Distributions sphériques invariantes sur l'espace semi-simple Gc/GR

Shigeru SANO (Institute of Vocational Training)*
Nicole BOPP (Université Louis-Pasteur, Strasbourg)

Introduction.

Soit G un groupe de Lie semi-simple connexe et soit H le sous groupe des points fixes d'un automorphisme involutif de G. On définit une application \mathcal{G} de G dans G par $\mathcal{G}(\mathfrak{g}) = \mathfrak{g} \mathcal{G}(\mathfrak{g})^{-1}(\mathfrak{g} \in G)$, et on appelle \mathcal{K} son image. Alors G/H et \mathcal{K} sont isomorphes comme G-espaces symétriques. On démontre la formule d'integration de Weyl pour la décomposition orbitale de \mathcal{K} sous l'action de H. Les mesures sur G/H, H et \mathcal{K} sont normalisées à l'aide de l'application linéaire bijective \mathcal{K} définie dans G

Soit D₁(∞) le coefficient du polynome caractéristique sur 🗶 qui détermine les éléments q-réguliers. Dans la formule d'intégration de Weyl, le Jacobien est donné par De La Supposons que G soit contenu dans un groupe complexe G, d'algèbre de Lie g, et qu'il existe un sous-groupe de Borel B de G tel que l'espace symétrique 🗶 se décompose en H-orbites de 🕅 B . On en déduit que dans le groupe G semi-simple lui-même et dans l'espace symétrique Gc/G, la fonction | le groupe G et l'espace symétrique G./G sont c-duaux. Nous étudions les distributions sphériques invariantes sur X ≈ G×G/G qui désigne un espace symétrique soit du type G, soit de type Gc/G. Pour un opérateur différentiel invariant D sur X , on détermine la partie radiale de D. On démontre qu'il n'existe pas de distribution sphérique invariante à support singulier. D'après les résultats ci-dessus les distributions sphériques invariantes sont des fonctions localement intégrables. Soit 🗶 l'ensemble des éléments réguliers de 🗶 .

* 佐野茂 (職業訓練大)

La restriction d'une distribution sphérique invariante à χ' est une fonction analytique invariante. Réciproquement, étant donnée une fonction analytique invariante Φ sur χ' , on donne une condition nécessaire et suffisante pour que Φ définisse une distribution sphérique invariante sur χ .

contenu

		Page
1.	Décomposition de Harish-Chandra	1
2.	Formule d'intégration de Weyl	4
3.	Opérateurs différentiels invariants sur G/H	9
4.	Opérateurs différentiels invariants sur 🗶	12
5.	Détermination des parties radiales dans le cas	
	d'un groupe complexe	15
6.	Un exemple d'espaces en c-dualité	19
7.	Détermination des parties radiales dans le cas	
	où G*G/G	20
8.	Un espace fibré associé aux sous-groupes de	
	Borel	24
9.	Intégrabilité local de $\frac{1}{\Delta}$	30
10.	DSI à support singulier	31
11.	Caractèrisation des DSI sur G*G/G	38

§1. <u>Décomposition de Harish-Chandra</u>.

$$\varphi(g) = g \sigma(g)^{-1} (g \in G),$$

et posons

$$\chi = \varphi(G)$$

Pour chaque élément $\alpha \in G$, définissons l'application différentiable l_{α} de G dans G par $l_{\alpha}(b) = \alpha b$ ($b \in G$) et l'application différentiable A_{α} de X dans X par $A_{\alpha}(x) = \alpha x \circ (\alpha)^{-1}$. On a $\varphi(l_{\alpha}(b)) = A_{\alpha}(\varphi(b))$. Ainsi G/G_{α} et X sont isomorphes comme G-espaces symétriques.

Dans ce paragraphe nous rappelons certains résultats de [29] . Soit α un sous-espace de Cartan de (q , g)

Définition 1.1. On dit que le centralisateur dans χ de α , noté $A = Z_{\chi}(\alpha)$, est le sous-espace de Cartan de χ associé à α .

Lemme 1.1.

- 2) A admet un nombre fini de composantes connexes, chacune d'elle étant de la forme $k_j \in \text{PKInA}$ (K est le sous-groupe des points fixes d'une involution de Cartan θ de G commutant à G. On suppose que G est à centre fini). De plus $\text{Ad}(k_j) = \text{Id}$ où Id est l'identité de G.
- 3) A centralise aussi le centralisateur m de α dans $rac{2}{3}$.

Démonstration. La structure des composantes connexes est donnée dans [29] après l'étude du cas complexe. Comme Ad(G) est contenu dans le groupe complexe $Int(g_c)$, on a pour $a \in A$, $Ad(a) = e^{ad(H_0)} \quad \text{avec } H_0 \in \mathcal{H}_c$. On en déduit 3). D'autre part on peut choisir k_i de sorte que $Ad(k_i)$ appartienne à exp(iado). Comme $Ad(k_i) = e^{iadH_0}(H_0 \cap stabilise g_i, on a <math>e^{2iadH_0} = Id$ et donc $Ad(k_i)^2 = Id$

Considérons pour $\alpha \in X$ le polynôme

$$\det ((t+t) \operatorname{Id} - \operatorname{Ad}(\alpha)) = \sum_{j=0}^{\dim q} t^{j} \quad D_{j}(\alpha)$$

Si ℓ est la dimension du centralisateur dans \mathfrak{J} d'un sous-espace de Cartan de (\mathfrak{g} , \mathfrak{g}) alors : pour $\mathfrak{j}=0,1,\cdots,\ell-1$, $\mathfrak{D}_{\mathfrak{J}}$ est identiquement nul et \mathfrak{D}_{ℓ} n'est pas identiquement nul sur \mathfrak{X} .

Définition 1.2. On dit qu'un élément x de X est régulier (on écrit $x \in X'$) (resp. singulier) si $D_{x}(x) \neq 0$ (resp. $D_{x}(x) = 0$).

Soit A un sous-espace de Cartan de χ associé au sous-espace de Cartan α de (g, f). Comme Ad(A) est contenu dans $e^{\alpha d\Omega_c}$, l'opérateur $Ad(\alpha)(\alpha \in A)$ est scalaire sur tout espace radiciel $g(\alpha, \alpha)$ où α est une racine de la paire (g, Ω_c) .

<u>Définition 1.3.</u> On appelle racine globale et on note $\xi(\alpha)$ le nombre complexe tel que :

Ada)
$$X = \xi_{\alpha}(x) \times pour \quad X \in g_{\alpha}(x, \alpha)$$

On a en particulier pour $H \in \mathfrak{H}$:

$$\xi_{\alpha}$$
 (exp H) = $e^{\alpha(H)}$

Remarquons que l'on a pour $a \in A$:

$$f_{q^{\alpha}}(a) = \overline{f_{q}(a)}$$
 où C est la conjugaison de g , relativement à g

En effet comme $Ad(k_j)^2 = 1$, on a $\xi_i(k_j) = \pm 1$ et il est facile de vérifier le résultat sur $\exp \alpha$. On peut alors montrer que pour $a \in A$:

$$D_{\mathbf{k}}(\alpha) = \prod_{\alpha \in \Sigma(n)} (1 - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} (\alpha)).$$

Proposition 1.1. Soit $(\mathfrak{G}_1,\ldots,\mathfrak{G}_n)$ une famille maximale des sous-espaces de Cartan de $(\mathfrak{G}_1,\mathfrak{G}_2)$ non conjugués deux à deux. Posons $A_j = \mathbb{Z}_k(\mathfrak{G}_j)$. On a alors

$$X' = \bigcup_{j=1}^{n} \bigcup_{\mathcal{A} \in \mathcal{H}} \mathcal{A}_{d}^{i} \mathcal{R}^{-1} \quad \text{où} \quad A_{j}^{i} = A_{j} \cap X'$$

On appelle cette décomposition la décomposition de Harish-Chandra de χ . Si σ_{l} est un sous-espace de Cartan de (g_{l} , g_{l}) et $A=Z_{\chi}(\sigma_{l})$, on pose $W(A)=N_{H}(A)/Z_{H}(A)$. C'est un groupe fini et on a

Proposition 1.2. L'application de $H/Z_{H/A} \times A'$ dans $\chi' = U R A' R^{-1}$ qui à (R^*, α) associe $R \alpha R^{-1}$ est régulière. C'est un revêtement à |V(A)| feuillets.

§2. Formule d'intégration de Weyl.

Soit on un sous-espace de Cartan de (g, f), $A = Z_{K}(o_{L})$ le sous-espace de Cartan de X correspondant et $X_{A} = \bigcup_{R \in H} RAR^{-1}$ l'orbite dans X de A sous l'action de H. Avec une normalisation convenable de la mesure dx sur X invariante par G, de la mesure dx sur A invariante par expon et de la mesure dx sur $HZ_{H}(A)$ invariante par H on a

Proposition 2.1. Pour toute fonction + continue à support compact sur X_A

$$\int_{X_A} f(x) dx = \frac{1}{|T_V(A)|} \int_A |D_R(a)|^{\frac{1}{2}} \int_{H/Z_H(A)} f(RaR^{-1}) dR da$$

Démonstration. On considère l'application γ de $H/Z_{H(A)} \times A'$ dans X_A' qui à (\dot{R}, α) associe $R\alpha R^{-1}$. Après avoir choisi une base dans les espaces tangents, on va montrer que la valeur absolue du déterminant de la différentielle de γ au point (\dot{R}, α) est égale à $|D_R(\alpha)|^{\frac{1}{2}}$. On en déduira le résultat puisque γ est un revêtement fini de X_A' qui est un ouvert dense de X_A .

L'espace tangent en $\hat{\mathbf{k}}$ à $\mathcal{H}_{Z_{H}(A)}$ s'identifie à $f_n \mathcal{N}_c$ où $\mathcal{N}_c = \bigoplus_{\mathbf{k} \in \Sigma(\mathbf{n})} g_k(\mathbf{n}, \mathbf{k})$. En effet $Z_H(A)$ a pour algèbre de Lie $\mathbf{k} = g_k(\mathbf{n})$, $g_n \mathcal{N}_c$ est un supplémentaire de $\mathbf{k} \mathbf{k}$ dans $g_k(\mathbf{n})$ qui à $g_k(\mathbf{n})$ qui à $g_k(\mathbf{n})$ qui à $g_k(\mathbf{n})$ defini par

$$\dot{X}$$
 = $\frac{d}{dt}$ = $\frac{1}{1-c}$ | $\frac{1}{1$

est une surjection qui admet pour noyau NV.

L'espace tangent en $x=g\circ (g)^{-1}$ à χ , que l'on note $T_x(\chi)$, s'identifie à g. En effet l'application de g dans $T_x(\chi)$ qui à χ associe χ^* défini par

$$X^{\frac{1}{4}} = \frac{d}{dt} \left| f\left(g \times \varphi \frac{tX}{2} \times \varphi \left(-\frac{to(X)}{2}\right) \circ (g)\right) \right| \text{ pour } f \in C^{\infty}(X)$$

est une surjection qui admet pour noyau 🧍 .

On choisit une base $\{T_1, \dots, T_n\}$ de $\{n \neq 1\}$ du type de celle utilisée au [31] pour définir l'isomorphisme $\{T_i, \dots, T_n\}$ de $\{T_i, \dots, T_n\}$

$$\gamma(T_j) = \begin{cases} \chi_{j-0}(\chi_{j}) & \text{si } \chi \text{ est r\'eelle ou complexe.} \\ i(\chi_{j-0}(\chi_{j})) & \text{si } \chi \text{ est imaginaire.} \end{cases}$$

La différentielle de 7 s'identifie à une application linéaire de $n \cdot (9 \cdot 1)$ dans $n \cdot (9 \cdot 1)$. On va calculer son déterminant dans cette base.

Soit a un élément de A et b un élément de G tel que $b \circ b^{-1} = a$. On peut montrer que la différentielle de γ en (R, a) est l'application $d\gamma_{(R,a)}$:

$$(f_{\alpha} \wedge f_{\alpha}) \times 52 \longrightarrow T_{\alpha}(X)$$

$$(X, Y) \longmapsto (Ad(b')Y + 2Ad(b')X)^{*}$$

or $Ad(b^4)$ y appartient à q car Ad(a) y = y implique que $Ad(b^4)$ y = $Ad(ab)^4$ y . En utilisant l'identification de $T_a(X)$ avec q on peut écrire que

$$d\gamma_{(\dot{a},a)}(x,y) = Ad(b^{1})y + (Ad(b^{1}) - Ad(o(b^{1})))X.$$

Considérons l'application $oldsymbol{\Phi}_{i}$ de $oldsymbol{g}$ dans lui-même définie par

$$\begin{array}{ccc}
\Phi_{\bullet}: & (\text{MOE}) \oplus (\text{Gall}) & \longrightarrow & g \\
(Y, X) & \longrightarrow & \text{Ad}(\text{L}^{1}) & Y + (\text{Ad}(\text{L}^{1}) - \text{Ad}(\text{O(L}^{1}))) & X \\
&= & \text{Ad}(\text{L}^{1}) & Y + (\text{TL} - & \text{Ad}(\text{L})) & X & Y
\end{array}$$

Comme le déterminant de $Ad(f^4)$ a pour valeur absolue 1 (g semisimple) on obtient en utilisant la définition de D_{ξ} :

Nous voulons calculer le déterminant de la restriction Ψ_i de Φ_i à $\mathfrak{A} \in \mathcal{A}$ dans la base choisie ci-dessus.

Comme, en général, on ne peut pas choisir b dans A, on complexifie la situation. Soit H_c^* le sous-groupe de $G_c^* = I_{c} + (g_c)$ des points fixes de σ (prolongée à $I_{c} + (g_c)$). Soit A_c^* le centralisateur de G_c dans $\varphi(G_c^*) = \{g \circ (g)^{-1}: g \in G_c^*\}$. On a alors (p.407 [29])

$$A_{\epsilon}^* = \exp(ad \sigma_{\epsilon})$$

Comme Ad(a) appartient à A_c^* , il existe un élément c⁻¹ de A_c^* tel que :

$$Ad(a) = c^{-1} o(c)$$

On en déduit qu'il existe un élément \Re de \mathcal{H}^{\bigstar} tel que :

$$Ad(b) = c^{-1} \cdot R$$

On note aussi Φ_i et Ψ_i les prolongements $\mathbb C$ -linéaires de Φ et Ψ . Comme $\mathcal R$ appartient à $\operatorname{Int}(g_i)$ et stabilise g_i et g_i , on a , si on pose $\widetilde{\Phi}_i = \mathcal R \Phi_i$ et $\widetilde{\Psi}_i = \mathcal R \Psi_i$

$$|\det \widetilde{\underline{\mathfrak{L}}}_i| = |\det \underline{\mathfrak{L}}_i| = |\operatorname{Da}(a)|$$
 $|\det \widetilde{\underline{\mathfrak{L}}}_i| = |\det \underline{\mathfrak{L}}_i|$

Comme c appartient à \widetilde{A}_{\cdot} , $\widehat{\overline{\Phi}}_{i}$ (resp. $\widehat{\overline{\Psi}}_{i}$) centralise les éléments de $\mathfrak{N}_{\cdot}\oplus\mathfrak{M}_{\cdot}$ (resp. \mathfrak{N}_{\cdot}). Si on pose $\overline{\Phi}=\widehat{\overline{\Phi}}_{i}|_{\widetilde{\mathcal{N}}_{\cdot}}$ et $\widehat{\mathcal{L}}=\widehat{\mathcal{L}}_{i}|_{\widetilde{\mathcal{N}}_{\cdot}}$ on obtient alors

$$\overline{\Phi}(X) = (C - \Phi(C)) X$$

$$| \det \overline{\Phi}| = |D_{E}(\alpha)|$$

$$| \det \overline{\Psi}| = |\det \overline{\Psi}|$$

La matrice de Φ dans la base $\{T_1, \dots, T_n, \mathcal{T}(T_n), \dots, \mathcal{T}(T_n)\}$ est de la forme :

Ti	Ti, , Tu	7(I),-, 8(I)
:	0	D
Mr.)	С	D

où C est la matrice de \$\frac{1}{2}\$ dans les base \$\frac{1}{2},\ldots,\frac{1}{2}\$ et \$\frac{1}{2}\$ of \$\frac{1}{2}\$.

