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DifferentialtEqUations and Grassmann Manifolds

--- from Prof. Sato's lectures ---

Kanehisa Takasaki (BB £RA)

RIMS, Kyoto University

1. Introduction

The subject of this article is an interrelation of two.
seemingly distinct mathematical objects, differential equations
énd Grassmann manifolds. This interrélatioh was discovered by
Prof. M. Sato in 1981 in his study on the so called soliton
equations. He also conjectured that a similar interrelation
would be found for some other differenﬁial equations in higher
dimensions. It seems very natural for such a conjecture to be
proposed then, because soliton equations, for several reasons,
look a fairly special type of differential equations whereas the
mechanismkthat connects them with Grassmann manifolds appears to
be of universal nature. This article is concerned with this
pfdblem, i;é., how to generalise the interrelation of soliton

equations and Grassmann manifolds. -
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As a matter of fact, it has turned out that this is a very
difficult problem. Untii now no definite answer has been found.
Researches on this subject however are now in progress by Prof.
Sato himseif and also by youné peorle in Kyoto and Tokyo. This
article is intended to introduce part of their present status.
inparticular, of the work by Prof. Sato. I would like to
apologise hére in advancé that most material in this article is

taken from Prof. Sato's lectures delevered at Kyoto University.

2. soliton equations

To start with, let me briefly review characteristic aspects of
soliﬁon equations. Soliton equations are also refered to as a
class of completely integrab;e systems (with infinite degreé of
freedom). Many examples are discovered in the last ten or
fifteen years (some were already known in the last century!).
Probably the most familiar ones would be the Korteweg-de Vries
(or KdV in short) equation. There are many other important
examples but I omit their names here. 1 Jjust stress the fact
that they are all nonlinear differential equations; therefore
classical techniques based on the linear superposiiion |
principle, such as the method of Green fdnctions, can not be
applied. Nevertheless it has turned out in the last fifteen
years ofAintensjve studies that soliton equations have a number
of significant roperties such_as:

i) Soliton equations have many elementary solutions (e.q.
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soliton solutions. rational solutions. etc.).

ii) These solutions are wfitten in a closed form using
elementary functions (e.g. exponential functions. rational
functions, etc.).

iii) There is a sort of nonlinear superposition principle
of these solutions despite of the fact that the equations
themselves are nonlinear ones.

iv) By superposing these elementary solﬁtions many (if
necessary., infinitely many) times one can obtain a general
solution, etc....

These facts clearly show that solton equations are in a
sense vary similar to linear differential equations. However
why?

There may be several ways to answer this question, but
probably the most essential point would be that a soliton
equation is always accompanied with a linear system (sometimes
called a scattering problem). Their relation is Just the saﬁe
as the situation in the integrability theorem of Frobenius. that
is, a nonlinear system arises as the integrability conditions of

a linear system.

integrability conditions

linear system <

nonlinear system

existence of solutions

scattering problem ‘soliton equation
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This is of course Jjust the beginning of a long story; it is hard
to explain in this short article why such a double structure
leads to consequences as mentioned above. We shall not g0
further into its detail here.
Instead, I would like to show below another. more
accessible example of nonlinear differential equations for which
'linearity and nonlinearity intertwine just as I mentioned for
the case of soliton equations. This example, in fact, is deeply
connected with soliton equations; we shall return to this point

later.

3. A model in one dimension

Geometrically, a Grassmann manifold is the set of vector
subspaces with assigned dimensions, say m, in a given vector

space V :
(1)  GM = GM(m; V) = {vector subspaces U c V ; dim U = m}.

Let us use the sign [U] if we stress that U is considered a
point of GM rather than a vector subspace of V. Such a -
Grassmann manifold carries a vector bundle H called the
"tautological" bundle, whose fiber at a point [Ul of GM is
the cofresponding vector space U itself:

U =H c H

(2) Iy Ul 1
(Ul € GM = GM(m; V)
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Let us here draw attention to the fact that the Grassmann
manifold in itself is a nonlinear manifold whereas the vector
space V and its vector Subspaces are evidently linear
manifolds. What wé'now argue below is that there are linear and
nonlinear systems for which the above geometric situation is
faithfully realised at the level of their solution spaces.

