i=1,2, ..., p+l. (2.7)

zjeZ Uj < U(Zi_1UZ) - U(Zi—l)’ for any non-empty proper subset Z

of Zi - Zi—l’ i=1,2, ..., p+l. : ‘ . (2.8)

(Proof. Omitted.)

Remark Let ni‘be the size of set Zi - Z in the above proposition, for

i-1

i=1, 2, ..., ptl. Then the total number of constraints, in (2.7) and
n .y

(2.8), is z; 1(2 -2)+p+ 1= ZPi 2 " - p - 1 whereas the number

T p+1

of the original contraints (2.4) and (2.5) is 2%i-1™i — 1. Thus we see

that the total number of constraints in (2.7) and (2.8) is much less than

that of constraints in (2.4) and (2.5).
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3. Optimization of performance measures
We usually think of performance measures each of which is a function
: *
of a performance vector, e.g. the (overall) mean response time, T [as
* N ‘
we will see later, T = N/(Zj_1 ujUj) - 1/v]; we often wish one of the
performance measures to be optimized. Here we consider some performance

measures, each of which is expressed as f(U oo UN). Therefore,

1’ U2’
the optimization problem of the performance measure is expressed

as
min A = f(Ul’ U2, cens UN)
subject to the constraints:

z U

. . = U(N),
jeN j

zjez Uj { U(Z) for every non-empty proper subset Z of N.
Note that the above is a linearly constrained mathematical programming

problem (see, for example, Shapiro [14]).

3.1 Linear performance measures

Consider the case where the function f(Ul, 4] ey UN) is linear

2’
in each U,, that is, of the form I, w.U., with w, independent of U,.
j jeN "i i i i
Then the above optimization problem is reduced to a linear programming
problem. We can easily see that the optimal measure is achieved by a
preemptive priority discipline as we see directly from property A2.
Some examples are given in the following. Note that interaction
means an event that begins when a job arrives at the processor, and
continues until the job leaves the processor.
(I-a) Average number of interactions per unit time interval (i.e.
throughput), T:
~ N

T =1z, u,U..
j=1 373




T is maximized by the discipline whereby a higher preemptive priority

is given to a job that has a greater amounﬁ of uj. Note that T ié a
special case ofbthe following measure.

(I-b) Total average production value per unit time interval, V:

We consider that each interaction of job j is associated with a production

value Cj. Then, V is defined as:

v=3' cuu..

=1 333

V is maximized by the discipline whereby a higher preemptive priority

is given to a job that has a greater amount of C.u_.

(I-c) Mean response time, T*:

Job j experiences average response time Tj’ and the average frequency

of interactions for job j is u.U,.

Therefore, T* is expressed as':

T* = 5N uU.T./T

=1 737373 5=l

Thus, T* is minimized by the discipline which maximizes T as in (I-a).

u,U, = N/T - 1/v.
373

(I-d) Overall resource utilization, U%*:
Consider the case where fhe cost of each términal (including human labor
associated with it) is not identical. 1In that case we méy wish terminals
of higher cost to be more utilized so thaf the overall resource utiiization
U*, may be maximum. Let v denotg the cost of the processbr; let wj denote
the cost of the terminal associated with job j, j =1, 2, ..., N. Then,
U* is defined as:

N

U* = 2 U.(w

. . u./v).
j=1 "3 0 T 5% v)

U* is maximized by the discipline wherby a higher preemptive priority
is given to job that has a greater amount of wjuj. Note that the

discipline reduces to what optimizes T and T* if w, o= wj for all i, j.



3.2 Nonlinear performance measures

Consider the case where the function f(Ul’ UZ’

ooy UN) is not linear

in each Uj.' Then the optimization problem is that of a lineérly

constrained nonlinear programming. (The schedule that optimizes the

measure is not necessarily a preemptive priority discipline.) Once we

have found a performance vector which is a solution of the nonlinear

programming problem, we then can find a scheduling strategy which optimizes

the performance measure, for example, by the method mentioned in Section

2.

Consider the case where the function f(Ul, 2

U oo, UN) is convex.

Then the problem is a convex programming and it is known that a local

optimum solution is the global optimum solution. Futhermore, if f is

differentiable with respect to all Uj's, the optimal solution is

characterized by the following Kuhn-Tucker condition (see,

Shapiro [14]):

Bf(Ul, UZ’ ey UN)/BUj YNt 2ZCN, 251, jez Vg =
ZjeN UJ. = U(N) , |
vz 2 0, Zjez UJ, < u(z), yZ[zjeZ Uj -U(z)] =0

for every non—empty proper subset Z of N,
where YN and Vg denote Lagrange multipliers.