Montrons que C et D ont le même déterminant au signe près.

On prolonge Υ en une application \mathbb{C} -linéaire sur $\sqrt{\ }$ en posant $\Upsilon^1 = \mathbb{I}_{A}$ ce qui permet de définir aussi Υ sur $\Im_{A} \circ V_{A}$.

On obtient alors pour $X \in \Im_{A}(G_{A}, A_{A})$:

$$\gamma(X) = \begin{cases} X & \text{si } d \in \Sigma^{\dagger} & \text{et } d \text{ réelle ou complexe} \\ -X & \text{si } -d \in \Sigma^{\dagger} & \text{et } d \text{ réelle ou complexe} \\ iX & \text{si } d \in \Sigma^{\dagger} & \text{et } d \text{ imaginaire} \\ -iX & \text{si } -d \in \Sigma^{\dagger} & \text{et } d \text{ imaginaire} \end{cases}$$

On en déduit que pour $\chi \in \mathfrak{F}_{\varsigma}(\mathfrak{A}, \mathfrak{A})$:

$$\gamma \cdot \cancel{\Phi} \cdot \gamma(x) = \xi \cancel{\Phi}(x) \quad \text{avec} \quad \xi = \begin{cases} 1 \text{ si } \alpha \text{ réelle ou complexe} \\ -1 \text{ si } \alpha \text{ imaginaire} \end{cases}$$

En effet si X appartient à $g_{c}(s_{1},d)$, cX et $o_{c}(s_{1})X$ appartiennent aussi à $g_{c}(s_{1},d)$ car c centralise s_{1} . Or T_{c} appartient à $g_{c}(s_{1},d)+g_{c}(s_{1},d)+g_{c}(s_{1},d)+g_{c}(s_{1},d)$. Si on pose $S_{c}=1$ dans le cas où d est imaginaire, on a

$$\overline{\Phi}\left(\gamma\left(T_{j}\right)\right) = \varepsilon_{j} \ \gamma^{-1}\left(\overline{\Phi}\left(T_{j}\right)\right).$$

Les matrices C et D ont donc des colonnes égales ou de signes opposés. On en déduit que $|\det C| = |\det D| = |\det P|$ d'où $|\det F_1|^2 = |\det P|^2 = |\operatorname{D}_{E}(E_1)|$. Q.E.D.

§3. Opérateurs différentiels invariants sur G/H.

Soit G un groupe de Lie semi-simple connexe muni d'une involution \bullet , $(\mathfrak{g}, \mathfrak{f}, \bullet)$ l'algèbre de Lie symétrique associée. Soit H_{\bullet} le sous-groupe analytique de G d'algèbre de Lie \mathfrak{f} , \mathfrak{G}_{\bullet} le sous-groupe des points fixes de \bullet dans G et H un sous-groupe fermé de G compris entre H_{\bullet} et G_{\bullet} . On note $\mathsf{D}(\mathsf{G}/\mathsf{H})$ l'algèbre des opérateurs différentiels à coefficients complexes sur G/H invariants par G .

<u>Définition 3.1.</u> Soit H_1 un sous-groupe fermé de G. Une distribution \bigoplus sur G/H est appelée distribution sphérique H_1 -invariante si elle satisfait les conditions suivantes

- (i) $\bigoplus (A \dot{g}) = \bigoplus (\dot{g})$ pour tout $\dot{g} \in G/H$ et tout $A \in H$.
- (ii) Il existe un homomorphisme χ de $\mathbb{D}(G/H)$ dans \mathbb{C} tel que pour tout $\mathbb{D} \in \mathbb{D}(G/H)$, on ait

$$D \Theta = \chi(D) \Theta$$

Si $H_1 = H$, \bigoplus s'appelle une distribution sphérique invariante (DSI) ou plus simplement une distribution sphérique.

On notera $\mathfrak{D}_{\chi}^{\prime}(G/H)$ l'espace des distributions sphériques qui verifient (") pour le caractère infinitésimal χ de $\mathfrak{D}(G/H)$.

Le but de ce chapitre étant de déterminer ces distributions, nous allons commencer par étudier \mathbf{D} (G/H).

Soit θ une involution de Cartan de g commutant avec 0— et g un sous-espace de Cartan de (g,f) θ -stable. Nous allons, dans ce paragraphe, définir un isomorphisme f de f (g/H) sur une sous-algèbre de f (g/H) (algèbre symétrique du complexifié de g), analogue à l'isomorphisme de Harish-Chandra défini dans

le cas Riemannien ([13]).

Soit $\mathcal{U}(\mathfrak{g}_{\epsilon})$ l'algèbre enveloppante universelle de l'algèbre de Lie complexe \mathfrak{g}_{ϵ} . On note $\mathcal{U}(\mathfrak{g}_{\epsilon})^{\mathsf{H}}$ la sous-algèbre des éléments de $\mathcal{U}(\mathfrak{g}_{\epsilon})$ invariants par $\mathsf{Ad}(\mathfrak{K})$ pour $\mathfrak{Re} \mathsf{H}$ et $\mathcal{U}(\mathfrak{g}_{\epsilon})^{\mathsf{g}_{\epsilon}}$ la sous-algèbre des éléments de $\mathcal{U}(\mathfrak{g}_{\epsilon})$ invariants par $\mathsf{ad} \mathsf{X}$ pour $\mathsf{Xe} \mathsf{g}_{\epsilon}$. Comme H_{o} est connexe on a

L'algèbre D(G/H) s'identifie à l'algèbre des restrictions à $\mathcal{C}(G/H)$ (fonctions de classe \mathcal{C}^{∞} sur G invariantes à droite par H) des opérateurs différentiels sur G invariants à gauche par G et à droite par H₀. Il existe donc un homomorphisme canonique $\mathcal{L}(g_c)^H$ sur D(G/H). Il a pour noyau l'intersection de $u(g_c)^H$ avec $u(g_c)^G$ qui est un idéal bilatéral, et induit donc un isomorphisme ([15] p.395)

On choisit un ordre sur $\Sigma(\mathfrak{N})$ le système de racines de la paire $(\mathfrak{g},\mathfrak{n}_{\epsilon})$ tel que si \mathfrak{A} est une racine positive complexe, alors $\mathfrak{A}^{\mathfrak{C}}$ est aussi une racine positive $(\mathfrak{C}$ désigne la conjugaison complexe de \mathfrak{g}_{ϵ} relativement à \mathfrak{g}). On note $\Sigma^{\dagger}(\mathfrak{N})$ l'ensemble des racines positives et on pose

$$N_{t}^{+} = \bigoplus_{i=1}^{t} \mathcal{G}_{t}(\omega; \alpha_{i})$$

En utilisant le prolongement $\mathfrak C$ -linéaire de l'isomorphisme $\mathfrak C$ (défini au [31]) de $\mathfrak C \sim \mathcal C$ dans $\mathfrak C \sim \mathcal C$ on montre que

On pose pour Hetic

$$p(H) = \frac{1}{2} \text{ trace } (ad H|_{V \in T})$$

D'autre part on appelle W_c le groupe de Weyl du système de racines $\Sigma(\sigma_c)$ et on désigne par $I(\sigma_c)$ la sous-algèbre des éléments de $S(\sigma_c)$ invariants par W_c .

Proposition 3.1. Pour tout élément $D \in \mathcal{U}(g_{\epsilon})$ il existe un unique élément $D_{\mathbf{n}}'$ appartenant à $S(\mathbf{n}_{\epsilon})$ tel que

On définit l'application δ^n de $u(g_s)^{\delta_s}$ dans $S(x_s)$ par

$$\gamma^{\alpha}(D) = D_{\alpha} = e^{\beta} D_{\alpha}' e^{\beta}$$
 pour $D \in \mathcal{U}(g_{\alpha})^{g_{\alpha}}$

Alors $\mathfrak{J}^{\mathfrak{N}}$ induit un isomorphisme de $\mathfrak{D}(G/H_{\bullet})$ sur l'algèbre $\mathfrak{I}(\mathfrak{N}_{\bullet})$.

Démonstration. On déduit ce résultat du cas Riemannien (Théorème 6.15 [15]) en utilisant la dualité . Soit $g = \hbar \Phi \gamma$ la décomposition de Cartan de g relative à θ . Alors $g = i(g \wedge k) \Phi(g \wedge \gamma)$

d'où $\gamma(u(g_i)^{g_i})$ est égal à $\gamma(u(g_i)^{H})$ qui est D(G/H).

Proposition 3.2. Si g est muni d'une structure complexe et si g est une forme réelle de g alors tous les opérateurs différentiels invariants sur G/H proviennent du centre de l'algèbre enveloppante $\mathcal{U}(g_c)$. Cette propriété n'est pas vérifiée pour tout espace symétrique, même dans le cas Riemannien ([16]).

Démonstration. Soit J la structure complexe de g . On a alors $g=g\oplus Jg$. Si D appartient à u(g, J) on peut trouver un élément D, de $u(g_c)$ tel que

$$\mathcal{D}_{o} = \sum_{X = \langle \alpha_{1}, \dots, \alpha_{m} \rangle} \mathcal{L}_{o} (\mathcal{J}_{X_{m}})^{\alpha_{1}} \circ \hat{u} \begin{cases} X_{1}, \dots, X_{m} \text{ est une base de } \mathcal{J}_{e} \text{ sur } \mathbb{C} \end{cases}$$

Or D_{\bullet} est centralisé par tout $X \in \mathcal{G}_{\circ}$. Il est aussi centralisé par JX pour $X \in \mathcal{G}_{\circ}$ car

$$[X,JX_1] = J[X,X_1]$$
 et $[-JX,JX_1] = [X,X_1]$.

On en déduit que D_o appartient à $U(g_c)^{g_c}$, d'où le résultat car $\gamma(D)=\gamma(D_o)$.

§4. Opérateurs différentiels invariants sur 🔏 .

On reprend les notations du §3 mais on suppose dorénavant $\text{que } H = G_{\hspace{-1pt}\text{\tiny L}} \text{.} \quad \text{Soit } \varphi \text{ l'application de G dans lui-même définie par }$

est un sous-espace de Cartan de la paire symétrique (g^{\dagger} , g^{\dagger}) duale de (g, g). Or les complexifiés de $\mathfrak A$ et $\mathfrak A$, de g^{\dagger} et g, de g^{\dagger} et g, de g^{\dagger} et g, de g^{\dagger} et g, de g sont les mêmes. Vu l'isomorphisme indiqué en (3.1) et l'égalité $u(g_c)^{H_c} = u(g_c)^{G_c}$, la proposition se démontre uniquement au niveau des complexifications des algèbres de Lie et on peut donc appliquer le résultat identique pour (g^{\dagger} , g^{\dagger}), qui est une algèbre de Lie symétrique Riemannien. Q.E.D.

Remarque 1. Le groupe de Weyl W_c est le groupe Weyl du système de racines de la paire (g^d, Q^d) . Il contient (strictement en général) le groupe de Weyl $W(\mathfrak{R}) = N_{H_0 \cap N}(\mathfrak{R})/Z_{H_0 \cap N}(\mathfrak{R})$ défini au chapitre I (N est le sous-groupe analytique de G d'algèbre de Lie \mathbb{R}).

Remarque 2. La décomposition d'Iwasawa complexe ($g_c = f_c \oplus g_c \oplus \chi_c^+$) donnée ci-dessus n'est rien d'autre que la complexifiée de la décomposition d'Iwasawa de g^d :

Remarque 3. Dans le cas où tous les opérateurs différentiels invariants sur G/H proviennent du centre $\mathfrak{z}(\mathfrak{g}_c) = \mathfrak{U}(\mathfrak{g}_c)^{\mathfrak{g}_c}$ de l'algèbre enveloppante, c'est-à-dire dans le cas où $\mathfrak{I}(\mathfrak{u}(\mathfrak{g}_c)^{\mathfrak{g}_c})$ = $\mathfrak{I}(\mathfrak{g}_c)^{\mathfrak{g}_c}$, le résultat de la Proposition 3.1 reste valable si on remplace H. par H ($\mathfrak{H}_c \subset \mathfrak{H} \subset \mathfrak{G}_r$). En effet, dans ce cas, on a

 $\varphi(g) = g^{\alpha}(g)^{-1}$ qui permet d'identifier G/H avec $\chi = \varphi(G)$.

On désigne maintenant par $D(\chi)$ l'algèbre des opérateurs différentiels invariants sur χ et on note $S^{H}(\varphi_{c})$ la sous-algèbre des éléments de $S(q_{c})$ (algèbre symétrique de q_{c}) invariants par Ad(H).

Proposition 4.1. Soit δ l'application de $S^{H}(\mathcal{R})$ dans D(X) définie par $\delta(P) = P^{X}$ où pour $f \in C^{\infty}(X)$ et $x = f^{\infty}(Y)^{T} \in X$ on pose :

$$(p^* f)(x) = \sum_{\alpha} \alpha_{\alpha} \left\{ \frac{\partial^{\alpha'}}{\partial f_{\alpha'}^{\alpha'} - \partial f_{\alpha''}^{\alpha''}} f \cdot \varphi \left(x \exp \frac{f_{\alpha} X_{i} + \dots + f_{\alpha} X_{k}}{2} \right) \right\}_{i,k=0}$$

si X_1, \dots, X_m est une base de g sur \mathbb{R} et $P = \sum_{n} Q_n X_1^{d_1} \dots X_m^{d_m}$ avec $Q = (Q_1, \dots, Q_n) \in \mathbb{N}^m$, $Q_n \in \mathbb{C}$ et $|Q| = \sum_{j=1}^m Q_j^j$. L'application $Q = (Q_1, \dots, Q_n) \in \mathbb{N}^m$, $Q_n \in \mathbb{C}$ et $|Q| = \sum_{j=1}^m Q_j^j$. L'application $Q = (Q_1, \dots, Q_n) \in \mathbb{N}^m$, $Q_n \in \mathbb{C}$ et $|Q| = \sum_{j=1}^m Q_j^j$. L'application $Q = (Q_1, \dots, Q_n) \in \mathbb{N}^m$.

C'est un résultat classique ([15] p.395) qu'on a réécrit en utilisant l'identification par φ de G/H avec X. Rappelons que la définition de $\delta(p)$ ne dépend pas du choix de la base $\{\chi_1,\dots,\chi_n\}$ de φ . On veut étudier l'action de D(X) sur les fonctions invariantes par H. Soit $\mathfrak S$ un sous-espace de Cartan de (q, q) et $A = Z_X(\mathfrak S)$ le sous-espace de Cartan de X associé. La Proposition 1.2 du S1 permet, en utilisant la Proposition 2.2 de [17], d'affirmer l'existence d'une partie radiale pour les opérateurs différentiels invariants sur X, c'est-à-dire.