To be precise, they are related to a factorisation.of an
ordinary differential operator. (In fact. such an idea is by no
means new, and can be found in the Galois theory of linear
differential equations known as the Picard-Vessiot theory.) Let
us consider an ordinary differential operator P of order 'N

"of the form

N : N-1

(3) P = (d/dx)" + p,(x)(d/dx) + ...+ (x).

Py
As for the coefficients. we assume that they lie in a good class
of functions, such as that of analytic or meromorphic functions,
in which the uniqueness of solutions of the initial value

problem, etc. hold. The factorisation problem mentioned above

is to find two ordinary differential operators such that

%*

(A/do? + Wi aon ! v Ll Wl

(4) P =W, W )

'Y

(dzdx)™ + wl(x)(d/dx)m oo w00,

N n + m, m. n: positive integers.

Evidently this yields a system of nonlinear differential
equations for the coefficients of Ww*  and W. It would be

worth mentiohing that if m=n = 1 , this system reduces to the
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ordinary Riccati equation of second order whose solutibn space
is known to form a projective line Pl. For a general case it
turns out that thé solution space of the nonlinear system given

by (4) can be identified with a Grassmann manifold as follows:

(5) ™, W P o= w0y

14

GM(m, V),

where V = { u: Pu=0 } (dim V =;N). The map from the left to

the right assigns to each pair (w*, W) the solution space of

the linear differential equation Wu 0 which forms an

m-dimensional vector subspace of V @

(6) (WS, W) --=>U := { u: Wu

0y cV.

The inverse of this map, too. can be explicitly constructed
using Wronskian determinants. To see this., we take for any

m-dimensional vector subspace U of V a basis Ugs Ups eee

U1 and define a linear differential operator W to be:

(dzax)iu. b drzdxolu
det|-mmmmmmo-doi
m : m
: (d/a0™, § /a0
(7) Wu = ‘ L ) (0<i, J<m- 1).

det( (d/dx)iuj

It is not hard to see that this gives an operator whose solution
space agrees with U. To show that it indeed factors out the
operator P , let us note that the ordinary division protedure
of integers or polynomials in one variables can be extended to
ordinary differential operators as well. In particular, the

oprerator P can be represented in a unique way as follows:
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Wax + g o@/ao™ ! v s g 00,

r'O(x)(d/dx)m_1 + ... + T

P = QW + R, Q

=)
]

Since P and W both annihilate U , if follows that R also
annihilates U. This situation however can not occur unless R
= 0 , because the dimensions of the solution space of R do not
exceed its order (< m - 1). Thus rewriting Q as W' , we
obtain a pair (W*, W) that factorises P as in (4).

An interesting feature of the above construction is that it
also tells us what equations correspond to the tautological
bundle. Each fiber Hp;; of the tautological bundle H can be
" identified with the solution space of the linear differential
equation Wu = 0. The bundle itself corresponds,to the system
of differential equations P = WW, Wu = 0. which consists of
the nonlinear part P = W'W and the linear part Wu = 0
describing, respectively, the base space GM(m, V) and the fiber

H[U] at each point of the base space.

Thus it turns out that a Grassmann manifold is not merely a

geometric object, but also admits an analytical (or "algebro-

analytical") realisation as the solution space of some

differential equations.

H (mmmme > P=W% wu=0
I |
GM(m, V)  <----- > P =W

<{GEOMETRY> <DIFFERENTIAL EQUATIONS>



4, Dynamical motion on a Grassmann manifold

What we have viewed above is a typical example of the subject of
this article, interrlations of differential equations and
Grassmann manifolds. This example. as already mentioned, in
itself can not be identified with a soliton equation, but they |
are in fact in a close relationship. The essence is the fact
that a soliton equation corresponds to dynamical motion on a
Grassmann manifold: this was the main conslusion of Prof. Sato's
discovery in 1981. We now turn to this topic and illustrate his
geometric interpretation of soliton equations in the finite
dimensional case discussed in §3. (In fact, a finite
dimensional Grassmann manifold can parametrise only a special
class of solutions of a soliton equation such as rational and
soliton equations, which are "elementary" in the sense mentioned
in §2. More general solutions, as stressed by Prof. Sato, lie
in their limit to an infinite dimensional Grassmann manifold
which he called the "universal Grassmann manifold".)