Some examples are given in the following.

0,

(II-a) Mean of the average response time for each job, T:

= N
T=12z2,, T /N
J=1 73

T is a special case of the following measure.

(II-b) Average response cost, C*:

C* = z§ c.T,
=1 "37]

for example,

jeN,

where Cj is the cost associated with the unit length of the average
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response time of job j, j =1, 2, ..., N. By using (2.1),

N

N :
C* = 3, c./u,U, - %,
j=1 i3 j=t

J

Let aj denote cj/uj for the sake of simplicity. Thus we have a problem

c./v.
J

of minimizing:

N
A =13, a./U.
j=t "3 ]

under the constraints (2.4) and (2.6). Note that this is a separable,
convex, linearly constrained non-linear programming problem.

The solution of this is characterized as follows: Consider that
the éqdality holds in some of the constraints (2.6) for Z = Zi, Zz,....,
Zp (Z1 c 22 CeweC Zp)‘when U is an optimal solution. (see Lemma 3 of

Kameda [9].) For an arbitrary j € Zk -z _, we have from (3.1) and (3.2),

+ Zp = 0.

2
_aj/Uj + ik yzi

N
Therefore

p 1/2
Uj = [aj/(yN + I yzi)] .

Thus from (2.8) in Theorem 1,

P -1/2 , 1/2
(N + 2k yzi ) = [u(z) - U(Zk-l)J/(zjeZk—zk_l (aj) )o (3.3)
Therefore '
1/2 1/2 ,
Uy = Uz - vz )@, L, (2T (3.4)

By noting, from (3.2), that Vg i=1, 2, ..., p, are nonnegative, we
i

see that A is minimized by such Uj's as satisfy (3.4) if

' 1/2
(V@) -0 I/, 5 (a7
wt) ~ VB

for k =1, 2, ..., p (by nothing (3.3)),

1/2

< (u(z (a1, (3.5)

and (2.9) hold. Therefore, if we find such a set of Zi's'as,satisty (3.5),
we can obtain an optimal solution for each Uj as (3.4). By letting cj
be 1/N, from the above, we can obtain U which optimizes T.

(II-c) Average response ratio, R¥:
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R* = (%, u,T.u U.)/(z,. , u.U.).
‘ =1 37333 j=t "3

Note that ujTj is the response ratio for job j, and that R* is a special

case of the following performance measure, C.

(II-d) Average cost per interaction, C:

C = (ZI\.] c.T.u.U'.)/(ZI\.I u.U,),
j=t 33373 j=1 3]

where Cj is defined as in (II-b).

Ffom (2.1),

N

C=[z"  c.(1-vu/VYE wU).
=1 ] id =t 3]

In this case, we have not obtained the closed form solution for U, as

(3.4).
In any case, the schedules that optimize these performance measures

seem hard to implement as they now stand.
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4. Equal response ratio
We consider here the ratio of the average response time for a job,

to the average service time for the job; we call it response'ratio for

the job. We often wish the response ratio for each job to be equal.

That is, we wish to have such a response time vector (Tl’ T2, ceey TN)
as satisfies:
u Ty = K, j=1,2, ...y No. (4.1)

It is already known that, in the infinite-source single-server
queueing model‘(M/G/l), the processor sharing discipiine and the
preemptive-resume last-come-first-served (LCFSPR) discipline make the
response ratio for each job class equal (see, for éxample, Kleinrock [11]).
The response ratio means the ratio of the expected queueing time of a
job class to the expected service time of the job class. (The model has
often been used in gaining insight into the perforﬁance of time-shared
computer systems; However, the infinite-source assumption may sometimes
be unrealistic in the sense that, in a usual time-shared computer system,
only a finite number of jobs can be in thé system.) In this section,

we shall see the effect of changing the above infinite-source assumption

to the finite-source assumption.

We use the following notation in the subsequent subsections. Let
us define G(k, Z) for an arbitrary non-negative integer k and an arbitrary
set of natural numbers Z:

Z

Gk, 2) =z _, (n+ k) (4.2)

Iz, T=n"ie1"i"
Note that Z denotes the size of set Z. We assume that r, > 0 for any
i unless otherwise specified. Then from (2.2) we have U(Z) as follows:

U(z) = 1 - 1/6(0, 2). (4.3)

Note that we have, for any j, k, Z (j not in Z),
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G(k, Z U {j}) = 6(k, 2Z2) + er(k + 1, Z).