Proposition 4.2. Si D appartient à $\mathbb{D}(X)$, il existe un opérateur différentiel (noté \mathbb{Q}_{D}) sur A', invariant par

 $\overline{W}_A = N_H \langle A | / Z_H A \rangle$, tel que pour toute fonction $f \in C^{\infty}(X')$, invariante par H on ait

$$(Df)(\alpha) = [RDf]_{A'}[\alpha]$$
 pour $\alpha \in A'$

L'opérateur différentiel $\mathbb{Q}_{\mathbf{D}}$ s'appelle la partie radiale de D. Nous allons dans les paragraphes suivants déterminer ces parties radiales pour certains espaces symétriques.

§5. <u>Détermination des parties radiales dans le cas d'un</u> groupe complexe.

Dans ce paragraphe nous allons rappeler les résultats de Harish-Chandra [12] pour un groupe complexe semi-simple (voir aussi [3]). On suppose donc que l'algèbre de Lie $\frac{1}{2}$ du groupe G est munie d'une structure complexe. Si $\frac{1}{2}$ est une sous-algèbre de Cartan de $\frac{1}{2}$, la décomposition de Cartan de G s'écrit

$$G' = \bigcup_{g \in G} g'g^{-1}$$
 où $J = Z_G(j) = \exp j$

Ici G'désigne l'ensemble des éléments réguliers de G définis de manière analogue à celle du §1 en utilisant le polynôme

soit Σ le système de racines de la paire (g ,j), Σ^{\dagger} un ensemble de racines positives, β la demi-somme des racines positives. Posons pour $H \in j$

$$\Delta (\exp H) = e^{\frac{1}{2}(H)} \pi (1 - e^{\frac{1}{2}(H)})$$

Si on appelle ℓ la dimension sur $\mathbb C$ de j on obtient pour $H \in \widetilde{J}$

$$qf(xbH) = (-1)_w (q(xbH))_y$$

où n désigne le nombre d'éléments de Σ^{\dagger} . On en déduit qu'au signe près Δ est défini sur A. Désignons par $\mathbf{I}(j)$ la sous-algèbre des éléments de l'algèbre symétrique S(j) invariants par $W(j) = N_G(j)/Z_G(j)$. On désigne par $D_c(G)$ l'algèbre des opérateurs différentiels complexes bi-invariants sur G. Elle est isomorphe au centre J(g) de l'algèbre enveloppante universelle L(g) de l'algèbre de Lie complexe g.

Théorème 5.1. Si D appartient à $D_c(G)$, il existe un polynôme p appartenant à I(j) tel que pour toute fonction holomorphe sur G et centrale on ait

$$[Df](a) = \frac{1}{A(a)} \left[P(\partial) \left\{ \Delta f \right|_{J}, \right\} \right](a) \quad \text{pour} \quad a \in J'$$

De plus l'application χ de χ (η) dans χ (η) qui à χ associe χ est un isomorphisme d'algèbre.

On construit \mathcal{L} de la façon suivante. Soit $\Sigma(j)$ le système de racines de la paire (j,j), $(\Sigma^{\dagger}(j))$ un ensemble de racines positives). Posons

$$V^{\pm} = \sum_{j} g(j, d)$$

Si D appartient à $U(g)^G = 3(g)$ on démontre qu'il existe un unique élément D_j' appartenant à U(j) tel que D-D_j appartient à $U(g) N^+ + N^- U(g)$. On identifie U(j) avec l'algèbre des fonctions polynomês sur j et on pose pour

$$\left[\chi_{c}(D)\right](\lambda) = D_{d}^{\prime}(\lambda - \beta) = D_{d}^{\prime}(\lambda) \quad \text{où} \quad \beta = \frac{1}{2} \sum_{\alpha \in \Sigma} \chi_{\beta}$$

On peut alors montrer que ζ est un isomorphisme (appelé isomorphisme de Harish-Chandra) de ζ (ζ) sur Γ (ζ). Pour démontrer le théorème on détermine à l'aide de ζ l'action de D sur les caractères des représentations holomorphes de dimension finie de G et on obtient :

Lemme 5.2. Soit (\mathcal{K} , \mathcal{V}) une représentation holomorphe Λ irreductible de dimension finie de G sur \mathcal{V} de poids dominant Λ et soit χ son caractère. Si \mathcal{V} appartient à \mathcal{V} (\mathcal{V}) on a pour \mathcal{V}

$$\Delta(a) [DX](a) = p(\partial) \{\Delta X|_{J'}\}(a)$$
 où $p = \mathcal{F}_c(D)$

Ce lemme se démontre en utilisant le fait que $\Re(D)$ est un opérateur scalaire sur V et en étudiant l'action de $\Re(D)$ sur

un vecteur de poids Λ pour vérifier que ce scalaire est égal à $\{\chi_{\mathbb{C}}(\mathbb{D})\}_{(\Lambda+\frac{1}{7})}$. Puis on utilise la formule des caractères de H. Weyl pour calculer l'action d'un élément de $\mathbb{I}(\mathfrak{z})$ sur $\Delta\chi_{\mathfrak{z}'}$. Pour finir la démonstration du théorème on utilise le lemme cidessous qui se démontre à l'aide du théorème de Peter-Weyl et du "unitary trick ".

Lemme 5.3. Soit Grt(G) l'espace engendré par les caractères des représentations holomorphes de dimension finie de G. L'espace des restrictions à J' des éléments de Grt(G) est dense dans le sous-espace des fonctions invariantes par Fu(j) de A(G).

$$\gamma^{\infty}(D) = \gamma_{c}(D_{c})$$

après avoir identifié I(n.) et I().

§6. Un exemple d'espaces en c-dualité.

Soit $\mathfrak q$ une algèbre de Lie semi-simple, $\mathfrak q$, sa complexifiée, $G_{\mathsf c}$ un groupe de Lie connexe d'algèbre de Lie $\mathfrak q$, et G le sous-groupe analytique d'algèbre de Lie $\mathfrak q$. On suppose de plus que la conjugaison complexe $\mathfrak q$ de $\mathfrak q$, relativement à $\mathfrak q$ se remonte en une involution $\mathfrak p_{\mathsf c}$ sur $G_{\mathsf c}$ et que G est l'ensemble des points fixes de $\mathfrak q$.

Soit O_7 l'involution définie sur $G \times G$ (resp. $g \circ g$) par $\sigma_1(x, y)$ = (y, x) (resp. $O_1(X, y) = (y, X)$). On appelle diag le sous-groupe (resp. la sous-algèbre) des points fixes de C_1 . On dit que l'espace symétrique ($G \times G$, diag, O_1) est un espace symétrique $G \times G/G$ de cas I. On peut réaliser cet espace symétrique comme sous-variété de G: l'application O_1 de $G \times G/G$ qui à (x, y) associé xy^{-1} induit un G-difféomorphisme de $G \times G/G$ au $G \cap G_2$. On pose $X_1 = G$ et G opère sur cet espace symétrique par conjugaison.

Soit G_{c} l'involution définie sur G_{c} (resp. g_{c}) ci-dessus. On dit que l'espace symétrique (G_{c}, G, σ_{c}) est un espace symétrique $G \times G/G$ de cas II. On peut réaliser cet espace symétrique comme sous-variété fermée de G_{c} : l'application ϕ_{c} de $G_{c} \rightarrow G_{c}$ qui à x associe $x G_{c}(x)^{-1}$ induit un G-difféomorphisme de G_{c}/G sur son image qu'on note χ_{c} . De plus G_{c} opère sur cet espace symétrique par $x \mapsto g x G_{c}(y)^{-1}$.

Les espaces symétriques χ_{i} et χ_{i} son en c-dualité. Soit ϕ l'application de g_{c} sur $g_{\Phi}g$ qui à $\chi_{+}\pi_{i}\gamma$ ($\chi_{i}\gamma_{+}g_{j}$) associe $\chi_{i}\chi_{i}\gamma_{i}+\chi_{i}\gamma_{i}\gamma_{i}\gamma_{i}$ où $\chi_{i}\chi_{i}\gamma_{i}=(\gamma_{i}\chi_{i})$. C'est un isomorphisme d'algèbre de Lie, commutant à l'action adjointe de G et tel que σ_{i} , $\varphi_{i}=\varphi_{i}\sigma_{i}$. Remarquons que χ_{i} induit une structure complexe sur $\chi_{i}\Phi_{i}\gamma_{i}$.

Il y a dualité du caractère compact entre des variétés G_c/G et G.

Mais G_c/G et G sont des formes réelles de G_c . On donne les théorèmes de G_c/G dans le situation $G^{\mathsf{X}}G/G$ qui contient des résultats du groupe. La démonstration est différente en général. Pour cela, on prepare les notations suivantes. Dans le cas I, on réalisera l'espace symétrique en posant $\mathcal{X}_1 = G$ et on étudiera le triplet associé $(\mathcal{X}_1, \mathcal{P}_1: G_c)$ où $\mathcal{P}_1 = \mathcal{P}_2$. Dans le cas II, on réalisera l'espace symétrique en posant $\mathcal{X}_2 = \{\mathcal{P}_1 \cap \mathcal{P}_2\}^{-1}: \mathcal{P}_1 \in \mathcal{G}_2\}$ et on étudiera le triplet associé $(\mathcal{X}_1, \mathcal{P}_2: G_c)$ où $\mathcal{P}_2 = \mathcal{P}_3$. Quand il n'est pas nécessaire de distinguer un espace de type I et de type II, nous enlevons l'index.

§7. Détermination des parties radiales dans le cas où Gx年有

On utilise les notations§6. Rappelons que si $\mathfrak n$ est un sousespace de Cartan de $\mathfrak q$, alors $\mathfrak n$ est une sous-algèbre de Cartan de $\mathfrak q$ et on vérifie aisément que

$$X' = G'_{c} X$$
 et $A = \exp \sigma_{c} A X$ (cf §1 pour les notations)

On note toujours Δ la restriction à A de la fonction Δ définie au §5 sur le sous-groupe de Cartan exp σ_c (noté J au §5).

Théorème 7.1. Soit D un opérateur différentiel invariant sur χ , \mathcal{R}_D sa partie radiale sur A' et \ddagger une fonction de classe \mathcal{C}^∞ sur χ invariante par G. Alors pour $\alpha \in A'$ on a

$$\operatorname{Rof}_{A'}(\alpha) = \frac{1}{A(\alpha)} \left[2^{\circ}(D) \right] \left[\Delta f_{A'} \right] (\alpha)$$

où $\mathfrak{f}^{\mathfrak{G}}(\mathfrak{g})$ est l'élément de $\mathfrak{I}(\mathfrak{g}_{c})$ défini au §3 (on fait l'identification indiquée à la fin du §5).

<u>Démonstration.</u> On vérifie tout d'abord le théorème dans le cas II, $\chi \simeq G G$ où f est la restricion à χ d'une fonction holomorphe et centrale sur G. En effet dans ce cas pour $f \in S^G(g_c)$ on a

$$(p^*f)(g \circ g)^{-1}) = P(\frac{2}{3\pi}, \dots, \frac{2}{3\pi}) f \circ \varphi(g \exp \frac{\pi_1 X_1 + \dots + \pi_n X_n}{2})|_{\chi=0}$$

où $\{\chi_1,\dots,\chi_n\}$ est une base de q sur |R|. Or pour $X\in Q$ on a puisque F est centrale et O(X)=-X.

$$f \cdot \varphi (g = x p = X) = F(g = x p = X)$$

$$= F(g = x p = X)$$

$$= F(g = x p = X)$$
où $x = g \circ (g)^{-1} \in X$

Comme ici $S(g_c)^{\hat{q}_c} S(g_c)^{\hat{q}_c}$, on considère l'opérateur différentiel complexe $D_c \in \mathcal{U}(g_c)^{\hat{q}_c}$ qui correspond au polynôme P. Puisque c'est un opérateur différentiel bi-invariant et que F est centrale on obtient

$$(p^*f)(x) = (D_c F)(gxg^{-1}) = (D_c F)(x)$$

On déduit donc du théorème 5.1 que pour $a \in A'$

$$[R_{p} \ddagger |_{A'}](\alpha) = \frac{1}{\triangle(\alpha)} \left\{ \chi(D_{p}) \right\} \left[\triangle \ddagger |_{A'} \right] (\alpha)$$

D'après l'identification $\delta^{\mathfrak{A}}(D) = \mathfrak{R}(D_c)$ indiquée au §5, il suffit d'applique le théorème 5.1 pour obtenir le résultat on a donc déterminé l'opérateur différentiel R_D sur les restrictions à A' des fonctions holomorphes et centrales sur G.Le lemme 5.3 permet de conclure que ceci suffit à déterminer R_D .

Dans le cas I où $\chi = G$ le résultat du théorème 1.1 est connu ([17]). Si G est contenu dans G, on peut en faire une démonstration analogue à la démonstration ci-dessus (cf. [3]).

Q.E.D.

Proposition 7.2. Soit f une fonction analytique sur A' que soit fonction propre des éléments de $I(\mathfrak{H}_c)$. Il existe alors une forme linéaire Λ sur \mathfrak{H} à valeurs complexes telle que pour $P \in I(\mathfrak{H}_c)$ on ait

Soit $A_0 = Q_0 + \chi p \in \mathbb{N}$ une composante connexe de A et O une composante connexe de A_0' . Il existe une famille de fonctions polynômes sur O $\{P_{\omega}\}_{\omega \in W_0}$ telle que :

1) les polynômes $p_{\mathbf{w}}$ sont $W_{c}(\Lambda)$ -harmoniques où

$$W_c(\Lambda) = \{ w \in W_c : w \Lambda = \Lambda \}$$

2)
$$f(a_0 \exp X) = \sum_{x \in W_c} P_{xx}(x) e^{(xx/x)}$$
 pour $a_0 \exp X \in G$

<u>Démonstration.</u> C'est un résultat classique ([41] p.60). Remarquons que si \land est W_c -régulier, c'est-à-dire si $w \land \ddagger \land$ pour $w \in W_c \setminus \{1\}$, les polynômes \land sont des constantes.

On peut construire les P_{W} de la façon suivante : Soit $\prod = \{\alpha_1, \dots, \alpha_n\}$ une base du système de racines $\sum (f_n)$ et, pour $j=1,\dots,n$ soit H_j l'élément de f_n défini par f_n f_n f_n f_n f_n f_n soit f_n le nombre d'éléments de f_n . Pour chaque valeur du paramètre f_n définissons le polynôme f_n f_n de f_n par

$$D_i(t) = \prod_{w \in W_c} (t - wH_i)$$

Il existe $_{p}$ polynômes Q_{j} appartenant à $\mathcal{I}(\Omega_{c})$ tels que

$$D_{i}(t) = t^{p} + t^{p-1}Q_{i} + \cdots + t^{p}Q_{p-1} + Q_{p}$$

Comme le groupe de Weyl W_c permute les H_j on a

$$[D_{\bullet}(H_{k})] f = 0$$
 pour $f \in C^{\infty}(A)$ et $k = 1, \dots, \infty$

Si \ddagger est fonction propre des éléments de $\mathbb{I}(\mathfrak{N}_c)$, il existe $\mathbf{\Lambda} \in \mathfrak{N}_c^*$ tel que

La fonction f satisfait donc les équations différentielles suivantes

$$[H_k^p + P_1N)H_k^{p-1} + \cdots + P_pN) \neq \infty \quad \text{pour } k = 1, \dots, n$$

L'équation caractéristique de chacune de ces équations est

$$0 = r^p + p, N, r^{p-1} + \dots + p_p N = \prod_{w \in W} (r - w\lambda_1)$$

où on a posé $\Lambda = \lambda_1 d_1 + \cdots + \lambda_k d_k$ et où $w\lambda_1$ est la lère-coordonnée de dans la base $\{d_1, \cdots, d_k\}$. Posons $\lambda_k \{1\} = \{w \in W_1 : v \neq \lambda\}$. Les polynômes cherchés sont de la forme

$$P_{\omega}(X) = \prod_{k=1}^{m} \left\{ C_{i}^{k} + C_{i}^{k} \alpha_{h}(X) + \dots + C_{m,N} \alpha_{h}^{k} \alpha_{h}^{m,N}(X) \right\}$$

où les C_j^k ($1 \le k \le n$, $1 \le j \le mN$) sont des constantes.