In order to obtain a commuting set of dynamical flows
on GM(m, V) , we now start from the situation where P 1is an

ordinary differential operator with constant coefficients, i.e.

Pl’ .0 Py are constants. This means that P commutes with
all the powers (d/dx)k. K=1, 2, ...,
(8) [P, (dsdx>)¥1 = o,

K g

and therefore the (d/dx) can act on the solution space, V,
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of the linearbequation Pu = 0. (It would be worth noting that
they give infinitésimal generators of inﬁer symmetries of this
linear equatioh; this point of view seems to Suggest some
generalisation of the Preéent construction.) Let us write the

linear endomorphism induced by (d/dx) on V as A :

{9) A=d/dx ¢ V =-=-=>V,.
Accordingly the powers Ak, k=1, 2, ..., agree with the linear
endomorphisms induced by (d/dx)k. Now we egxponentiate the

above infinitesimal inner symmetries of the linear equation Pu

= 0 to define the following commuting flows on V @

\

Kk

(10) exp 2 t tV -==> V,

k=1

KA

where tl’ t2,‘..., are time variables. This gives rise to a
set of commuting dynamical flows on GM(m, V) parametrised by

the multi-time variables t = (t,, t )

2. . s 9
(11) exp 3 tkAk: GM(m, V) ---> GM(m, V)
w1 ---» [exp(ZtkAk)U]

The above dynamical flows on GM(m, V) can be transformed
into time evolutions of ordinary differential operators W =
W(t,x,d/dx) and W= W¥(t,x,d/dx) that arise as factors of P,
P = WW. What equations will they satisfy then?

The answer is as follows: They satisfy the equations

* i
‘ W _ _yd koW d Kg* %
_where B, k=1, 2, ..., are ordinary differential operators
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of order k , which are connected with W énd W* by simple
formulae though 1 omit the detail here. 1 just mention that
the coefficients of the Bk's become polynomials of
derivatives of the coefficiénts of the W and W . Therefore,
in particular, eqs. (12) may be thought of as a system of
nonlinear differential equations for the coefficients of the W
and W=, |

This nonlinear system, in fact, agrees with a special case
of the soliton equations studied by Prof. Sato in 1981. To be
more preciée, it describes special solutions, such as rational
solutions and soliton solutions. of a soliton equations known
under the name of the Kadomtsev-Petviashvili (or KP, in short)
equation. For example, the solutions thus obtained correspbnd
to soliton solutions if V consists of linear combinations of
exponential functions exp(xjx) where X are constants, and to
rational solutions if V is formed by polynomials in x. For
the former case, for example, linear operator (10) changes the
exponential functions exp(xjx) into exp(xjx + 2 1jktk) s
which indeed takes the familiar form of exponential functions
that occur in a variety of explicit'formulae of soliton
solutions of the KP equation. For the latter case, on the other
hand, the action of the linear operator becomes more complicated
and produces linear combinations of the so called "Schur
polynomials" -that played central roles in the work of Prof. Sato.

The pfesent.framework cah also explain a mechanism under
which solutions of other soliton equations are derived as a

subset of those of the KP equation. For example, under the
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vcondition that the U 1is invariant under the actibn of A2 .

i.e.
(13) A2U = (d/ax)2U ¢ U,

the above solutions correspond to those of the KdV equation; if

the above condition is replated by

3 3

(14) AU = (d/dx)"U c U,

then we obtain solutions of another soliton equation, known
under the name of Boussinesq equation. It has been known since
‘the 70's that the Kdv.and Boussinesq equations may be thought of
as special cases ("reductions") of the KP equation: in other
words, the solution spaces of the former form subsets of that of
the latter. What I mentioned-above shows how this fact can be
understood in a moré gemetric framework; eqs. (13) and (14)
indeed define the subsets (subvarieties) of the Grassmann
manifold that correspond to solutions of the KdV and Boussinesq
equations respectively.