4.1. Response ratios achieved by processor sharing and LCFSPR

(4.4)

In this subsection, we assume that the service time distributions

are general (see Chandy et al. [3]). Assume that the processor-sharing

(or LCFSPR) discipline is used at the processor. Let P(Z) denote the

probability that jobs of set Z stay at the processor in the finite-source

model: Let P(0) denote the probability that no job stays at the processor.

Then by the product-form theorem (Baskett et al. [11, Chandy et al. [3])

P(Z) = P(0)Z! HjEZ rj

where P(0) = 1/G(0, N), rj =}v/uj, j=1, 2, ..., N, and Z denotes the

size of set Z. Then, the fraction of time job j is at the terminal is

G(0o, N - {j})/G(0o, N).

And the fraction of time job j is at the processor (i.e., Uj) is

1 - ¢G(o, N - {j})/Gc(0, N).

Thus, the response ratio ujTj for job j is, from (2.1) and (4.4),

uJTJZG(l, N—{J})/G(O,N—{J}), j:]-,‘zs "‘!N'

(4.5)

Theorem 2. If the processor sharing (or LCFSPR) discipline is used in

the finite-source queueing model, the longer the mean service time 1/uj

for job j, the smaller the response ratio ujT, for job j, for j

«esy N: That is,

u, T,
i1

Vil
vl

u, T,  if u, u,, for all i, j € N.
1] 1 J

(Proof. Omitted.)

1, 2,

Intuitively, we can understand the above result from the following:

Under the scheduling disciplines considered, the processing of job j is
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interrupted or delayed by the arrival of jobs in the set N - {j}, and.
if job j has a mean service time (on the processor) longer than that of
job i, the set of jobs in N — {j} consists of shorter jobs than the set

of jobs in N - {i}.

4.2 Achievability of the equal response ratio under Markovian assumptions

Now we shall exémine whether the equal résponse ratio is achievable
or not. In this section, we assume that the service time distributions
are exponential for each job. Under the assumption, we already have
Property A.1 on the achievability of performance vectors by scheduling
disciplines.

If we have an achievable performance vector which provides the equal
response ratio for each job, then from (2.1), (4.1), and (2.4),

2N 1/(K + 1/r>j) = U(N). (4.6)
Since the left side of (4.6) is monotonically decreasing with the increase
of K, (4.6) must have a unique solution for K. Then we have the problem
of whether the response time vector (K/ul, K/uz, ceey K/uN) is achievable

or not. For this we can have a positive answer as shown in the following

theorem.

Theorem 3. The performance vector T which realizes the equal response

ratio (i.e., satisfies u, T, = u,T, = «.. = U

154 2T ) is achievable by some

NTN
scheduling discipline in the finite-source queueing model.

(Proof. Omitted.)

Having proved that the equal response ratio is achievable, there

remains the question of what scheduling discipline should be used to
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achieve it. One answer is provided by mixing strategies as considered
in Kameda [9]. Naturally, there remains the possibility that other

scheduling disciplines achieve the equal response ratio (cf. Mitrani and

Hine [12]).
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5. Summary

We have considered finite-source queueing models where each job has
a distinct mean service time at the processor and the same mean service
time at the terminals.

First, we have studied the optimization problems of various
performance measures under Markovian assumptions. Each of the performace
measures considered is expressed as a functionrof the utilization factor
of the processor (or the average response time) for each job in the model.
We have observed‘that linear performance measures can be optimized by
preemptive priority disciplines and the implementation of them seems to
have little difficulties. However, nonlinear performace measures are
optimized by scheduling strategies which can be implemented through a
certain amount of computation of a nonlinear program (plus a linear
program) as given in this paper; at least, we can say that they cannot
be simple preemptive fixed priority disciplines; thus, we conjecture that
it may be difficult to find and implement the scheduling strategies which
optimize such performance measures, also in more general situations.

Then we have shown that the processor-sharing (or LCFSPR)
discipline, although it attains the equal response ratio for each job
class in infinite-source M/G/1, gives a smaller response ratio to a job
having a longer mean service timé at the processor, in the model where
service time distributions are general. We have also shown that there
exists a scheduling discipline whereby the response ratio for each job
is equal, in the model in whigh seryice time distributions are exponential

for each job.
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