Q.E.D.

§8. <u>Un espace fibré associé aux sous-groupes de Borel.</u>

Soit q une algèbre de Lie semi-simple réelle et q_c sa complexifiée. Soit & un groupe de Lie connexe d'algèbre de Lie \mathfrak{g}_{k} et G le sous-groupe analytique d'algèbre de Lie \mathfrak{g} . Soit H. le sous-groupe fermé de G. défini par Hc=(G.). Si on considère la restriction de σ à G , on a $H=G_{\sigma}=G_{\tau}$, GOn note aussi 🗸 l'automorphisme de 🦠 qui est la différen-Soit 9 = 9 9 la décomposition en sous-espace propres de σ . On pose $g = g_{1}$, $g = g_{1}$, $g = g_{1}$, $g = g_{1}$ L'application 9 de G_c dans G_c qui à χ associe $\chi \sigma (x)^{-1}$ induit un G_c -difféomorphisme de G_c/H_c sur son image qu'on note X_c . Si on pose $\chi = G \cdot \chi$. la restriction de φ à G induit un G_{1} -difféomorphisme de G_{1}/H sur χ . Soit $\dot{\jmath}$ une sous-algèbre de Cartan de g_c . On a alors $g_c = j_c + \lambda_c^+ + \lambda_c^-$ où $\lambda_c^+ = \sum_{d>0} g_c (j_c; d)$ et $\sqrt{c} = \sum_{a \in A} g_a(j, a)$. On pose $\frac{1}{2} = j_a + \sqrt{c}$. Soit β le sous-groupe analytique de G, correspondant à $\mathcal F$. Tout sous-groupe de G, conjugué de $\mathcal B$ est appelé sous-groupe de Borel de ${\mathfrak A}_{\iota}$. Tout élément de ${\mathfrak A}_{\iota}$ appartient variété complexe compacte.

Hypothèse A. Il existe un sous-groupe de Borel β de σ . σ -invariant vérifiant la condition suivante ;

$$\chi_{c} = \bigcup_{\mathcal{R} \in \mathcal{H}_{c}} \mathcal{R} \left(\mathcal{B}_{n} \chi_{c} \right) \mathcal{R}^{\dagger}$$

Voici des exemples pour lesquels l'hypothèse A est satisfaite.

Exemple (i) Soit G_c un groupe de Lie connexe semi-simple. Soit O_c l'involution définie sur $G_c = G_c \times G_c$ par O(g, R) = (R, g) (g.ReOn a alors $H_{\epsilon} = \{(g,g): g \in G_{\epsilon}^{\epsilon}\}$ et $\chi_{\epsilon} = \{(g,g^{-\epsilon}): g \in G_{\epsilon}^{\epsilon}\}$. L'application 4 de G./H. sur X. qui à (g.R)H. associe (347, 437) induit un G -difféomorphisme. Soit β' un sous-groupe de Borel de G_c . Alors $\beta = \beta' x \beta'$ est un sous-groupe de Borel or -invariant de G_c . On a bien $\chi_c = \bigcup_{g \in G_c} (g,g) (B \cap \chi_c) (g,g)^{-1}$. (ii) Soit g une algèbre de Lie semi-simple complexe. Soit $g = C \otimes g = \{X + FY : X, Y \in g\}$ Soit o la conjugaison de pondante. Soit G. un groupe de Lie connexe d'algèbre de Lie 9. On relève o sur G, en un automorphisme involutif. Alors 🗶 = $\{gogr';g\in G_c\}$ est un G_c -espace connexe. L'application φ de sur X qui a ghe associe gogi induit un G difféomorphisme. Soit & un sous-groupe de Borel de G. On pose B. = B. H. . Soit & une sous-algèbre de Borel de g correspondant à Bo. On a bien X = UA(BoX) A car Fg = UA(Fb) L-1 Soit $G_c = SLbtl$, C) et σ l'automorphisme involutif de (iii) défini par

$$\beta = \left(\frac{X_1}{X_2} \frac{X_2}{X_3} \right) \longmapsto \circ(\beta) = \left(\frac{X_1}{X_3} \frac{-X_2}{X_4} \right).$$

On a alors

$$H_{c} = \begin{cases} A = \begin{pmatrix} a & o \\ o & b \end{pmatrix} : a \in GL(I, \mathbb{C}), b \in GL(m, \mathbb{C}) \end{cases},$$

$$det R = 1$$

$$X_{c} = \begin{cases} g = \begin{pmatrix} c_{0} & a_{1} & a_{2} & \dots & a_{m} \\ b_{1} & c_{1} & o & \dots \\ b_{2} & o & c_{2} & o \\ \vdots & \vdots & \ddots & \vdots \\ b_{m} & c_{m} & c_{m} \end{cases} : C_{0}^{2} - a_{0}b_{0} = 1 \quad (j = 1, 2, \dots, m) \end{cases}$$

$$det g = 1, \sigma(g) = g^{-1}$$

Si n=1, $B=g_{0}$ $\left\{ \begin{pmatrix} a & f \\ o & a^{-1} \end{pmatrix} \right\}$ g_{0}^{-1} où $g_{0}=\left(\begin{pmatrix} 1 & \frac{1}{2} \\ i & \frac{1}{2} \end{pmatrix} \right)$ vérifie l'hypothèse A. Mais si , il n'existe pas de sous-groupe de Borel de G_{0} vérifiant l'hypothèse A.

<u>Définition 8.1.</u> Soit G_{c}/H_{c} un espace symétrique complexe vérifiant l'hypothèse A et B un sous-groupe de Borel tel que (A) est vérifiée. On définit le sous-espace E de $X_{c} \times H_{c}/B_{H}$ par

$$E = \{ (\alpha, gR_H) \in X, x H_C/B_H : g^{\dagger} \alpha g \in B_N X_c \}$$
 (BH=BnHc).

Soit pr (resp. pr) la projection de E sur le premier (resp. sur le deuxième) facteur. (E, pr, H, B, est ainsi un espace fibré analytique complexe. La fibre au dessus de gB_H est égale à $g(B \cap X_c)g^{-1}$ L'action A_R ($R \in H$.) de H. sur E (resp. X) est définie par A_R (x, gB_H) = ($R \times R^{-1}$, $R \subseteq B_H$) (resp. A_R (x) = $R \times h^{-1}$ ($x \in X$)) On a alors pr (A_R (g)) = A_R · pr (g) ($R \in H_c$, $g \in E$) et pr, est une application propre car H_c/B_H est compact. Puisque E et X_c ont la même dimension, pr, est un recouvrement fini excepté sur l'ensemble des éléments singuliers de X_c (cf. Définition 1.1)

On plonge $B_n X_c$ dans E par l'application $B_n X_c \ni b \mapsto (b, eB_H)$ dont l'image est la fibre au dessus de eB_H . Ainsi la projection pr_i est l'identité sur $B_n X_c$, et $B_n X_c$ rencontre chaque H_c -orbite aussi bien dans E que dans X_c . Il existe une pr_i -forme w_c , H_c -invariante holomorphe sur X_c ($m = d_i m E = d_i m X_c$), En effet choisissoi des pr_i -vecteurs sur l'espace tangent pr_i -(pr_i - pr_i -det) en pr_i -de pr_i -

Ensuite on l'étend à la fibre pour la définir sur $B \cap X_c$ et on l'étend finalement à E par l'action de H_c . On explicite la m-forme γ_c sur E la suivante.

Soit f la projection de f, sur f f let pr l'application canonique de H, sur H f g . Soit V un voisinage ouvert de O dans f, tel que l'application exp: $V \to H$, soit un difféomorphisme. On pose $V = \exp V$ et $O = \Pr(V)$. Il existe une section locale $\rho: O \to H$, telle que $\Pr(\rho(g_H)) = g_H$ $(g_H \cap O)$. On en déduit une section ρ de f f dans f vérifiant.

$$s(pr(exp X)) = exp(s(g(X))) \qquad (X \in V)$$

A un élément χ^{*} de f_{i}/f_{i} , on associe l'opérateur différentiel

$$X_{BH}^{*} + = \frac{d\pi}{dt} \Big|_{t=0} + (3(AAX)BH)$$

Par cette correspondance, on identifie g_{ℓ}/g_{ℓ} et $T_{g_{\ell}}(H/g_{H})$. A un élément Y^{*} de g_{ℓ}/g_{ℓ} , on associe l'opérateur différentiel

$$Y_{x}^{*}f = \frac{d}{dt}\Big|_{t=0} f(\alpha \exp tY)^{-1}\sigma(\alpha \Gamma) \quad (x=\alpha \sigma(\alpha \Gamma) \in X).$$

Ce qui permet d'identifier g/f, et Tx(X). L'espace tangent T(x,g) (X,XH, R) est ainsi identifié à g/f, g/r, f.

On définit une section local au voisinage du point (b, eBy)

de (X, B) XH, By dans E par

$$(X_{c},B)\times O \longrightarrow E$$

 $(b,gB_{H}) \longmapsto (og_{1}b \cdot (og_{1})^{T},g \cdot B_{H})$

A un élément χ^* de fort on associe un vecteur de l'espace tangent $T_{(b,ek)}(E)$ par

$$(\widehat{O}, \widehat{X}^*)_{b \cdot eB_H} f = \frac{d}{d\pi}\Big|_{t=0} f (o(\exp tX)b (\exp tX)^{-1}, (\exp tX)B_H)$$

$$= \frac{d}{d\pi}\Big|_{t=0} f (o(\exp tX)b (\exp tX)^{-1}, (\exp tX)B_H)$$

$$= \frac{d}{d\pi}\Big|_{t=0} f (o(\exp tX)b (\exp tX)b (\exp tX)B_H)$$

$$(b = o(a)^{-1})$$

$$= ((Ad(o^{-1}) - Ad(o(a)^{-1})) \rho(X), X)_{(b, eB_H)} f$$

Soit Y_1, \ldots, Y_Q une base de $\mathcal{W}(l = \dim_{\mathbb{Z}} \mathcal{W}_{0})$. Soit X_1, \ldots, X_{m-1} des éléments de $f_{\mathbb{Z}}(l_{m})$ tels que $\left(A_{\mathbb{Z}}(l_{m}) - A_{\mathbb{Z}}(l_{\mathbb{Z}}(l_{m})) \cap X_{j}\right)_{j=1}^{m}$ forment une base de $f_{\mathbb{Z}}(l_{m})$. On pose $W_{j} = (Y_{j}, 0) \quad (j=1, \ldots, l)$ et $W_{j} = (0, X_{j}^{*}) \quad (j=1, \ldots, m-l)$. On considère la base duale $f_{\mathbb{Z}}(l_{m}) = f_{\mathbb{Z}}(l_{m}) = f_{\mathbb{Z}}(l_{m}) = f_{\mathbb{Z}}(l_{m})$. On définit la m-forme $f_{\mathbb{Z}}(l_{m}) = f_{\mathbb{Z}}(l_{m}) = f_{\mathbb{Z}}(l_{m})$

Nous allons fixer une base de q_c et normaliser exactement γ_c et ω_c . Soit j_c une sous-algèbre de Cartan de q_c , $\Sigma(j_c)$ l'ensemble des racines de (q_c,j_c) . On suppose que j_c et l'ordre sur $\Sigma(j_c)$ sont tels que $\mathcal{F} = j_c + \sum_{n > 0} \mathcal{F}(j_c,n)$ et que $\mathfrak{R}_c = j_c \wedge q_c$ soit un sous-espace de Cartan de q_c . Soit Y_1, \dots, Y_k une base de \mathfrak{R}_c vérifiant les conditions de la proposition 2.4 du Chapitre I, telle que X_1 , X_2 , \dots , X_p soit une base de $f_c \wedge \mathcal{N}_c \wedge \mathcal{T}$. A partir des éléments $(Y_1,0),\dots,(Y_k,0),(Y_1(X_1),0),\dots,(Y_k,0)$ de $\mathcal{T}_c \wedge q_c$ et les éléments $(0,X_{p+1}^*)$, \dots , $(0,X_1^*)$. On construit une forme γ_c comme ci-dessus Et à partir des éléments Y_1,\dots,Y_p , $Y_k(1),\dots,Y_k(n-p)$ de q_c , on définit la forme ω_c . Les formes ω_c et γ_c étant normalisées comme il a été dit plus haut on a le lemme suivant.

Lemme 8.1. Pour un élément (x,hB) de E $(x=RbR^{-1},b\in X_nB,R\in H,)$, on a

$$S(pr_i) \omega_c = \det \left\{ A_d(a^{-i}) - A_d(a^{-i}) \right\}$$

$$\frac{g_{a_i}(a_i)}{(g_{a_i}(a_i))}$$

$$\frac{(b = a_i)^{-i}}{(b = a_i)^{-i}}$$
on a

$$d(pr)_{(b,eB)}(\widetilde{O},X^*) = \{Ad(\overline{a^*}) - Ad(o(\overline{a^*})\} \land (\delta(X))_b$$

Pour Ye bog, , on a alors

D'après la normalisation des formes, l'assertion du lemme s'en déduit. Q.E.D.

§9. <u>Intégrabilité local de A</u>

Dans cet section, on se restreint sur l'espace symétrique $G \times G / G$ que satisfait Supposition A; On adopte des notation de section §2 et §3. On pense le diagramme suivant

où $\widetilde{X} = pr^{-1}(X)$. \widetilde{X} n'est pas de variété en general. Mais il est un sous-ensemble réel analitique de E. Ensuite pr_i est un application fini couvert sur X'. $\widetilde{X}' = pr^{-1}(X')$ est alors une variété. Nous nous rappelons $\Delta(x) = |D_k(x)|^{\frac{1}{4}}$. On a un théorè suivant

Théorème $\frac{9}{1}$. Le fonction $\frac{1}{\Delta(x)}$ est localement intégrable sur χ .

Démonstration. Soit Θ une voisinage ouverte finite de une pointe singuliere dans X. Nous allons démontrer $\int_{\Theta} \frac{\omega}{\Delta(x)} < +\infty$ où ω est une m-forme differentielle G-invariante sur X telle que $\omega = \omega_c/\chi$. X' a des components finis car l'ensemble des éléments singuliers a une mesure nulle. C'est assez de demontrer

un component connexe dans $pr_i^{-1}(U)$. D'aprés Lemme 2.1, on a

$$\int_{\mathcal{U}} \frac{\omega}{\Delta x_{1}} = \frac{1}{R} \int_{\widehat{\mathcal{U}}} \frac{\delta(pr_{1}) \omega}{\Delta x_{1}}$$

$$= \frac{1}{R} \int_{\widehat{\mathcal{U}}} \frac{\Delta x_{2}}{\Delta x_{1}}$$

$$= \frac{1}{R} \int_{\widehat{\mathcal{U}}} \gamma < +\infty$$

où k est un nombre positif car $\widetilde{\mathbb{U}}$ est l'ensemble analytique. Q.E.D.

Remarque. On généralise la méthode que Atiyah a utilisée pour démontrer l'intégrabilité locale des distributions propres invariantes sur le groupe de Lie semi-simple [1]. Dans la section suivante, on étudie les DSI à support singulier.