0f course, as mentioned above. solutions thus obtained are
of considerably limited type. More general and complicated
solutions does not;lié in finite dimensional Grassmann manifolds
as taken above, buf in an appropriate infinite dimensional limit.
‘The "universal" Grassmann manifold is a good candidate for such
a limit, and it was indeed proved by Prof. Sato that basically
the same machinary as discussed above can work in the framework
.of the universal Grassmann manifold, leading to a satisfactory

way of understanding of more general solutions.
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5. A model of higher dimensinal generalisation

Now I would like to turn to the problem of higher dimensional
generalisafion. This problem, as mentioned in the beginning of
this article, is at present very hardkto attack and no definite
answer is known uhtil now, though there are several speculations.
Below I show one of them also due to Prof. Sato.

A central idea is to replace the linear ordinary
differential equations used in the previous setting by partial
ones. Of course, in order to put the situation under good
control, these equations are required to be suchbthat the
solution space be finite dimensional. Therefore, in particular,
we have to take a system of linear equations, not a singlé
equation iike Pu =0 or wﬁ = 0 as used in the previous
setting. A system of linear differential equations with the
above property, i.e. the finite dimensionality of its solution
space, is called a "holonomic system" in the terminology of
"algebraic analysys". (A precise definition of this notion
‘requires a variety of cohomological objects, so I omit it here.)
For example, an integrable Pfaffian system is a holomoic system.
Thus, noting that the linear equations Pu =0 and Wu = 0 are
a pair of holonomic systems (in one dimension) under the
“incidence"” relation Vo U ; a higher dimensional counterpart
of that setting would be, naturally, a pair of holonomic systems

under a similar "incidence" relation of their solution spaces:
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one dimensional case higher dimensional case

v: Pu =0 Pju =0 (holondmic system)
U: Wu = 0 wku =0 (holonomic system)
with incudence relation _ with incidence relation
Uu c Vv ‘ U c¢ V

Again, under some appropriate situation, it can be shown that
holonomic systems wku'= 0 with incidence relation U c V and
with dim U = m are parametrised by (a subset of) the Grassmann
manifold GM(m, V).

I now illustrate such an example in, say, two dimensions
with indipendent variables (x, y). Take a system of N
functions u, = Ug(Xs ¥)y .oes Upoq (X Y) for which the

Wronskian with respect to the first variable does not vanish:
(15) det((a/ex)iuj) 20 (i, =0, .... N~-1).

It is then hot hard to see that there are two linear
differential operators PO’ P1 of the form

N-1

p @78x)0N + a

0 1(x,y)(a/ex) + ...+ aN(X,y),
(16) N-1

P LGYIE/BXT T+ L+ by (X, Y)

1 (8/9y) + b

for which the uj’s give a basis of the solution space of the

holonbmic system
(17) Pou = 0, P,u=0.

This can be checked with almost the same argument:as employed
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for the one dimensional case. (In particular, we can obtain
explicit formulae for PO;'P1 using Wronskian determinants as
in (7).) Thus the vector space V spanned by the uj's is now
identified with the solution space of holonomic system (17).
Just the same argument, applied to an m-dimensional subspace U
of V , leads to the consequence that there are two linear

differential operators W,, W, of the form

m-1

W (a70x)™ &+ Wy (X,y) (8/8) +o b w (XY,

‘ 0
(18)
W m-1

(378y) + v, (X,y)(3/9x) oot v (XY)

1 1

for which the vector space U agrees with the solution space of

the holonomic system

(19) wou = 0, wlu = 0.

The incidence relation U c V between the solution spaces can
also be characterised, at the level of differential operators, by
the existence of linear differential operators AOO’ cnis A11

for which the following equations are satisfied:

(20) P.o= AW, + W..W P

0 = BgoYo * YgiYyo Apghg *+ A

1 = 810Y% W

1171

The last equations can be thought of as a counterpart of the
factorisation equation (4) in the one dimensional case. Thus,
viewed as differential equations for the coefficients of the
operators included, eqgs. (20) give a system of nonlinear
differential equaions whose solutions are parametrised by the

Grassmann manifold GM(m, V).