§10. DSI à support singulier

On utilise toujours les notations du §1. Pour un élément $x \in X$, on a d'après [29] ,

$$x = x_0 x_n \quad (x_0, x_n \in X)$$

où x_n (resp. x_n) est un élément semi-simple (resp. unipotent) dans G. On étudie l'action de l'opération différentielle H-invariante au voisinage de x. On note $X_0 = \log x_n$ ($\in q$) l'élément nilpotent de g correspondant à X_n . D'après le lemme de Jacobson-Morozov, il existe des éléments H_0 de g et Y_0 de g tels que $\{H_0, X_0\} = 2X_0$, $\{H_0, Y_0\} = -2Y_0$ et $\{X_0, Y_0\} = H_0$, c'est-à-dire $\{X_0, Y_0, H_0\}$ engendre une sous-algèbre g_0 de g isomorphe à $\mathcal{N}(2, \mathbb{R})$.

on note $j=Z_q(x_n)$ le centralisateur dans g de x_n . Soit C le centre de j et l=[j,j]. On pose j=j-j, j=j-j, l=j-j, l=l-j, l=l-j et l=l-j et l=l-j est alors une algèbre de Lie symétrique.

Soit & un sous-espace de Cartan de 9 contenant H_0 et L_0 .

Pour $\mathcal{A} \in \Sigma^+(\Omega)$, on choisit une base $X_{d,1}, \cdots, X_{d,m_d}$ de $g_c(\alpha; \alpha)$ ($m_d = \dim g_c(\alpha; \alpha)$) telle que $B(X_{d,p}, \sigma(X_{d,q})) = -\delta_{p,q}(p,q=1,\cdots,m_d)$ Soit $\{H_1, \cdots, H_k\}$ une C-base de $\{\alpha_0\}_c$ telle que $B(H_p, H_q) = \delta_{p,q}$ et $\{C_1, \cdots, C_{m-1}\}$ une C-base de $\{c_0\}_c$ telle que $\{c_1, \cdots, c_{m-1}\}$ une C-base de $\{c_1, \cdots, c_{m-1}\}$ on a défini le polynôme de Casimir $\{\omega\}_c$ de $\{c_1, \cdots, c_{m-1}\}_c$ on a défini

$$\omega = \sum_{p=1}^{k} H_{p}^{2} + \sum_{q=1}^{m} C_{q}^{2} + \frac{1}{2} \sum_{d \in \Sigma_{q}^{+}} \sum_{r=1}^{m_{d}} (X_{d,r} - o - (X_{d,r}))^{2}$$

Soit ω_{ℓ} (resp. ω_{c}) la restriction de ω à ℓ_{ℓ} (resp. ℓ_{ℓ}) on a alors

$$\omega_{\ell} = \sum_{p=1}^{k} H_p^2 + \frac{1}{2} \sum_{d \in \Sigma_{\sigma}^{\dagger}(b\tau)} \sum_{r=1}^{m_d} (\chi_{d,r} - \sigma(\chi_{d,r}))^2,$$

$$\omega_c = \sum_{j=1}^m C_j^2$$

où $\Sigma_{\bullet}^{+}(x_{1}) = \{ \forall \in \Sigma^{+}(x_{1}) : \forall (H_{\bullet}) = 0 \}$ On pose $\Sigma_{\bullet}^{+}(x_{1}) = \Sigma^{+}(x_{1}) \setminus \Sigma_{\bullet}^{+}(x_{1})$. On note

$$\nabla^{\pm} = \sum_{\alpha \in \Sigma_{1}^{+} | \Sigma_{1}|} \sum_{r=1}^{m_{\alpha}} \mathbb{C} \left(X_{\alpha,r} \pm o(X_{\alpha,r}) \right)_{r}$$

Alors les décompositions $f = f + V_{g}$ et $f = f + V_{g}$ sont des sommes directes.

D'après le Lemme 1, [40], il existe un involution de Cartan θ de \mathcal{L} commutant avec Φ telle que $\theta: (H_0, X_0, Y_0) \mapsto (-H_0, -Y_0, -X_0)$ On définit une structure Euclidienne sur \mathcal{L} par la forme bilinéaire définie positive $-\mathcal{B}(X, \theta X)(X \in \mathcal{L})$. On note $\mathcal{U} = \{l_q\}_{Y_0}$ le centralisateur de Y_0 dans $\{l_q\}_{Y_0}$ on choisit une base orthogonale $\{u_1, \dots, u_n\}_{Y_0}$ de \mathcal{U} telle que $\{u_1 = Y_0 / \|Y_0\|\}_{Y_0}$ et $\{H_0, u_i\}_{Y_0} = -\lambda_i u_i$ ($\{u_i\}_{Y_0} = -\lambda_i u_i$). Alors $\lambda_i = 2$. Soit $\{x_1, \dots, x_n\}_{Y_0} = -\lambda_i u_i$ ($\{u_i\}_{Y_0} = -\lambda_i u_i$) les coordonnés d'un élément de $\{u_i\}_{Y_0} = -\lambda_i u_i$ une base de $\{u_i\}_{Y_0} = -\lambda_i u_i$ une $\{u_i\}_{Y_0} = -\lambda_i u_i$ une

On définit l'application $\Phi(s,x)$ de $\mathbb{R}^{\mathfrak{l}} \times \mathbb{R}^{\mathfrak{n}}$ dans $l_{\mathfrak{l}}$ par

$$\Phi(\mathbf{e},\mathbf{x}) = Ad\left(\mathbf{e}^{nf_i} - \mathbf{e}^{ngf_i}\right) \left(\chi_0 + \sum_{j=1}^m \alpha_j u_j\right).$$

 Φ (ρ , α) satisfait $\Phi(\rho) = \chi_0$ et $d\Phi$ est non-singulière en Φ .

Ensuite on définit l'application Φ de $\mathbb{R}^{1} \times \mathbb{R}^{1} \times \mathbb{R}^{1} \times \mathbb{R}^{1}$ dans χ par

$$\frac{1}{2}(\lambda, \rho, \alpha, \gamma) = e^{\lambda_{i}e_{i}} \dots e^{\lambda_{i}e_{i}} \propto_{\rho} \exp\left(\frac{\pi}{2}\gamma_{j}v_{j} + Ad\left(e^{\rho_{i}f_{i}} \dots e^{\rho_{i}f_{i}}\right) \left(\chi_{o} + \frac{\pi}{2}\chi_{j}u_{j}^{*}\right)\right) e^{\lambda_{i}e_{i}} \dots e^{\lambda_{i}e_{i}} \\
= e^{\lambda_{i}e_{i}} \dots e^{\lambda_{i}e_{i}} \propto_{\rho} \exp\left(\frac{\pi}{2}\gamma_{j}v_{j} + \frac{\pi}{2}(\rho, \alpha)\right) e^{\lambda_{i}e_{i}} \dots e^{\lambda_{i}e_{i}}.$$

on a alors $\mathcal{I}_{0}=\infty$ et \mathcal{I} induit un difféomorphisme entre un voisinage ouvert de l'origine dans $\mathbb{R}^{P^+\tilde{l}^+n+m}$ et celui de \mathbb{X} dans \mathbb{X} . On prend des sous-ensembles ouverts E_0 , F_0 , U_0 et V_0 de \mathbb{R}^P , \mathbb{R}^R , \mathbb{R}^n et \mathbb{R}^m contenant l'origine respectivement tels que $\mathcal{I}_{E_0} \times F_0 \times U_0 \times U_0$ est un difféomorphisme. On pose $\Gamma_0 = E_0 \times F_0 \times U_0 \times U_0$ $\Omega_0 = \mathcal{I}_0$.

Soit dû une mesure Euclidean sur \mathcal{T}_{\circ} et d α une mesure G-invariante sur χ .

Lemme 10.1. Pour un élément $\beta \in C^{\infty}(\mathbb{R})$, il existe un unique élément $\sharp_{\beta} \in C^{\infty}(\mathbb{R})$ tel que

$$\int_{\Gamma_0} G(\overline{\mathcal{L}}(a)) \beta(a) da = \int_{X} G(x) f_{\beta}(x) dx$$

pour tout $G \in C^{\infty}(\Omega_{\bullet})$. L'application de $C^{\infty}_{c}(\widehat{\Gamma}_{\bullet})$ dans $C^{\infty}_{c}(\Omega_{\bullet})$ donné par $\beta \mapsto \widehat{T}_{\beta}$ est continue et surjective et supp \widehat{T}_{β} ($\widehat{\underline{\Upsilon}}$ (supp β).

<u>Démonstration</u>. Elle est analogue à cell du lemme 13 [13].
Q.E.D.

<u>Proposition 10.2.</u> Supposons E_{\circ} et F_{\circ} connexes. Si T une distribution H-invariante localement sur Ω_{\circ} , il existe une distribution Ω_{T} sur $U_{\circ} \times V_{\circ}$ telle que

$$T(f_{\beta}) = \sigma_{\overline{f}}(\alpha_{\beta}) \quad (\beta \in C_{c}^{\infty}(F_{0}))$$

$$d\beta(\alpha, y) = \int_{E_0 \times F_0} d(x, \beta, \alpha, y) dt d\beta$$

<u>Démonstration.</u> Elle est analogue à celle du Théorème 2[13].

Q.E.D

Un élément nilpotent $X_o \in \mathcal{L}_{\mathbf{Q}}$ est dit $\mathcal{L}_{\mathbf{Q}}$ -distingué s'il satisfait $(\mathcal{L}_{\mathbf{Q}})_{X_o} \wedge (\mathcal{L}_{\mathbf{Q}})_{X_o} = 0$ (cf. p103 [36], [40]). On note Δ ($\omega_{\mathbf{Q}}$) la partie radiale de $\omega_{\mathbf{Q}}$ en X_o concernant ($\mathcal{E}_o \times \mathcal{U}_o$, $\mathcal{E}_o \times \mathcal{U}_o$) (cf. Définition §2, [40]). La proposition suivante que van Dijk et Sekiguchi ont donnée est la généralisation d'un résultat de Atiyah pour l'algèbre de Lie semi-simple (cf. [1], p104 [36], [40]).

<u>Proposition 10.3.</u> Soit \top une distribution sphérique invariante sur Ω_{\circ} avec un caractère infinitésimal $\mathcal X$. Alors la distribution $\mathcal T$ induit par \top sur $\mathbb U_{\circ} \mathsf x \, \mathbb V_{\circ}$ qui est donnée par la Proposition 10.2 satisfait l'équation différentielle

(1)
$$(\Delta(\omega_{\ell}) + \omega_{\ell} - \zeta(\alpha, \gamma) - \chi(\omega)) \ \sigma_{\tau} = 0$$

où $\zeta(u,y)$ est une fonction analytique sur U_0xV_0 induit par (5,2,3) [36]. Si χ_0 est un élément nilpotent distingué, $\Delta(\omega_{\ell})$ est déterminé par

(2)
$$\|X_0\| \Delta(\omega_{\ell}) = 2 x_1 \frac{\partial^2}{\partial x_1^2} + \dim(\ell_q) \frac{\partial}{\partial x_1} + \sum_{j=2}^{n} (\lambda_j + 2) x_j \frac{\partial^2}{\partial x_1 \partial x_j}$$

$$+ \sum_{1 \le i < j \le n} Q_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{j=2}^{n} Q_j x_1 \frac{\partial}{\partial x_j}$$

où $a_{ij}(x)$ et $a_{ij}(x)$ sont des fonctions analytiques sur $a_{ij}(x) = 0$ ($a_{ij}(x) = 0$).

On se restreint à l'espace symétrique G*G/G. On utilise les notations de §6.

<u>Proposition 10.4.</u> Soit T une distribution shpérique invariante sur χ à support singulière, c'est-à-dire supp $T \subset \chi - \chi'$. Elle est alors identiquement nulle sur tout l'espace χ .

Démonstration. Par hypothèse, \mathcal{T}_{τ} satisfait l'équation différentielle (1) de la Proposition 10.3 et supp $\mathcal{T}_{\tau} \subset \{\circ\} \times V_{\delta}$. Si X_{δ} n'est pas \mathcal{L}_{η} -distingué, la partie homogène de degré 2 de $\Delta (\omega_{\ell})$ en $\omega_{\ell} = 0$ n'est pas nulle (cf. Lemme 4.6 [36]). D'après la Proposition 2.2 [36], on a $\mathcal{T}_{\tau} = 0$. Si X_{δ} est un élément nilpotent distingué, \mathcal{T}_{τ} satisfait l'équation différentielle, (2) de la Proposition 10.3 Soit \mathcal{S} est une distribution sur \mathcal{T}_{δ} . On étend \mathcal{S} à $\mathcal{T}_{\delta} \times \mathcal{T}_{\delta}$ en posant $(\mathcal{S},\mathcal{T}) = (\mathcal{S},\mathcal{T})$ où $\mathcal{T}_{\delta}(\mathcal{T}) = \mathcal{T}_{\delta}(\mathcal{T})$ ($\mathcal{T}_{\delta} \in \mathcal{T}_{\delta}(\mathcal{T}) \times \mathcal{T}_{\delta}(\mathcal{T})$). D'après un théorème 36 (cf. §3 [35]), on a $\mathcal{T}_{\tau} = \sum_{\alpha} \mathcal{C}_{\alpha} \frac{\partial^{kl}}{\partial x^{\alpha}} \mathcal{S}$ ($\alpha = (\omega_{\ell}, \dots, \omega_{k})$). Pour l'équation différentielle $(\Delta(\omega_{\ell}) + \omega_{\epsilon}) \mathcal{T}_{\tau} = (\mathcal{T}_{\delta} + \mathcal{T}_{\delta}(\omega)) \mathcal{T}_{\tau}$ où \mathcal{T}_{δ} est un caractère infinitésimal de \mathcal{T} . On compare le degré de chaque côté :

$$\Delta(\omega_{\ell}) \frac{\partial^{d}}{\partial x^{d}} \overline{S} = \begin{cases} \dim(\ell_{\ell}) - 2(\lambda_{i}+2) - \sum_{j=2}^{n} (k_{j}+2)(\lambda_{j}+1) \frac{\partial^{d}}{\partial x^{d'}} \overline{S} \end{cases}$$

+ le degré plus bas

où $\alpha' = (\alpha_1 + 1, \alpha_2, \dots, \alpha_n)$. On pointe le coefficient de $\frac{\partial^{k'}}{\partial \alpha^{k'}} \bar{S}$. Ly est somme directe de λ s(2, k)-module irréductible de poids dominant

 $2=k_1, k_2, \dots k_n$ alors $\dim l_q = \sum_{j=1}^m (k_j+1)$. Ce coéfficient est donc égal à $-2\lambda_1 - \sum_{j=1}^m (k_j+2)\lambda_j - n < 0$. Comme le degré du côté gauche est strictement supérieur au degré du côté droit, on a une contradiction. Par conséquent T=0.

Théorème 10.5. Soit B une distribution sphérique invariante sur χ . La restriction de B à χ' est une fonction analytique. B est localement intégrable sur χ .

Démonstration. Pour un élément $x \in X'$, soit $\mathfrak A$ le centralisateur de $\mathfrak A$ dans $\mathfrak A$ et A le sous espace de Cartan de X correspondant à $\mathfrak A$. On pose $X_A' = \bigcup_{\mathfrak g \in \mathfrak G} A'\mathfrak g^{-1}$. Soit $\widehat{\mathfrak A}$ la restriction à X' de $\widehat{\mathfrak A}$. D'après le Théorème 7.1, on a

$$\chi(D) \left[\triangle \widetilde{\Theta} \right] = \gamma(D) \left[\triangle \widetilde{\Theta} \right] \qquad (D \in D(X))$$

Soit H_1, \dots, H_n une base de \mathfrak{A} . Posons $\Omega = \sum_{j=1}^{n} H_j^2 \in S(n)$. On choisit $C_j \in \mathbb{C}$ tel que $\Omega = \Omega^m + \sum_{j=1}^{n} C_j \Omega^{m-j} \in \mathbb{R}^n$. Evidemment, Ω est un opérateur différentiel elliptique analytique. $\Delta \widetilde{\mathbb{D}}$ coincide, du sens des distributions avec une fonction analytique sur \mathbb{X}_A^j car $(\Omega - X (\delta^m(D)))(\Delta \widetilde{\mathbb{D}}) = 0$. Il existe alors une fonction analytique F tel que $F = \mathbb{D}$ sur \mathbb{X}' . D'après la Proposition 7.2, F est donné par la forme $A \cap A$ où $A \cap A$ est une fonction bornée localement. Alors F est une fonction localement intégrable car $A \cap A$ est localement intégrable d'après le Théorème 9.1.

§11. Caractérisation des DSI sur G*G/G.

On utilise les notations dans §6. Soit & un sous-espace de Cartan de q et $A_{\Omega} = Z_{MN}$. Si Ω_c est la sous-algèbre de Cartan de g, qui contient G et A_{Ω} le sous-groupe de Cartan de Gcorrespondant à Ω , alors $(A_{\mathfrak{D}})_{\epsilon}$ contient $A_{\mathfrak{b}}$. Soit $\mathfrak{T}^{\dagger}(\mathfrak{b})$ l'ensemble des racines positives de (g., Ω .), $\mathcal{G}_{\mathbf{R}}^{\mathbf{D}}$ l'ensemble des racines réelles singulières positives et $\mathcal{S}_{\mathbf{L}}^{\mathbf{h}_{\mathbf{L}}}$ l'ensemble des racines imaginaires singulières positives. Et posons $S^{n} = S^{n}_{p} \cup S^{n}_{1}$ Maintenant supposons que G est acceptable. Alors pour $\beta = \frac{1}{2} \frac{5}{465} \frac{3}{100}$ on peut définir un homomorphisme $\xi_{\rm P}$ de $(A_{\rm m})_{\rm c}$ dans ${\mathbb C}^{\star} \setminus \{{
m o}\}$ par $\xi_{\rho}(\exp \chi) = e^{\rho(\chi)} (\chi \in S_{\epsilon})$. On peut vérifier qu'alors la forme linéaire $\beta_{r} = \frac{1}{2} \sum_{k \in S_{r}^{n}} S_{r}^{n}$ se remonte aussi en un homomorphisme β_{r} de $(A_{\omega})_{c}$ dans \mathbb{C}^{*} (on utilise la remarque qui suit la définition 4.1 du Chapitre

On pose pour a A

$$\Delta^{to}(a) = \prod_{d \in \mathbf{\Sigma}^{t}(b)} (I - \beta_{d}(a)^{-1}), \qquad \Delta^{to}(a) = \beta_{p}(a) \Delta^{to}(a),$$

$$\Delta^{to}_{R}(a) = \prod_{d \in \mathbf{S}^{to}_{R}} (I - \beta_{d}(a)^{-1}), \qquad \mathcal{E}^{to}_{R}(a) = \log_{R} (\Delta^{to}_{R}(a)),$$

$$\Delta^{to}_{Z}(a) = \prod_{d \in \mathbf{S}^{to}_{R}} (I - \beta_{d}(a)^{-1}), \qquad \mathcal{E}^{to}_{Z}(a) = \log_{R} R_{e}((H)^{-m|I|}) \tilde{f}_{f_{Z}}(a) \Delta^{to}_{Z}(a),$$

$$(m|I|) = \# S^{to}_{Z}(a)$$

On remplace \mathcal{T} par \mathcal{R} (resp. I) si χ est du cas I (resp. du cas et on a donc les notations $S_{\mathbf{F}}^{m}$, $\Delta_{\mathbf{F}}^{m}$ et $S_{\mathbf{F}}^{m}$. Pour une racine de Σ [67], on choisit Ha & Red = Florikin (rate) tel que B(Ha.H)=d(H) pour tout Here, on definit H_{λ}' par $H_{\lambda}' = \frac{2}{|A|^{2}}H_{\lambda}$. Soit $A'_{h}(\overline{h}) = \{a \in A_{h}: A_{\overline{h}}(a)\}$ et $WA_{\infty} = N_{\alpha} A_{\alpha} / Z_{\alpha} (A_{\alpha})$. Définissons la fonction localement constante

 $\{F(w; a) \text{ sur } A_w' \text{ par } (F_F \Delta^w)(wa) = \{F(w; a) (F_F \Delta^w)(a) \text{ (we WAw)}, a \in A_w' \}$ Soit G_1, \ldots, G_n un ensemble maximal de sous-espaces de Cartan θ -invariant non G-conjugués de Q_1 , fixons un ordre pour les racines de (Q_1, w_j) et posons $A_j = 2_{\mathcal{A}}(Q_j)$ où on écrit f au lieu de G_1 .

Si $\widehat{\mathbb{H}}$ est une distributions sphérique invariante sur \mathbb{X} , alors la restriction de $\widehat{\mathbb{H}}$ à \mathbb{X}' (notée $\widetilde{\widehat{\mathbb{H}}}$) est une fonction analytique. On lui associe la famille des fonctions $(\mathcal{K}_{\widehat{\mathbb{H}}})_{j=1,\dots,N}^{-1}$ définies sur par

(1)
$$\lambda'_{j}(\alpha) = (\mathcal{E}_{F}^{j} \Delta^{j})(\alpha) \widetilde{\mathfrak{B}}(\alpha) \text{ pour } \alpha \in A_{j}^{j}$$

Ces fonctions sont & -symétriques, c'est-à-dire,

(2)
$$K_j(wa) = \{F(w; a) \ X_j(a) \text{ pour } w \in W(A_j), a \in A_j\}$$

Réciproquement, si on se donne une famille de fonctions analytiques sur A_j' et $\mathcal{E}^{\mathbf{F}}$ -symétriques, on peut leur associer une fonction $\widetilde{\mathfrak{G}}$, G-invariante et analytique sur X' par

Le théorème ci-dessous caractérise les fonctions $\mathfrak{X}_{j}^{\prime}$ pour lesquelles l'expression

(4)
$$(\textcircled{h}, f) = \int_{X'} \textcircled{h} x_1 f v_1 dx \quad \text{où} \quad f \in C^{\infty}_{c}(X')$$

définit une distribution sphérique invariante sur

Théorème 11.1. La fonction G-invariante \widetilde{B} sur X' associée par (3) à la famille $(K_j)_{j=1,\cdots,n}$ définit une distribution sphérique G sur X' par (4) si et seulement si les fonctions vérifient les conditions suivantes :

(a-1) Il existe un homomorphisme χ de $\mathbb{D}(\chi)$ dans \mathbb{C} tel que :

$$D K_{j} = \lambda_{j}(D) K_{j}$$
 pour $D \in I(b_{j})$, où $\lambda_{j} = X (b_{j})^{-1}$

- (a-2) Chaque K_i peut être prolongée analytiquement de A_i' à A_i' F
- (a-3) Pour tout $j \in \{1, \dots, m\}$ et $d \in \mathbb{S}_R^d$, posons m = m.

 Soit \mathcal{T} le sous-espace de Cartan de \mathcal{B} une racine imaginaire singulière de $\Sigma(\mathcal{T})$ obtenu à l'aide de \mathfrak{G} , d'une racine réelle singulière \mathcal{A} dans \mathcal{G} (cf. Définition 1.4). Prenons l'ordre des racines de \mathcal{T} pour qui satisfait à $P^{\mathfrak{F}} = \Sigma$. $P^{\mathfrak{G}}$. Définissons $\mathcal{K}^{\mathfrak{F}}$ à partir de $\widetilde{\Theta}$ tel que

$$K_{\mathfrak{p}}(\mathfrak{G}) = (\mathcal{E}_{\mathfrak{p}}^{\mathbf{L}} \nabla_{\mathfrak{p}})(\mathfrak{G}) \ (\mathfrak{g} \in \mathcal{A}_{\mathfrak{p}}^{\mathfrak{p}})$$

Alors

$$H'_{\lambda}(\xi_{\kappa}^{F} \kappa_{\kappa})(\alpha_{0}) = H'_{\beta}(\xi_{\kappa}^{F} \kappa_{\beta})(\alpha_{0})$$

$$\frac{\alpha_{0} \in A_{\kappa} \wedge A_{\delta}}{T(1-\xi_{\delta}(\alpha_{0})+0)}$$

où chaque côté dénote la valeur limite à Q_0 qui existe sous les conditions (4), (a-1) et (a-2).

<u>Démonstration.</u> Soit $\widetilde{\mathbb{H}}$ la restriction de $\widehat{\mathbb{H}}$ à X'. Alors d'après le Théorème 10.5, $\widetilde{\mathbb{H}}$ est une fonction analytique localement intégrable. On pose $X_j(\alpha) = (\mathcal{E}_F^j \Delta^j) \widetilde{\mathbb{H}}(\alpha) (\alpha \in A_j')$. Pour un élément f de $C_c^\infty(X)$, on définit une intégrale orbitale K_f^j sur A_j' par

$$K_{\pm}^{j}(\alpha) = \mathcal{E}_{\pm}^{j}(\alpha) \ \overline{\Delta^{j}(\alpha)}$$

$$= \mathcal{E}_{\pm}^{j}(\alpha) \ \overline{\Delta^{j}(\alpha)}$$

$$= \mathcal{E}_{\pm}^{j}(\alpha) \ \overline{\Delta^{j}(\alpha)}$$

$$= \mathcal{E}_{\pm}^{j}(\alpha) \ \overline{\Delta^{j}(\alpha)}$$

D'après la formule de Weyl (Proposition 2.1), on a

$$(\widehat{\mathbf{m}}, \widehat{\mathbf{t}}) = \int_{\mathbf{A}'} f(x) \, \widehat{\mathbf{m}}(x) \, dx$$

$$= \sum_{j=1}^{n} c_j \int_{A'_j} K_f^j(a) \, k_j(a) \, da$$

où les C_j sont des nombres positifs. Dans le cas où $\mathbb{X}=\mathbb{G}$, Hirai a démontré le théorème (cf. [19]). Supposons donc que $\mathbb{X} \supseteq \mathbb{G} \sqrt{\mathbb{G}}$. Les changements de signe de $\mathbb{X}_L \triangle$ ont lieu sur un réseau, alors que les changements de signe de $\mathbb{X}_L \triangle$ ont lieu sur les murs des chambres de Weyl. La situation étant ici, pour cela, différente de celle du groupe, il faut modifier la démonstration. On définit une intégrale orbitale \mathbb{Y}_R ($\mathbb{R} \in C_c^\infty(\mathfrak{g})$) sur \mathfrak{G} par

où
$$\pi^{\sigma}(X) = \pi_{\sigma}(X)$$
 et $S_{L}(X) = sgn(\pi) \xrightarrow{m(L)} \pi_{\sigma}(X)$)

On peut obtenir une relation entre les limites de K et the en un point semi-régulier (même raisonnement que le lemme 4.3 de [32]).

La fonction the a essentiellement le même comportement au voisinage d'un point singulier que l'intégrale orbitale définie par HarishChandra pour une algèbre de Lie semi-simple. On en déduit que the vérifient le théorème 30 ,p51 [41]. Par consequent,

K et the vérifient les relations de sauts données par le théorème 11, p396 [41]. A l'aide de ces relations de saut, on peut démontrer la même formule que celle du Lemme 6.4, [19]. Le théorème se démontre alors par un raisonnement analoque à celui du §9, [19].

Appendice: Un système complet de DSI linéairement indépendantes. Considerons l'espace symétrique $\chi \simeq \operatorname{GL}(3,\mathbb{C})/\operatorname{U}(2,\mathbb{I})$. Bien que l'algèbre de Lie $\gamma = \operatorname{GL}(3,\mathbb{C})$ soit réductive, on peut aussi appliquer le théorème 11.1 pour obtenir les distributions sphériques (invariantes) sur χ ([4]). Nous allons, dans ce paragraphe, donner une base de $\mathcal{D}'_{\Lambda}(\chi)$ (cf. §3 pour la définition) pour tout caractère infinitésimal Λ de $\mathcal{D}(\chi)$ C'est parce que les formules sont plus agréables à écrire pour $\operatorname{GL}(3,\mathbb{C})/\operatorname{U}(2,\mathbb{I})$ que pour $\operatorname{SL}(3,\mathbb{C})/\operatorname{SU}(2,\mathbb{I})$ que nous avons choisi de traiter cet exemple.

Soit σ l'involution définie sur $G = GL(3, \mathbb{C})$ par

$$\sigma(g) = J(g^*)^{-1}J \qquad \text{où} \quad g^* = \overline{g} \quad \text{et} \quad J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Le sous-groupe des points fixes de G fixés par O est le groupe $H = \mathcal{U}(2, 1)$ qui est connexe. On réalise l'espace symétrique G/H dans $X = \{g \circ (g)^{-1} : g \in G\}$. On vérifie que

$$\chi = \{ x \in GU3.(1) ; Jx \text{ est hermitienne de signature } (2,1) \}$$

Il y a deux classes de conjugaison de sous-espaces de Cartan de $(g, \mathcal{L}) = g(3, \mathbb{C}), u(2, \mathbb{I})$. On choisit pour représentants

$$60^{\circ} = \left\{ \begin{array}{c} \chi_{1} \circ \circ \\ \circ & \chi_{2} \circ \\ \circ & \circ & \chi_{3} \end{array} \right\} : \chi_{1} \in \mathbb{R} \right\}$$

Soit A^{b} et A^{l} des sous-espace de Cartan global de X correspond à σ^{b} et σ^{l} respectivement donné par

$$A^{\circ} = \begin{cases} \begin{cases} \varepsilon_{1} e^{t_{1}} & \circ & \circ \\ \circ & \varepsilon_{2} e^{t_{2}} & \circ \\ \circ & \circ & \varepsilon_{3} e^{t_{3}} \end{cases} \end{cases} \quad \begin{cases} \text{Soit } \varepsilon_{1} = \varepsilon_{2} = \varepsilon_{3} = 1 \\ \text{Soit } \varepsilon_{1} = \varepsilon_{3} = -1, \ \varepsilon_{2} = 1 \end{cases} \end{cases}$$

$$A' = \left\{ \begin{pmatrix} x & 0 & y \\ 0 & v & 0 \\ -y & 0 & x \end{pmatrix} \in X : v(x^2 + y^2) > 0 \right\}$$

L'espace A^o est composé de trois composantes connexes : A^o : $\xi_1 = \xi_2 = \xi_3 = 1$, $A^o : \xi_1 = \xi_3 = -1$, $A^o : \xi_1 = \xi_3 = -1$. $\xi_2 = 1$ $\xi_3 = 1$

Le groupe de Weyl associé est donné :

La fonction $\overline{\Phi}$ invariante par H associée à un couple (\P^o, \P^l) definit une distribution spherique sur $\chi \cong \operatorname{GL}(G,\mathbb{C})/\operatorname{U}(G,\mathbb{I})$. Si et seulemet si elle vérifie les propriétés de Théorème II. I .