The above argument can be reformulated in a more intrinsic
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way using the notion of modules over a ring of linear
differential opearators. The use of such rings and modules in
a problem of analysis., which can date back to the end of the
50's when the theory of hyperfunctions made its first step., is
one of the basic ideas of "algebraic analysis" jnitiated by Prof.
Sato. Let 92 denote the ring of linear differential operators
in two variables (x, y) , 9 = { 2 aij(x,y)ai+J/8xieyj»;
aij(x.y) € 0}, where 0 1is a differential algebra which I do
not specify for simplicity (in fact, the choice of @ includes
some delicate problems though I do not discuss them here). Then
the previous holonomic systems corresponds to left 2 - modules
as follows:
P.u

(21) J

wku

i
o
A
i
1
1
)
i
v
=
H

9 /1. 1 := s 9P,

[}
=)
A

1

!

1

!

|
v
=

L]

9/ J, J =32 ﬁwk.

Note that I and J are left ideals of 2 , generated by the
Pk's and wj's respectively. Then the relation as shown in

{20) can be more concisely restated as:
(22) 1 ¢ J,

or equivallently, it induces a surjective homomorphism M --> N
of 9-modules. An advantage of such a reformulation is that it
provides an intrinsic way of understanding of differential -
equations in a form paralell to the formalism adopted in
algebraic geometry.

Nonlinear equations associated with commuting dynamical

flows can also be derived almost the same way as in the one
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dimensional case.

‘It should be stressed that in applications, if they exist,
the above choise of the holonomic systems might be modified to a
large extehd. For exampie, the form of the first holonomic
system Pju = 0 taken above seems to be fairly special;
probably more general forms would be required in applications;
if the first holonomic system is chosen as such, then,
accordingly, the second holonomic system would take a more
general form as well. Reseraches in this direction are now in

progress though I omit the detail.

6. Outlook

The above generalisation is by no means a final one. First of
all, we could just obtained examples where the Grassmann
manifolds concerned are finite dimensional one. The final form
of the theory, if it exists, should be such that an infinite
dimensional Grassmann manifold gives a parametrisation of the
solution space of a system of differential equations, as that
was indeed the case for soliton equations. If there is such a
nonlinear system, the example constructed above would be
derived as a special reduciion, or it would be rather better to
say that such a final formulation could be attained in an
infinite dimensional limit of these examples. At present
however no one knows how to take such a limit.

It would be worth noting that such an approach is not a
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unique possibility to access the present(problem. Another
approach would be to study good examples of nonlinear equations
known in, for example, pPhysics. In this respect the self-
duality equations of both Yang-Mills and gravitational fields
are of particular interest,.because for several reasons they are
recognised as completely integrable systems in higher dimensions.
In recent works I could indeed found a connect;on between these
equations and some sorts of infinite dimensional Grassmann
manifolds. The frame work adopted there is somewhat different
from the present one, so clarfying their relationship would be a
very important problem. A speculative argument, though I omit
it here, suggests that a class of self-dual solutions of
Yang-Mills equation, probably including instanton solutions, can
be derived from the finite dimensional model discussed in §5.
This might provide some hint to the above problem.

The present status of reserach is anyway far from the goal.
Probably some crucial idea or a new point of view'is:still
lacked there. Prof. Sato's interest, as far as I could guess
from his fecent~lectures, now seems to aim at very abstract
and general problems. One of them, which seems to form central
part of his ideas, is to find a categry of noncommutative rings
and their modules in which the notion of differential equations
(both linear and nonlinear; not limited to "completely
integrable" ones) is reformulated in an intrinsic way, Jjust as
the notion of algebraic equations (and algebraic varieties as
their solutions) is given a firm foundation on the basis of the

theory of commutative algebras. A key to the problem of
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"complete integrability” in higher dimensions, too, might be
obtained in such a general point of view. As a matter of fact,
at present, we do not even have a rigorous and general
mathematicai definition of "complete integrability" for nonlinear
partial differential equations. It seems that an appropriate
~definition of this vague notion can not be found without a
deeper understanding of general aspects of differential
equations. What we really need would be therefore a general
theory of differential equations, which has been Prof. Sato's

Jugendtraum.
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