Soit $\Lambda\in\mathbb{C}^3$. On appelle $\mathfrak{B}'_{\Lambda}(\chi)$ l'espace vectoriel des distributions sphériques déterminées par le couple (φ^o, φ') où

$$\partial(P,j) \varphi^{j} = P(N) \varphi^{j}$$
 pour tout polynôme symétrique 1

On veut déterminer la dimension de \mathfrak{B}'_{Λ} (%) suivant les valeurs de Comme \mathfrak{W}_{\circ} permute les éléments de A_{\circ}° et ceux de A_{\circ}° il suffi déterminer \mathfrak{P}° sur A_{\circ}° et A_{\circ}° avec pour seule condition

(i')
$$\varphi^{\circ}(w_{\circ}a) = -\varphi^{\circ}(a)$$
 car w_{\circ} stabilise A°_{\circ}

On introduit les notations suivantes:

pour
$$T = (t_1, t_2, t_3)$$
, $\varphi^{\circ}(T) = \varphi^{\circ}(\begin{pmatrix} e^{t_1} \circ \circ \\ \circ & e^{t_2} \circ \\ \circ & e^{t_3} \end{pmatrix})$

$$\varphi_{i}^{\circ}(T) = \varphi_{i}^{\circ} \left(\begin{pmatrix} -e^{x_{i}} & 0 & 0 \\ 0 & e^{x_{i}} & 0 \\ 0 & 0 & -e^{x_{i}} \end{pmatrix} \right),$$

Pour
$$\mathbb{B} = (\cancel{t} + i\theta, \cancel{u}, \cancel{t} - i\theta)$$

$$(\cancel{u} = -2\cancel{t})$$

$$\varphi(\mathbb{B}) = \varphi'\left(\exp\left(\frac{\cancel{t} \circ \theta}{\circ \cancel{u} \circ}\right)\right)$$

La condition (i) s'ecrit pour Φ' : $\Phi'(w, \mathbb{B}) = \Phi'(\mathbb{B})$ Il suffit donc de déterminer Φ' pour $0 < \theta < \pi$. Pour déterminer $\Theta'_{\Lambda}(x)$ il est équivalent de déterminer les triplets de fonctions Φ' , Φ' et Φ' telles ques

(i)
$$\varphi^{\circ}(w \circ T) = -\varphi^{\circ}(T)$$
 où $w \circ (t_1, t_2, t_3) = (t_2, t_1, t_3)$
(ii) $\varphi^{\circ} \in \varphi^{\circ} \in C^{\infty}(\mathbb{R}^{2}), \quad \varphi^{\circ} \in C^{\infty}(\mathbb{R} \times (v, \pi))$

(ni) Pour tout plynome P symétrique

$$P\left(\frac{\partial}{\partial A_{1}}, \frac{\partial}{\partial A_{2}}, \frac{\partial}{\partial A_{3}}\right) \varphi_{k}^{\circ} = P(1) \varphi_{k}^{\circ} \qquad (k = 0.1)$$

$$P'\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial u}, \frac{\partial}{\partial \theta}\right) \varphi' = P(x) \varphi'$$
où P'est écrit dans la base $X = \begin{pmatrix} \frac{1}{c} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, Z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$

$$\left(\frac{d}{dt_1} - \frac{d}{dt_3}\right) \varphi^{\circ}(t, u, t) = i \frac{d}{d\theta} \varphi'(\Theta)|_{\theta \downarrow 0} \tag{1}$$

$$\left(\frac{d}{dx_1} - \frac{d}{dx_2}\right) \varphi^{\circ}(x, u, x) = i \frac{d}{d\theta} \varphi^{\prime}(\mathcal{D}) \Big|_{\theta \uparrow \mathcal{R}} \tag{II}$$

On va appeler:

 \mathcal{F}_{Λ} l'espace vectoriel des triplets verifiant (\ddot{u}) et (\ddot{u}) \mathcal{E}_{Λ} l'espace vectoriel des triplets verifiant (\ddot{u}) , (\ddot{u}) et (\dot{v}) Alors \mathcal{V}_{Λ} (est le sous-espace \mathcal{E}_{Λ} des triplets de \mathcal{E}_{Λ} verifiant (\dot{v}') .

(A) Cas où
$$\Lambda$$
 est régulier $\lambda_i \neq \lambda_i \neq \lambda_j$

a) dim
$$\pi_{\Lambda} = 18$$

On utilise un résultat classique (cf. Varadarajan p.61 [4]]) pour montrer que

$$\varphi_{\circ}^{\circ}(T) = \sum_{\sigma \in S_{3}} A_{\sigma} e^{\langle \sigma \Lambda, T \rangle} + A_{\sigma}' e^{\langle \sigma \Lambda, w, T \rangle},$$

$$\varphi_{\circ}^{\circ}(T) = \sum_{\sigma \in S_{3}} \lambda_{\sigma} e^{\langle \sigma \Lambda, T \rangle} + \lambda_{\sigma}' e^{\langle \sigma \Lambda, w, T \rangle},$$

$$\varphi'(T) = \sum_{\sigma \in S_{3}} \lambda_{\sigma} e^{\langle \sigma \Lambda, T \rangle} + \lambda_{\sigma}' e^{\langle \sigma \Lambda, w, \Theta \rangle}$$

On introduit w_1 pour simplifiée l'écriture des conditions de saut.

b) Ecriture des conditions de sauts :

166

$$(I) \iff A_{\alpha} - A'_{\alpha} = -(\alpha_{\alpha} - \alpha'_{\alpha}) \quad \text{pour tout } \alpha \in S_{3}$$

$$(\mathbb{I}) \iff \lambda_{\sigma} - \lambda_{\sigma}' = -\left(\lambda_{\sigma} e^{(\sigma \Lambda, \tilde{f}_{\pi})} - \lambda_{\sigma}' e^{(\sigma \Lambda, \tilde{f}_{\pi})}\right)$$
pour tout $\sigma \in \mathcal{C}_{3}$

où
$$f_{\pi} = (-i\pi, 0, -i\pi)$$

On peut fixer arbitrairement les constantes (pour ${\it C}{\it c}\,{\it S}_{\it s}$

d'où dim
$$\mathcal{E}_{\Lambda} = 12$$

Pour étudier la condition d'invariance par Wo , il faut exhiber une base de ٤٧.

Solutions nulles sur A' ($d_{\bullet} = d_{\bullet}' = 0$)

$$A_{\Lambda} \begin{cases} e^{\langle \Lambda, T \rangle} + e^{\langle \Lambda, w, T \rangle} \\ o \\ 0 \end{cases} \qquad B_{\Lambda} \begin{cases} 0 \\ \langle \Lambda, T \rangle + \langle \Lambda, w, T \rangle \\ o \end{cases}$$

 $\{A_{\sigma\Lambda} \mid B_{\sigma\Lambda} : \sigma \in S_3\}$ sont des éléments indépendants de

Solutions non nulles sur A' (en prenant $A_0 + A'_0 = 0$ et $t_0 + t'_0$ elles sont indépendantes des précédentes)

sons
$$\begin{cases}
d - d' = \beta \\
d e^{\langle \Lambda, \tilde{f}_{\pi} \rangle} - d' e^{-\langle \Lambda, \tilde{f}_{\pi} \rangle} = \beta'
\end{cases}$$

$$1^{e_{-c_{\omega}}} e^{\langle \Lambda, \tilde{f}_{\pi} \rangle} \neq e^{\langle \Lambda, \tilde{f}_{\pi} \rangle} \Leftrightarrow \lambda_{1} - \lambda_{3} \notin \mathbb{Z}$$

En prenant $\beta = -2$, $\beta' = 0$

$$C_{\Lambda} = \begin{cases} e^{\langle \Lambda, T \rangle} - e^{\langle \Lambda, w, T \rangle} \\ 0 \\ \frac{e^{\langle \Lambda, \mathcal{H} - \tilde{f}_{\pi} \rangle} + e^{\langle \Lambda, w, (\mathcal{H} - \tilde{f}_{\pi}) \rangle}}{e^{\langle \Lambda, \tilde{f}_{\pi} \rangle} - e^{-\langle \Lambda, \tilde{f}_{\pi} \rangle}} \end{cases}$$

En prenant $\beta = 0$, $\beta' = -2$

$$D_{\Lambda} = \begin{cases} e^{\langle \Lambda, T \rangle} - e^{\langle \Lambda, w, T \rangle} \\ -2 \frac{e^{\langle \Lambda, \emptyset \rangle} - e^{\langle \Lambda, w, \emptyset \rangle}}{e^{\langle \Lambda, \Im \pi \rangle} - e^{-\langle \Lambda, \Im \pi \rangle}} \end{cases}$$

 $2^{\circ} \cos e^{\langle \Lambda, \tilde{f}_{\mathfrak{N}} \rangle} = e^{-\langle \Lambda, \tilde{f}_{\mathfrak{N}} \rangle} \Leftrightarrow \lambda_{1} - \lambda_{3} \in \mathbb{Z}^{*} \text{ Posons } m = \lambda_{1} - \lambda_{3}.$ Les conditions de saut s'écrirent

$$A - A' = -(a - a') = (1)^m (t - t')$$

En prenant $\alpha + \alpha' = 2$, $\beta = 0$

$$E_{\Lambda} = \begin{cases} 0 \\ e^{\langle \Lambda, \Theta \rangle} + e^{\langle \Lambda, w, \Theta \rangle} = e^{\langle \Lambda, \Theta + w, \Theta \rangle} \cos m0 \end{cases}$$

On en déduit une base \mathcal{E}_{Λ} dans les fifférents cas.

et dim $\xi_{\Lambda} = 12$

cas 1. $\lambda_i - \lambda_j \notin \mathbb{Z}$

Base: { Aon, Bon, Con, Don; ofA; }

cas 2. $\lambda_1 - \lambda_3 \in \mathcal{F}^{\times}$ $\lambda_1 - \lambda_1 \notin \mathcal{F}$

Base: $\begin{cases} A_{OA} & B_{OA} & pour & o \in S_3 \\ E_{A} & F_{A} & \\ C_{OA} & D_{OA} & pour & o \in S_3 \setminus \{1d\} \end{cases}$

cas 3. $\lambda_i - \lambda_j \in \mathcal{F}^{*}$

Base { Ann. Bon. Eon. Fon: o & S3 }

c) Condition d'invariance (i')

On veut déterminer le sous-espace vectoriel des éléments le \mathcal{E}_{Λ} verifiant la condition (i'). Pour cela il suffit le regarder la composante definie sur $\mathcal{A}_{\bullet}^{\bullet}$. Il est clair que $\mathcal{B}_{\bullet\Lambda}$, $\mathcal{D}_{\bullet\Lambda}$, $\mathcal{E}_{\bullet\Lambda}$ apparitiennent à \mathcal{I}_{Λ} . D'autre part \mathcal{F}_{Λ} it \mathcal{C}_{Λ} ayant la même composante sur $\mathcal{A}_{\bullet}^{\bullet}$, il est inutile e distinguer les 3 cas ci-dessus. L'élément \mathcal{E}_{\bullet} \mathcal{E}_{\bullet} on a :

L'espace \mathcal{L}_{Λ} est donc de dimension

dim
$$\mathcal{D}'_{\Lambda}(x) = 9$$

et il a pour base

Remarque. Si on se trouve dans les cas 2 ou 3, il faut remplacer ci-dessus D par E et C par F .

En particulier \mathcal{L}_{Λ} contient (dans le cas 1)

(B) Cas où Λ est "semi-regulier" $\lambda_1 = \lambda_3 \neq \lambda_4$ On pose $\lambda_1 = \lambda_3 = \lambda$ $\lambda_2 = \mu$ $(\lambda \nmid \mu)$

a) dim
$$\mathcal{F}_{\Lambda} = 18$$

Le stabilisateur de Λ dans σ_3 est le sous-groupe $\{1,w_i\}$. Les polynomes harmoniques relativement à ce sous-groupe sont engendrés par 1 et λ_1 - λ_3 . Le triplet (φ° , φ° , φ°) appartient à \P_{Λ} si et seulement si

$$\varphi_{\circ}^{\circ}(T) = \sum_{\sigma \in \mathcal{S}_{3}} (A_{\sigma} + A_{\sigma}^{\prime}(t_{1} - t_{3})) e^{\langle \sigma \Lambda, T \rangle}$$

$$\varphi_{i}^{\circ}(T) = \sum_{\alpha \in S_{3}} (t_{\alpha} + t_{\alpha}'(t_{i} - t_{3})) e^{\langle \alpha \Lambda, T \rangle}$$

170

$$\varphi'(\mathbb{B}) = \sum_{\sigma \in S_3} (d_{\sigma} + d'_{\sigma} 2i\theta) e^{\langle \sigma \Lambda, \mathfrak{B} \rangle}$$

où A , A' , \mathcal{A} , \mathcal{A}' , \mathcal{A} et \mathcal{A}' appartiennent à \mathbb{C}

b) Ecriture des conditions de saut : $A_3 = \{1, \alpha, \alpha^*\}, \alpha = \mathcal{N}_1 \mathcal{N}_2$

(II)
$$\iff$$
 $A'_1 = -\alpha'_1$

$$2(A'_1 + A'_{\alpha_1}) + (N - \mu)(A_{\alpha_1} - A_{\alpha_2}) = -2(A'_1 + A'_{\alpha_2}) - (N - \mu)(A_{\alpha_1} - A_{\alpha_2})$$
(II) \iff $A'_1 = -\alpha'_1$

$$2(A'_1 + A'_{\alpha_2}) + (N - \mu)(A_{\alpha_1} - A_{\alpha_2})$$

$$= -2(A'_1 + A'_{\alpha_2}) + (N - \mu)(A_{\alpha_1} - A_{\alpha_2})$$

$$= -2(A'_1 + A'_{\alpha_2}) + (N - \mu)(A_{\alpha_1} - A_{\alpha_2})$$

$$= -2(A'_1 + A'_{\alpha_2}) + (N - \mu)(A_{\alpha_1} - A_{\alpha_2})$$

$$= -2(A'_1 + A'_{\alpha_2}) + (N - \mu)(A_{\alpha_1} - A_{\alpha_2})$$

$$= -2(A'_1 + A'_{\alpha_2}) + (N - \mu)(A_{\alpha_1} - A_{\alpha_2})$$

$$= -2(A'_1 + A'_{\alpha_2}) + (N - \mu)(A_{\alpha_1} - A_{\alpha_2})$$

$$= -2(A'_1 + A'_{\alpha_2}) + (N - \mu)(A_{\alpha_1} - A_{\alpha_2})$$

$$= -2(A'_1 + A'_{\alpha_2}) + (N - \mu)(A_{\alpha_1} - A_{\alpha_2})$$

$$= -2(A'_1 + A'_{\alpha_2}) + (N - \mu)(A_{\alpha_1} - A_{\alpha_2})$$

$$= -2(A'_1 + A'_{\alpha_2}) + (N - \mu)(A_{\alpha_1} - A_{\alpha_2})$$

$$= -2(A'_1 + A'_{\alpha_2}) + (N - \mu)(A_{\alpha_1} - A_{\alpha_2})$$

$$= -2(A'_1 + A'_{\alpha_2}) + (N - \mu)(A_{\alpha_1} - A_{\alpha_2})$$

$$= -2(A'_1 + A'_{\alpha_2}) + (N - \mu)(A'_1 - A_{\alpha_2})$$

$$= -2(A'_1 + A'_{\alpha_2}) + (N - \mu)(A'_1 - A_{\alpha_2})$$

$$= -2(A'_1 + A'_{\alpha_2}) + (N - \mu)(A'_1 - A_{\alpha_2})$$

$$= -2(A'_1 + A'_1 - A'_1)$$

$$= -2(A'_1 + A'_2 - A'_1)$$

$$= -2(A'_1 + A'_1 - A'_1)$$

$$= -2(A$$

On peut fixer arbitrairement les constantes (pour $organize A_3$)

Exhibons une base de ξ_{Λ} :

Solutions nulles sur A'
$$(\alpha_{r} = \alpha_{r}' = 0)$$

$$A_{\Lambda} = \begin{cases} e^{\langle \Lambda, T \rangle} \\ 0 \\ 0 \end{cases} \qquad A_{\Lambda}' = \begin{cases} e^{\langle \Lambda, T \rangle} + e^{$$

$$B_{\Lambda} = \begin{cases} 0 \\ e^{\langle \Lambda, T \rangle} \\ 0 \end{cases} \qquad B_{\Lambda}^{I} = \begin{cases} 0 \\ \langle \pi \Lambda, T \rangle \\ e^{\langle \pi \Lambda, T \rangle} \\ 0 \end{cases} \qquad B_{\Lambda}^{I} = \begin{cases} 0 \\ \langle \pi \Lambda, T \rangle \\ \langle \pi \Lambda, T \rangle \\ 0 \end{cases} \qquad C_{\Lambda}^{I} = \begin{cases} 0 \\ \langle \pi \Lambda, T \rangle \\ \langle$$

$$C_{\Lambda} = \begin{cases} e^{\langle \alpha \Lambda, T \rangle} \left(1 - \frac{\langle \lambda - \mu \rangle}{4} (t_1 - t_3) \right) - e^{\langle \alpha^{\downarrow} \Lambda, T \rangle} \left(1 + \frac{\langle \lambda - \mu \rangle}{4} (t_1 - t_3) \right) \\ 0 \\ 0 \end{cases}$$

$$D_{\Lambda} = \begin{cases} 0 \\ e^{\langle \alpha \Lambda, T \rangle} \left(1 - \frac{\langle \gamma - \mu \rangle}{4} (t_{1} - t_{2}) \right) - e^{\langle \alpha^{1} \Lambda, T \rangle} \left(1 + \frac{\langle \chi - \mu \rangle}{4} (t_{1} - t_{2}) \right) \end{cases}$$

Solutions non nulles sur A^{\prime} .

$$E_{\Lambda} = \begin{cases} 0 \\ 0 \\ e^{\langle \Lambda, \Theta \rangle} \end{cases} \qquad \overline{F}_{\Lambda} = \begin{cases} (t_3 - t_1) e^{\langle \Lambda, T \rangle} \\ (t_3 - t_1) e^{\langle \Lambda, T \rangle} \\ 2 \cdot \theta e^{\langle \Lambda, \Theta \rangle} \end{cases}$$

$$G_{\Lambda} = \begin{cases} \frac{\lambda - \mu}{2i} \sin(\lambda - \mu)\pi \cdot (t_1 - t_3) \left[e^{(\pi \Lambda, T)} + e^{(\tau \Lambda, T)}\right] \\ e^{(\pi \Lambda, \Theta)} + e^{(\pi \Lambda, \Theta)} \end{cases}$$

$$H_{\Lambda} = \begin{cases} -\frac{(\lambda - \mu)}{2} (t_1 - t_3) \left[e^{(\alpha \Lambda, T)} + e^{(\alpha^2 \Lambda, T)} \right] \\ -\frac{(\lambda - \mu)}{2} \cos (\lambda - \mu) \pi (t_1 - t_3) \left[e^{(\alpha \Lambda, T)} + e^{(\alpha^2 \Lambda, T)} \right] \\ e^{(\alpha \Lambda, \Theta)} - e^{(\alpha^2 \Lambda, \Theta)} \end{cases}$$

$$I_{\Lambda} = \begin{cases} 0 \\ \left[\frac{(\lambda - \mu)}{2i} \cos(\lambda - \mu)\pi - i \sin(\lambda - \mu)\pi \right] (\xi, -\hbar) \left[e^{(\alpha \Lambda, T)} + e^{(\tau Y 1, T)} \right] \\ 2i\theta \left[e^{(\alpha \Lambda, M)} - e^{(\tau \Lambda, M)} \right] \end{cases}$$

$$J_{\Lambda} = \begin{cases} -4_{1}-t_{3}) \left[e^{(\alpha \Lambda, T)} + e^{(\alpha \Lambda, T)} \right] \\ \left[(\lambda - \mu) \sin(\lambda - \mu) \pi - \cos(\lambda - \mu) \pi \right] (t_{1} - t_{3}) \left[e^{(\alpha \Lambda, T)} + e^{(\alpha \Lambda, T)} \right] \\ 2i\theta \left[e^{(\alpha \Lambda, D)} + e^{(\alpha \Lambda, D)} \right] \end{cases}$$

c) Condition d'invariance (i')

Il est clair que B_Λ , B_Λ' , B_Λ'' , D_Λ , E_Λ , G_Λ , D_Λ , rifient la condition (i'). Le sous-espace vectoriel supplémentaire uns f_Λ est engendré par

$$H_{\Lambda} - \frac{\lambda - r}{2} J_{\Lambda}$$
 et $2A_{\Lambda} - A'_{\Lambda} + C_{\Lambda} - \frac{\lambda - r}{x} J_{\Lambda}$
d'où dim $J_{\Lambda} = 9$

Remarque : Les seuls éléments de \mathcal{L}_{Λ} non nuls sur $\mathcal{A}_{\delta}^{\delta}$ sont s multiples de

(C) Cas où
$$\Lambda$$
 est "singulier" $\lambda_1 = \lambda_2 = \lambda_3$

a) dim Fn = 18

Le stabilisateur de \bigwedge dans \mathcal{O}_3 est \mathcal{O}_3 lui-meme. L'espace \mathcal{H} des polynomes \mathcal{O}_3 -harmoniques est de demension 6.

1 a base 1 ;
$$t_2 - t_1$$
 ; $t_2 - t_3$; $(t_2 - t_1)(t_1 + t_1 - 2t_1)$; $(t_2 - t_1)(t_1 + t_1 - 2t_1)$; $(t_1 - t_2) + t_2(t_3 - t_1) + t_3(t_1 - t_1)$

Posons pour $T = (t_1, t_2, t_3)$ $t = \frac{t_1 + t_3}{2}$, $t = \frac{t_1 + t_3}{2}$, $t = \frac{t_2}{2}$ L'espace H est engendré par

$$\begin{cases}
P_0 = 1, & P_1 = n - t \\
P_2 = 3, & P_3 = (n - t)^2 - 33^2 \\
P_4 = 3 (n - t) \\
P_5 = 3 (n - t)^2 - 3^2
\end{cases}$$

Posons

(On a remplacé β par $i\theta$ dans les β)

Q_s = 1 , Q₁ =
$$y-t$$

Q₁ = $i\theta$, Q₃ = $(y-t)^2 + 3\theta^2$
Q_k = $i\theta$ ($y-t$)
Q_s = $i\theta$ [$y-t$]

On obtient alors :

b) Ecriture des conditions de sauts :Avec les nouvelles variables on peut écrié :

$$\left| \begin{array}{ccc} (\mathbf{I}) & \frac{d}{d\eta} & \varphi^{\circ} |_{\mathfrak{Z}=0} = i & \frac{d}{d\theta} & \varphi' |_{\mathfrak{H}=0} \\ (\mathbf{I}) & \frac{d}{d\eta} & \varphi^{\circ} |_{\mathfrak{Z}=0} = i & \frac{d}{d\theta} & \varphi' |_{\mathfrak{H}=0} \end{aligned} \right|$$

On en deduit (car $e^{(1,T)} = \{\Lambda, B\} = \lambda (2\pi t)$)

$$(I) \iff A_2 = -\alpha_1 : A_k = -\alpha_k : A_r = -\alpha_s$$

$$(I) \Leftrightarrow t_2 = -d_2 - 3\pi^2 d_5 + 6i\pi d_3$$

$$t_k = -d_k : t_5 = -d_5$$

On peut fixer arbitrairement les α_j pour j=0,-,5 les A_k et les A_k pour k=0.1.3

Exhibons une base de $\frac{1}{2}$:

$$A_{\Lambda} = \begin{cases} e^{\Lambda, T} \\ 0 \\ 0 \end{cases}, A_{\Lambda}' = \begin{cases} e^{\Lambda, T} \\ 0 \\ 0 \end{cases}, A_{\Lambda}'' = \begin{cases} 0 \\ e^{\Lambda, T} \end{cases}, A_{\Lambda}'' = \begin{cases} 0 \\ e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u - t) e^{\Lambda, T} \end{cases}, B_{\Lambda}'' = \begin{cases} 0 \\ (u$$

c) Condition d'invariance.

Les polynomes σ_3 -harmoniques vérifiant $p(w_*T) = -p(T)$ sont engendrés par :

$$\begin{cases} P_{1} - P_{2} & (t_{1} - t_{2}) \\ P_{3} + 2 P_{k} & (t_{1} - t_{2})(t_{1} + t_{2} - 2t_{3}) \end{cases}$$

$$\begin{cases} P_{1} - P_{2} & (t_{1} - t_{2})(t_{1} + t_{2} - 2t_{3}) \\ P_{2} & (t_{1} - t_{2})(t_{1} + t_{2} - 2t_{3}) \end{cases}$$

On en déduit que $\lim_{\Lambda} f_{\Lambda} = 0$ et que f_{Λ} admet pour base :

solutions nulles sur $A_o^o:A_\Lambda'$, A_Λ'' , B_Λ'' , B_Λ'' , B_Λ'' , C_Λ' , F_Λ Solutions non nulles sur $A_o^o:B_\Lambda + \widehat{E}_\Lambda$, $C_\Lambda - \widehat{C}_\Lambda$, C_Λ

BIBLIOGRAPHIE

- [1] M.F.Atiyah, Characters of semi-simple Lie groups(lectures given in Oxford), Mathematical Institute, Oxford, 1976.
- [2] D.Barbasch-D.A.Vogan, Jr., The Local Structure of Characters, J.Funct.Anal., 37(1980), 27-55.
- [3] F.A.Berezin, Laplace operators on semi-simple Lie groups, Amer.Math.Soc.Transl., 21(1962), 239-339.
- [4] N.Bopp, Formule d'inversion pour GL(3,C)/U(2,1), Publ.IRMA, Univ.Strasbourg, (1985),1-15.
- [5] G.B.Elkington, Centralizers of unipotent elements in semisimple algebraic groups, J.of Algebra 23(1972), 137-163.
- [6] J.Faraut, Distributions sphériques sur les espaces hyperboliques, J.Math.Pures Appl., 58(1979), 369-444.
- [7] J.Faraut, Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques, Analyse Harmonique, (1983), 315-446.
- [8] J.Faraut, Analyse harmonique et fonctions speciales, Ecole d'ete d'analyse harmonique de tunis, (1984).
- [9] M.Flensted-Jensen, Spherical functions on a real semisimple
 Lie group, A method of reduction to the complex case, J.Funct.
 Anal., 30(1978), 106-146.
- [10] M.Flensted-Jensen, K-finite joint eigenfunctions of $U(g)^k$ on a non-Riemannian semisimple symmetric space G/H, Lect. Notes in Math., 880(1981), 91-101, Springer.
- [11] Harish-Chandra, Representations of a semisimple Lie group,
 I,II,III, Trans.Amer. Math. Soc. 75(1953),185-243; 76(1954),
 26-65; 76(1954),234-253.

- [12] Harish-Chandra, The characters of semisimple Lie groups, Trans.Amer.Math.Soc., 83(1956), 98-163.
- [13] Harish-Chandra, Spherical functions on a semisimple Lie group, I.Amer.J.Math.,80(1958),241-310;II,ibid.,80(1958),553-613.
- [14] Harish-Chandra, Invariant distributions on Lie algebras, Amer.J.Math., 86,271-309 (1964).
- [15] S. Helgason, Differential geometry and symmetric spaces, Pure and Appl. Math. Vol.12, Academic Press, New York, 1962.
- [16] S.Helgason, Fundamental solutions of invariant differential operators on symmetric spaces, Amer.J.Math., 86(1964), 565-601.
- [17] S.Helgason, Analysis on Lie Groups and homogeneous Spaces,"
 Conf.Board Math.Sci.Series, No.14, Amer.Math.Soc., Providence,
 Rhode Island, 1972.
- [18] T.Hirai, Invariant eigendistributions of Laplace operators on real simple Lie groups I, Japan.J.Math., 39(1970),1-68.
- [19] T.Hirai, Invariant eigendistributions of Laplace operators on real simple Lie groups II, Japan.J.Math.New Series, 2 (1976), 27-89.
- [20] B. Hoogenboom, Spherical functions and invariant differential operators on complex Grassmann manifolds, Ark.Mat., 20(1982), 69-85.
- [21] R.Hotta-M.Kashiwara, Quotients of the Harish-Chandra system by primitive ideals, to appear in 'Giornate di Geometria', Roma 1984, PM, Birkäuser 1985.
- [22] M.Kashiwara, The Riemann-Hilbert Problem for Holonomic Systems, Publ.RIMS, Kyoto Univ., 20(1984), 319-365.

- [23] M. Kashiwara-A. Kowata-K. Minemura-K. Okamoto-T. Oshima-M. Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math., 107(1978), 1-39.
- [24] T.H.Koornwinder, On Vretare's dimension formula for class one irreducible representation of connected semi-simple Lie groups, informal manuscript.
- [25] M.T.Kosters, Spherical distributions on rank one symmetric spaces, thesis, Univ. of Leiden, 1983.
- [26] T.Oshima, A note on dimension formulas for Riemannian symmetric spaces, Seminar Reports of Unitary Representation No. 1, 1981.
- [27] T.Oshima, A realization of semisimple symmetric spaces and construction of boundary value maps, to appear.
- [28] T.Oshima, Boundary value problems for systems of linear partia differential equations with regular singularities, Adv.Studies in Pure Math., 4(1984), 391-432.
- [29] T.Oshima-T.Matsuki, Orbits on affine symmetric spaces under the action of the isotropy subgroups, J.Math.Soc.Japan, 32(1980), 399-414.
- [30] T.Oshima-J.Sekiguchi, Eigenspaces of invariant differential operators on an affine symmetric space, Invent.Math.,,57(1980), 1-81.
- [31] S.Sano, Algèbre de Lie semi-simple symétrique et transformation de Cayley, preprint.
- [32] S.Sano, Invariant spherical distributions and the Fourier inversion formula on $GL(n, \mathbb{C})/GL(n, \mathbb{R})$, J.Math.Soc.Japan,36 (1984),191-219.

- [33] S.Sano, Distributions sphériques invariantes sur l'espace semi-simple et son c-dual, Lect.Notes in Math., Springer, preprint.
- [34] S.Sano-S.Aoki-S.Kato, A Note on Connection Formulas for Invariant Eigendistributions on Certain Semisimple Symmetric Spaces, Bull.of I.V.T., 14-A(1985), 99-108.
- [35] L. Schwartz, Théorie des distributions, Hermann, 1950.
- [36] J.Sekiguchi, Invariant spherical hyperfunctions on the tangent space of a symmetric space, Adv.St. in Pure Math.,6 (1985),83-126.
- [37] M. Sugiura, Unitary representations and harmonic analysis Kodansha, Tokyo, 1975.
- [38] R.Takahashi, Sur les functions spheriques et la formule de Plancherel dans le groupe hyperbolique, Japan.J.Math., 31(1961), 55-90.
- [39] P.C. Trombi-V.S. Varadarajan, Asymptotic behaviour of eigenfunctions on a semisimple Lie group: The discrete spectrum, Acta Math., 129(1972), 237-280.
- [40] G.van Dijk, Invariant eigendistributions on the tangent space of a rank one semisimple symmetric space, preprint.
- [41] V.S. Varadarajan, Harmonic Analysis on real reductive groups, Lecture Notes in Math., 576, Springer Verlag, 1977.
- [42] L. Vretare, On a recurrence formula for elementary spherical functions on symmetric spaces and its applications to multipliers for the spherical Fourier transform, Math. Scand., 41(1977), 99-112.
- [43] G. Warner, Harmonic Analysis on semi-simple Lie groups, Vol.1, 2, Springer Verlag, 1972.